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Abstract

Nous abordons dans cet article le problème de la détection-estimation jointe de l’activité cérébrale
en IRM fonctionnelle. Pour ce faire, nous adoptons le cadre JDE développé dans [1] et étendu dans [2]
afin de considérer les dépendances spatiales entre les voxels. L’une des difficultés réside dans le choix
de l’échelle spatiale appropriée pour l’estimation de la fonction de rponse hémodynamique (HRF) des
voxels. L’approche JDE actuelle est basée sur une parcellisation a priori permettant de classer les
voxels en groupes partageant les même propriétés fonctionnelle. Chaque groupe est modélisé par une
seule HRF, ce qui permet de pallier le manque de robustesse des approches opérant à l’échelle du
voxel, mais sans garantir l’adéquation de cette parcellisation aux données traitées. Nous étendons ici
le modèle JDE en un modèle de parcellisation-détection-estimation conjointe (JPDE) qui met en œuvre
une étape supplémentaire de parcellisation. Pour réduire la complexité opératoire, et comme dans [3],
l’inférence est construite en utilisant des technique d’approximation variationnelle.

1 Introduction
Functional Magnetic Resonance Imaging (fMRI) is a powerful tool to non-invasively study the relation
between cognitive task and cerebral activity through the analysis of the hemodynamic BOLD signal [4].
Within-subject analysis in event-related fMRI first relies on (i) a detection step to localize which parts
of the brain are activated by a given stimulus type, and second on (ii) an estimation step to recover the
temporal dynamics of the brain response. Most approaches to detect neural activity rely on a single a priori

model for the temporal dynamics of activated voxels also known as the hemodynamic response function
(HRF) [5]. A canonical HRF is usually assumed for the whole brain although there has been evidence
that this response can vary with space or region, across subjects and groups [6]. In addition, a robust and
accurate estimation of the HRF is possible only in regions that elicit an evoked response to an experimental
stimulus [7]. Both issues of properly detecting evoked activity and estimating the HRF then play a central
role in fMRI data analysis. They are usually dealt with independently with no possible feedback although
both issues are strongly connected one to another. To introduce more flexibility regarding the assumptions
on the HRF model, a novel approach referred to as the Joint Detection Estimation(JDE) framework has
been introduced in [1] and extended in [2] to account for spatial correlation between neighboring voxels
in the brain volume (regular lattice in 3D). In this latter approach, the HRF can be estimated while
simultaneously detecting activity, in a region-based analysis, that is on a set of pre-specified regions of
interest (ROI), also named parcels. This approach is mainly based on: (i) the non-parametric modelling
of the HRF at a regional spatial scale (parcel-level) that provides a fair compromise between homogeneity
of the BOLD signal and reproducibility of the HRF estimate; (ii) prior information about the temporal
smoothness of the HRF to be estimated; and (iii) the modelling of spatial correlation between neighboring
voxels within each parcel using condition-specific hidden Markov fields. In [1, 2], posterior inference is
carried out in a Bayesian setting using Monte Carlo Markov Chain (MCMC) methods. In order to overcome
the high computational cost of this MCMC-based approach, an alternative with similar performance has
been proposed in [3] based on Variational Expectation Maximization (VEM) algorithm. However, one
current limitation of all these JDE approaches lies in the prior decomposition of the brain into functionally
homogeneous regions (parcels) required so as to estimate parcel-based HRFs. Those parcels should be small
enough to guarantee the invariance of the HRF within each parcel but large enough to contain reliable
information for the estimation. This spatial scale trade-off is currently decided on an appropriate external a
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priori parcellation. Ideally, the parcellation should instead be dictated by the data under consideration. We
propose then to further constrain the HRF estimation by incorporating for parcel estimation an additional
layer in the model and to carry out inference in a variational setting. In this novel Joint-Parcellation-
Detection-Estimation (JPDE) model, a parcel is a set of connected voxels with different individual HRFs
but that can be seen as local perturbations of the same parcel-specific HRF pattern. The hemodynamics
estimation reduces then to the identification of a limited number (say K) of such HRF patterns. This
amounts to reformulating parcel identification as a clustering problem where each voxel is assigned an
HRF group among K possible groups. Equivalently, we relax the assumption of a unique HRF model by
parcel by considering voxel-varying HRFs but to reduce the number of parameters to be estimated, these
HRFs are modelled as realizations of a K-component mixture model. As a by product, a parcellation
estimation can be derived by considering that each set of connected voxels in the same HRF group defines
a parcel. The group variables will be governed by a hidden Markov Model to enforce spatial correlation,
i.e. favor group assignments to vary smoothly. Finally, the overall scheme will iteratively and alternately
identify parcels and HRF groups. The proposed approach makes the JDE framework fully automatic and
more flexible. It is based on a VEM algorithm to derive estimates of the HRF, the Neural Response
Levels (NRLs), the corresponding labels (activating/non-activating voxels) and the HRF group labels.

2 A joint detection-estimation model

Capital letters indicate random variables, and lower case their realizations. Matrices are denoted with
bold upper case letters (eg P ). The transpose is denoted by t.

2.1 Observation BOLD model

We first extend the parcel-based JDE model of [1, 2] to a whole-brain one and recast it in a missing
data framework. Let us partition the set of voxels (P) in the brain into K groups, each of them having
homogeneous functional properties, i.e a unique HRF model: P = (Pk)k=1:K . At a voxel j, the fMRI
time series yj is measured at times (tn)n=1:N , where tn = nTR, N being the number of scans and TR

the time of repetition. The number of different stimulus types or experimental conditions is M . For a
given voxel, a BOLD signal model (the same for all voxels) is used in order to link the observed data
Y = {yj ∈ R

N , j ∈ P} to the voxel-dependent HRFs hj ∈ R
D+1 and to the response amplitudes

A = {am,m = 1 : M} with am = {amj , j ∈ P} and amj being the amplitude at voxel j for condition m.
More specifically, the observation model at each voxel j ∈ P is expressed as follows:

yj = Sjhj + P ℓj + εj , with Sj =

M∑

m=1

amj Xm (1)

where Sjhj is the summation of the stimulus-induced components of the BOLD signal. The binary matrix
Xm = {xn−d∆t

m , n = 1 : N, d = 0 : D} is of size N × (D + 1) and provides information on the stimuli
occurrences for the m-th experimental condition, ∆t < TR being the sampling period of the unknown
HRFs hj = (hd∆t)d=0:D. We denote by H = {hj , i ∈ P} the set of all HRFs. The scalar amj ’s are weight
that model the transition between stimulations and the vascular response. It follows that the amj ’s are
generally referred to as Neural Response Levels (NRL). The rest of the signal is made of matrix P , which
corresponds to physiological artifacts accounted for via a low frequency orthonormal function basis of size
N ×O. At each voxel j is associated a vector of low frequency drifts ℓj ∈ R

O which has to be estimated.
These vectors may be grouped into the same matrix L = {ℓj, j ∈ P}. Regarding the observation noise,
the εj ’s are assumed to be independent with εj ∼ N (0,Γ−1

j ) at voxel j (see Section 2.2.1 for more details).
The set of all unknown precision matrices is denoted by Γ = {Γj , j ∈ P}. Detection is handled through
the introduction of activation class assignments Q = {qm,m = 1 : M} where qm =

{
qmj , j ∈ P

}
and

qmj represents the activation class at voxel j for experimental condition m. Without loss of generality,
the number of classes considered here is I = 2 for activated (i = 2) and non-activated (i = 1) voxels.
Finally, parcellation is performed by introducing another set of hidden variables Z = {zj, j ∈ P} where
zj ∈ {1 : K} denotes the group or HRF class at voxel j .
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2.2 Hierarchical model of the complete data distribution
With standard additional assumptions [1–3], and omitting the dependence on the parameters to be specified
later, the distribution of both the observed and hidden variables can be decomposed as p(Y ,A,H ,Q) =
p(Y |A,H) p(A |Q) p(H |Z) p(Q) p(Z).

2.2.1 Likelihood

The definition of the likelihood depends on the noise model. In [8], an autoregressive (AR) noise model
has been adopted to account for serial correlations in fMRI time series. It has also been show in [8] that a
spatially-varying AR noise model helped to control false positive rate. In the same context, we will assume
such a noise model εj ∼ N (0,Γ−1

j ) with Γj = σ−2
j Λj where Λj is a tridiagonal symmetric matrix which

depends on the AR(1) parameter ρj [1]: (Λj)1,1 = (Λj)N,N = (Λj)p,p = 1 + ρ2j and (Λj)p+1,p = −ρj
for p = 2 : N − 1. These parameters are assumed voxel-varying due to their tissue-dependence [9, 10].
The likelihood can therefore be written as p(Y |A,H ;L, θ0) ∝

∏
j∈P

|Γ−1
j |1/2 exp

(
− 1

2y
t
jΓjyj

)
, where

|Γ−1
j | = σ−2N

j |Λj | and |Λj | = 1− ρ2j , θ0 = {ρj, σ
2
j , j ∈ P} and yj = yj − P ℓj − Sjhj .

2.2.2 Model priors

Neuronal response levels. Akin to [1–3], the NRLs amj are assumed to be statistically independent
across conditions: p(A; θa) =

∏
m
p(am; θm) where θa = {θm,m = 1 : M} and θm gathers the parameters

for the m-th condition. A mixture model is then adopted by using the allocation variables qmj to segregate
activated voxels (qmj = 1) from non-activated ones (qmj = 0). For the m-th condition, and conditionally to
the assignment variables qm, the NRLs are assumed to be independent: p(am | qm; θm) =

∏
j∈P

p(amj | qmj =

i; θm) =
∏
j∈P

N (amj ;µmi, vmi) where N ( . ;µmi, vmi) denotes the Gaussian distribution with mean µmi and

variance vmi and θm = {µmi, vmi, i = 1, 2}. The Gaussian parameters θa are unknown. We denote by
µ={µm,m = 1 : M} with µm = {µm1, µm2} and v = {vm,m = 1 : M} with vm = {vm1, vm2}. More
specifically, for non-activating voxels we set for all m, µm1=0.
Activation classes. As in [2, 3], we assume prior independence between the M experimental conditions

regarding the activation class assignments. It follows that p(Q) =
M∏

m=1
p(qm;βm) where we assumed in

addition that p(qm;βm) is a spatial Markov prior, namely an Ising model with interaction parameter
βm [2]: p(qm;βm) ∝ exp

(
βmU(qm)

)
, where U(qm) =

∑
j∼j′ δ(q

m
j , qmj′ ) and ∀(a, b) ∈ R

2 , δ(a, b) = 1
if a = b and 0 otherwise. The notation j ∼ j′ means that the summation is over all neighboring voxels.
The neighboring system covers a 3D scheme through the brain. The unknown parameters are denoted by
β = {βm,m = 1 : M}. In what follows, we will consider a 6-connexity 3D neighboring system.
HRF groups. In order to promote parcellation regularity, we use here a spatial Markov prior, namely a
Potts model with interaction parameter βz: p(Z;βz) ∝ exp

(
βzU(Z)

)
, where U(Z) =

∑
j∼j′ δ(zj , zj′).

We use here the same 6-connexity 3D neighboring system as before.
HRF. In contrast to [1–3] where a unique HRF is used for a whole parcel and where a smoothness
constraint is imposed for the HRF by controlling its second order derivative, we use here a separable prior
defined by p(H) =

∏
j∈P

p(hj | zj) where p(hj | zj = k) ∼ N (h̄k, Σ̄k). The distribution on hj is expressed

conditionally to the HRF group variable zj. Regularity across neighbouring voxels is then favored via the
Markov prior on Z.

3 Estimation by variational EM

We propose to use an Expectation-Maximization (EM) framework to deal with the missing data namely,
A ∈ A, H ∈ H, Q ∈ Q, Z ∈ Z. Let D be the set of all probability distributions on A × H × Q ×
Z. EM can be viewed as an alternating maximization procedure of a function F on D, F(p,Θ) =
Ep

[
log p(Y ,A,H ,Q,Z |Θ)

]
+ G(p) where Ep

[
.
]
denotes the expectation with respect to p and G(p) =
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−Ep

[
log p(A,H ,Q,Z)

]
is the entropy of p. At iteration (r), denoting the current parameter values by

Θ(r−1), the alternating procedure proceeds as follows (Θ =
{
Γ,L,µ,v,β, βz , (h̄k, Σ̄k)1≤k≤K

}
∈ Θ):

E-step: p
(r)
A,H,Q,Z = argmax

p∈D

F(p,Θ(r−1)) (2)

M-step: Θ(r) = argmax
Θ∈Θ

F(p
(r)
A,H,Q,Z ,Θ) (3)

However, the optimization step in Eq. (2) leads to p
(r)
A,H,Q,Z = p(A,H ,Q,Z |Y ,Θ(r−1)), which is in-

tractable for our model. Hence, we resort to a variational EM variant in which the intractable posterior is
approximated as a product of four pdfs on A, H, Q and Z respectively. The intractable E-step is instead
solved over D̃, a restricted class of probability distributions chosen as the set of distributions that factorize
as p̃A,H,Q,Z = p̃Ap̃H p̃Qp̃Z where p̃A, p̃H , p̃Q and p̃Z are probability distributions on A, H, Q and Z
respectively. It follows that our E-step becomes an approximate E-step, which can be further decomposed
into four stages that consist of updating the four pdfs, p̃H , p̃A, p̃Q and p̃Z , in turn using four equivalent ex-

pressions of F when p factorizes as in D̃. At iteration (r), with current estimates denoted by q
(r−1)
A , q

(r−1)
Q ,

q
(r−1)
Z and Θ(r−1), the updating rules become (by the Kullback-Leibler divergence properties):

E-H: p̃
(r)
H (h) ∝ exp

(
E
p̃
(r−1)
A p̃

(r−1)
Z

[
log p(h |Y ,A,Z;Θ(r−1)

])
(4)

E-A: p̃
(r)
A (A) ∝ exp

(
E
p̃
(r)
H

p̃
(r−1)
Q

[
log p(A |Y ,H ,Q;Θ(r−1))

])
(5)

E-Q: p̃
(r)
Q (Q) ∝ exp

(
E
p̃
(r)
A

[
log p(Q |Y ,A;Θ(r−1))

])
(6)

E-Z: p̃
(r)
Z (Z) exp

(
E
p̃
(r)
H

[
log p(Z |Y ,H ;Θ(r−1)

])
. (7)

The M-step writes (since Θ and G(p
(r)
A,H,Q,Z) are independent):

M: Θ(r) = argmax
Θ

E
p̃
(r)
A

p̃
(r)
H

p̃
(r)
Q

p̃
(r)
Z

[
log p(Y ,A,H ,Q,Z;Θ)

]
. (8)

For the E-H and E-A steps it follows from standard algebra that q
(r)
H and q

(r)
A are both Gaussian distri-

butions: p̃
(r)
H =

∏
j∈P

p̃
(r)
Hj

and p̃
(r)
A =

∏
j∈P

p̃
(r)
Aj

, where p̃
(r)
Hj

∼ N (m
(r)
Hj

,Σ
(r)
Hj

) and q
(r)
Aj

∼ N (m
(r)
Aj

,Σ
(r)
Aj

). More

specifically, assuming current values for the m
(r−1)
Aj

, Σ
(r−1)
Aj

and p̃
(r−1)
Qm

j
, the rth iteration starts with:

• E-H step: Compute Σ
(r)−1
Hj

= V −1
1 + V −1

2 and m
(r)
Hj

= Σ
(r)
Hj

(V −1
1 m1 + V −1

2 m2), where V1 =

∑
m,m′

v
(r−1)

Am
j Am′

j

Xt
mΓ

(r−1)
j Xm′ + S̃t

jΓ
(r−1)
j S̃j, V2 =

K∑
k=1

p̃
(r−1)
Zj

(k)Σ̄
−1
k , m1 = S̃t

jΓ
(r−1)
j (yj − P ℓ

(r−1)
j ) and

m2 = V2(
K∑

k=1

Σ̄
−1
k p̃

(r−1)
Z)j (k)h̄k). Hereabove, S̃j =

M∑
m=1

m
(r−1)
Am

j
Xm and m

(r−1)
Am

j
, v

(r−1)

Am
j Am′

j

denote respectively

the m and (m,m′) entries of the mean vector m
(r−1)
Aj

and covariance matrix Σ
(r−1)
Aj

of the current p̃
(r−1)
Aj

.

• E-A step: Compute Σ
(r)
Aj

= (
I∑

i=1

∆
(r)
ij + H̃

(r)
j )−1 and m

(r)
Aj

= Σ
(r)
Aj

(
∑I

i=1 ∆
(r)
ij µ

(r)
i + X̃

(r)t

j m
(r)
Hj

) with

µ
(r)
i = [µ1i . . . µMi]

t
and ∆

(r)
ij = diagM

[
q̃
(r−1)

Q1
j

(i)/v
(r)
1i , . . . , q̃

(r−1)

QM
j

(i)/v
(r)
Mi

]
where X̃

(r)
j = [gt1 | · · · | g

t
M ]

t

with gm = Γ
(r)
j (yj − P ℓ

(r)
j )tXm and H̃

(r)
j is a M × M matrix whose (m,m′) entry is H̃

(r)
j (m,m′) =

trace (Σ
(r)
Hj

Xm
tΓ

(r)
j Xm′) +m

(r)t

Hj
Xt

mΓ
(r)
j Xm′m

(r)
Hj

.

• E-Q step: It comes q̃
(r)
Q (Q) =

M∏
m=1

q̃
(r)
Qm(qm) with q̃

(r)
Qm

(qm) = pm(qm |am = m
(r)
A (m);v

(r)
m , β

(r)
m ), where

pm is a Potts model with interaction parameter β
(r)
m and external field α

(r)
m = {α

(r)
mj , j ∈ P}
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withα
(r)
mj = Σ

(r)
Aj

(m,m)
[
1/v

(r)
m1, 1/v

(r)
m2

]t
i.e. pm(qm;v

(r)
m , β

(r)
m ) ∝ exp{

∑
j∈P

(
α

(r)
mj(q

m
j )+β

(r)
m

∑
j∼i δ(q

m
i , qmj )

)
} ..

The expression of q̃
(r)
Q hereabove is intractable but a number of approximation techniques are available.

In particular, we can use a mean-field like algorithm (fixing the neighbours to their mean value) as de-
scribed in [11] in which q̃Qm(qm) can be approximated by q̃Qm(qm) =

∏
j∈P

q̃Qm
j
(qm

j ) with, if qmj = i,

q̃Qm
j
(i) ∝ N (mAj

(m);µmi, vmi)pm(Qm
j = i | q̃m∼j ;βm,vm), where q̃m is a particular configuration of qm

updated at each iteration according to a specific scheme, ∼ j denotes neighbouring voxels to j, and
pm(qmj | q̃m

∼j);βm,vm) ∝ exp{αmj(q
m
j ) + βm

∑
l∼j

δ(q̃mj , qml )}. See [11] for details.

• E-Z step: This step is similar to the E-Q one. Calculations yield to similar form of q̃Z(z) =
∏
j∈P

q̃Zj
(zj)

where q̃Zj
(k) ∝ N (mHj

;mHj
,ΣHj

)pm(Zj = k | z̃∼j ;βz) where z̃ is a particular configuration of z updated

according to a specific scheme and pm(zj | z̃∼j);βz) ∝ exp{trace(ΣHj
Σ̄

−1
k ) + βz

∑
j∼l

δ(z̃j , zl)}.

• M step:The maximization step can also be divided into four sub-steps involving separately (µ,σ), β,
(ℓ,Γ) and (h̄k, Σ̄k)1≤k≤K . For the (µ,σ) and (h̄k, Σ̄k)1≤k≤K sub-steps, closed forms can be analytically
derived for the updates. However, numerical resolution is required for the other sub-steps. For more
details, the interested reader can refer to [3].

4 Illustrations

In this section, the JPDE is validated and compared to the parcel-based JDE approach. Experiments
have been conducted on artificial fMRI signal generated according to the observation model in Eq. (1).
We simulated a random mixed sequence of indexes coding for M = 2 different stimuli. These two sets of
trials (30 trials per stimulus) were then multiplied by stimulus-dependent and space-varying NRLs, which
were generated according to the prior distribution in Section 2.2.2. To this end, we generated 2D slices
composed of 20 x 20 binary labels Qm (activating and non-activating voxels) for each stimulus type m.
Then, we simulated normally-distributed NRLs: a1j | q

1
j = 0 ∼ N (0, 0.5), a1j | q

1
j = 1 ∼ N (2, 0.5), a2j | q

2
j =

0 ∼ N (0, 0.5), and a1j | q
2
j = 1 ∼ N (2.8, 0.5). HRFs have been also simulated for each voxel conditionally

to a parcellation mask and according to the prior distribution in Section 2.2.2. This parcellation mask
(Z) is composed of two parcels having the same size. Within each parcel, all voxels share the same HRF
prior parameters h̄k and Σ̄k. The first experiment conducted here aims at demonstrating the robustness
of the proposed approach especially in estimating the HRFs in comparison with parcel-based JDE. In
this simulation, the same HRF prior parameters have been used for both parcels (1 actual HRF group).
For estimation we assume two HRF groups (one for each parcel) for JPDE. For JDE, the two parcels are
considered as one parcel (with a single HRF model). Regarding estimated NRLs, results (not displayed
here) show that JDE is more robust in terms of Mean Square Error (MSE), which was expected due to
the model mis-specification in the JPDE case (MSEJDE = 0.020 and MSEJPDE = 0.025). However,
estimated HRFs show that the new approach allows retrieving more accurate HRFs due to the new
mixture prior. Fig. 1[left] shows reference and estimated HRFs using both methods (red and yellow curves
correspond to the HRF expectation across each parcel). From a qualitative viewpoint, it is worth noticing
that the proposed method better estimates the HRF tail compared to JDE. In terms of MSE, obtained
values confirm the superiority of our approach from a quantitative viewpoint (MSEJDE = 1.7010−5 and
MSEJPDE = 3.0910−7). The second experiment has been conducted to validate the robustness of the
proposed approach when the HRF properties of the considered parcels are really different (two actual
HRF groups). For estimation, K = 2 is still assumed for JPDE while JDE cannot account for more
than one HRF group. Fig. 1[middle] illustrates reference and estimated HRFs with both methods (red
and yellow curves correspond to the HRF expectation across each parcel). It is clear that the proposed
approach allows retrieving accurate HRF estimates for each parcel, while JDE estimates a HRF which lies
between the two groups (Parcel 1: MSEJPDE = 5.3410−6, MSEJDE = 1.1010−4; Parcel 2: MSEJPDE =
1.4410−6, MSEJDE = 1.3610−4). This results confirms the superiority of the proposed approach in allowing

5



Experience 1 Experience 2 ROC

%
∆

B
O

L
D

s
ig

n
a
l

0 5 10 15 20 25−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Ground truth
JPDE-Parcel 1
JPDE-Parcel 2
JDE

%
∆

B
O

L
D

s
ig

n
a
l

0 5 10 15 20 25−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Ground truth - Parcel 1
JPDE - Parcel 1
JDE
Ground truth - Parcel 2
JPDE - Parcel 2

se
n
si
ti
v
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0.7

0.8

0.9

1.0

1.1
JPDE
JDE

Time (s) Time (s) 1-specificity

Figure 1: (a): Ground truth and estimated HRFs using JDE and JPDE; (b) ROC curves for activation classification
using JDE and JPDE.

variability of HRFs across voxels compare to the single HRF model assumed in JDE. As regards activation
detection, Fig. 1[right] plots the ROC curves for both algorithms. These activation classification results
show that JPDE allows well detecting activations, and even slightly outperforms JDE.

5 Conclusion
We proposed an extension (JPDE) to the JDE framework that does not depend on the choice of an initial
brain parcellation. Preliminary experiments showed that this approach achieved similar and even better
results than JDE and future work includes the application of our method to real 3D datasets on the whole
brain. In addition, this new framework raises the question of model selection, in particular the issue of
choosing the right number of HRF groups at best i.e. in a sparse manner so as to capture the spatial
variability in hemodynamic territories while enabling the reproducibility of parcel identification across
fMRI datasets. This question should be the most critical to validate our approach but also the most
interesting to neuroscientists in case of success. For this specific point, we shall investigate variational
approximations of standard information criteria such as the Bayesian Information Criterion.
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