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ABSTRACT

Assessing the global situation of a person from physiological
data is a well-known difficult problem. In previous work, we
propose a system that does not produce a diagnosis but in-
stead follows a set of hypotheses and decides of an alarming
situation with this information. In this paper we focus on data
processing part of the system taking into account the com-
plexity and the ambiguity of the data. We propose a statis-
tical approach with a global model based on Hidden Markov
Model and we present data models that rely on classical phys-
iological parameters and expert’s knowledge. We then learn
a model that depends on the person and its environment, and
we define and compute confidence values to assess the plau-
sibility of hypotheses.

Index Terms— Graphical model, HMM, Physiological
data, Context representation.

1. INTRODUCTION

The work presented in this paper is a contribution to the prob-
lem of identifying a person situation based on the monitoring
of activity and physiological sensors. Previous works [1, 2]
clearly establish that it is a difficult task due to the ambiguity
of the data and the impossibility to directly interpret them. To
solve this problem, they propose to take into account some
contextual knowledge based on the idea that a person phys-
iology is usually influenced by the environmental conditions
and its activities. In [3], we propose a multi-agent system
that takes into account the context and draw a set of plausi-
ble hypotheses about the person’s situation. The specification
of such a situation, also referred in [3] as micro-scenario,re-
quires the definition of a person state. A person state is de-
termined via a couple of variables: an activity state denoted
by Eα and a physiological state denoted byEϕ. In [3], a sit-
uation is then defined as a given set of values for this couple.
For instance a typical situation could correspond to a “Cof-
fee break” which would be characterized by different possible
values of(Eα, Eϕ) such asEα = “seating” andEϕ = “diges-
tion” if the coffee break is just after lunch orEα = “walking”
andEϕ = “basal” it the person is in its basal state but walking
while drinking. Physiology or activity states correspond to lo-
cal views of the situation, they are easier to model and to link

to the observed data but they are not directly the quantitiesof
interest which are the situations at a more global level.

The system operates by navigating between plausible hy-
potheses for states and for micro-scenarios. To do so it re-
quires to evaluate their “plausibility”. We thus assign to each
hypothesis a confidence value based on observed data. In this
paper we focus on the data processing part of the system that
aims at (1) learning the unknown model as an off-line process,
and then (2) computing the confidence values, on-line.

In [2, 1], authors relies on simple data model such as in-
terval or linear models to infer the person’s situations. More
recently [4] proposes to extract some features from physio-
logical data and to classify them using a risk criterion. Nu-
merous studies propose very complex signal processing tech-
niques for physiological data modeling such as heart rate val-
ues [5, 6] without considering context-dependencies. In this
paper we propose a model for the data that is adaptive to the
subject and takes into account the environmental conditions.

Fig. 1. Different abstraction levels.

2. OBSERVED AND MISSING VARIABLES

In this section, we propose a model for dependencies between
unknown states and observed data based on Hidden Markov
Model (HMM) [7], widely used in speech recognition.
Observed variables.At each timet, we observe data,Y (t),
that are measurements of two different types of sensors: the
activity data notedYα(t), and the physiological data noted
Yϕ(t), such thatY (t) = (Yα(t), Yϕ(t)). Yα(t) is a tridi-
mensional variable provided by a tri-axis accelerometer and
Yϕ(t) is a couple of one-dimensional variables: the heart rate
and the breath frequency noted respectivelyFc(t) andFb(t):
Yϕ(t) = (Fc(t), Fb(t)). We noteY (1 : T ) 1 the whole se-
quence of observations from timet = 1 to t = T .

1
u(1 : t) = (u(1)u(2) · · ·u(t)).



Context variables. We introduce contextual information in
our model in the form of two variables:C = (P, E) where
P denotes the subject andE , the environmental conditions.
Yα(t), t ∈ {1 · · ·T}, are physical variables and are assumed
to be independent ofC that act only on the physiology of the
person. For instance, altitude affects breathing and age affects
cardiac function.
Missing variables. The system relies on two levels: micro-
scenario and state, and we divide the state level into two dif-
ferent types: one for activity and one for physiology (see
Figure 1). They are unobserved variables and we note them
Eα(t) andEϕ(t) respectively for the activity state and physi-
ology state at timet. They reflect the true activity and physi-
ology states of a subject.

We choose a discrete description ofEα(t): for all t ∈
{1 · · ·T}, Eα(t) ∈ {1, 2, · · · ,Mα}. For example,Eα(t)=1
corresponds to the “inactive” state whileEα(t) =Mα corre-
sponds to the activity state “Intense movement”.

The physiological state is more complex because we con-
sider that multiple physiological elementary state may occur
simultaneously, a typical example being the “digestion” that
may occur together with “basal” or “sleep”. We thus con-
siderEϕ(t) to be a set of elementary states notedei(t), i ∈
{1 · · ·Mϕ} andEϕ(t) is a binary vector of sizeMϕ: Eϕ(t)=
[

e1(t) e2(t) · · · eMϕ
(t)

]

, whereei(t) ∈ {0; 1} (0 correspond-
ing to inactive state and1 to active state). For instance, with
three elementary states “basal”, “sleep”,“digestion”,Eϕ(t)=
[100] is a “basal” state andEϕ(t) = [011] is a “sleep and di-
gest” state. TheoreticallyEϕ(t) can take2Mϕ values. In fact
some configurations are impossible because many elementary
states are incompatible: for example, “exercise” and “sleep”
can not be simultaneously active. We represent these incom-
patibilities with a graph as shown in figure 2. The physiolog-
ical state space is reduced toNϕ states whereNϕ is establish
with combinatorial rules. For example in figure 2,Nϕ = 10.

We noteEα(1 :T ) andEϕ(1 :T ) respectively the activity
and the physiology states from timet = 1 to t = T .

basal exercise recovery

digestion sleep

Fig. 2. Graph representation of incompatibilities between el-
ementary physiological states.

We thus propose a graphical model with two chains, one
for each unobserved state, and two different dependencies for
the data : activity data depend only on activity state while
physiological data depend on both activity and physiology
state (see figure 3). This is a variant of Factorial HMM [8]
where data are split into two distinct sets.

. . . Eα(t− 1) Eα(t) Eα(t+ 1) . . .

Yα(t− 1) Yα(t) Yα(t+ 1)

. . . Eϕ(t− 1) Eϕ(t) Eϕ(t+ 1) . . .

Yϕ(t− 1) Yϕ(t) Yϕ(t+ 1)

Fig. 3. Physiological and activity data graphical model.

3. A CONTEXT CONDITIONAL JOINT MODEL

The joint model of our observed and missing variables is de-
fined conditionally to the context variablesC:

p(Yα(1:T ),Yϕ(1:T ),Eα(1:T ),Eϕ(1:T )|C)=

p(Yα(1:T ),Yϕ(1:T )|Eα(1:T ),Eϕ(1:T ),C) p(Eα(1:T ),Eϕ(1:T )|C).

Missing data model.The model takes into account the tem-
poral dependencies and both states are time-dependent. More
specifically we definep(Eα(1 :T ), Eϕ(1 :T )|C) as an homo-
geneous Markov chain whose state space is discrete and with
the following transition matrix. We assume that activity and
physiology states transitions are independent such that:

P ((Eα(t),Eϕ(t))=(u,i)|(Eα(t−1),Eϕ(t−1))=(v,j);C) =

P (Eα(t)=u|Eα(t−1)=v;C) P (Eϕ(t)=i|Eϕ(t−1)=j;C) =

Tα(Eα(t−1)=i,Eα(t)=j)× Tϕ(Eϕ(t−1)=u,Eϕ(t)=v) ,

whereTα andTϕ denote the transition matrices. The tran-
sition matrices can be part of the unknown parameter of the
model that must be estimated on data sets. However, they in-
troduce a large number of unknown parameters in the model
and we want to add some expert’s knowledge about these tran-
sitions. For example, “recovery” will always follow “exer-
cise”. So we prefer to treat them as fixed parameters in this
preliminary work, knowing that we can relax this assumption
and learn them from the data.
Observed data model. The physiological and activity data
are assumed to be conditionally independent:
p(Yα(1:T ),Yϕ(1:T )|Eα(1:T ),Eϕ(1:T ),C)=

p(Yα(1:T )|Eα(1:T ),Eϕ(1:T ),C) p(Yϕ(1:T )|Eα(1:T ),Eϕ(1:T ),C).

For eacht, we modelYα(t) as a trivariate Gaussian vari-
able whose mean and covariance matrix depend on the activ-
ity stateEα(t):

(Yα(t)|Eα(t) = k; C) ∼ N3 (µα(k); Σα(k))

The corresponding unknown parameters to be estimated
are denoted byθα with:

θα = ({µα(k),Σα(k)} , k = 1 · · ·Mα) .

By contrast, the physiological data must take into account
the contextC and, in addition, we assume that they do not
actually depend directly onEα andEϕ but via some discrete



quantityh(Eα, Eϕ) whereh is a function taking a finite num-
ber of values inH = {0 . . . H}. The possible values forh can
be interpreted as different intensity levels. Typically, different
combinations ofEα andEϕ can lead to the same levelh ∈ H.
For instance, “exercise” at a low level of activity and “recov-
ery and digestion” at medium level of activity yield similar
physiological data. The functionh is assumed to be defined a
priori by experts. It follows that,

(Yϕ(t)|Eα(t)=k,Eϕ(t)=u;C)∼N2(µϕ(C,h(k,u)),Σϕ(C,h(k,u))).

The dependence on the context variables can then be further
specified. The heart rate and breath frequency are made of one
part which is only person specific to which is added a quantity
that depends both on the context variables and person state.
More specifically, we consider two well-known physiological
quantities the maximal heart rateFmax

c and the basal breath
frequencyF basal

b to which is added an adjustment function
detailed in section 5. The maximal heart rateFmax

c and the
basal breath frequencyF basal

b are person specific but do not
depend on the other context variables nor on the person state.

µϕ(C, h) =

[

mc(C, h)
mb(C, h)

]

=

[

Fmax
c (P)− fc(C, h)

F basal
b (P) + fb(C, h)

]

.

Similarly we fix a model for the covariance matrix assuming
zero covariance terms:

Σϕ(C, h) =

[

σc(C, h) 0
0 σb(C, h)

]

.

Finally, for context variableC, the unknown physiological
parameters are:

θϕ(C)=(Fmax
c (P),F basal

b (P),fc(C,h),fb(C,h),σc(C,h),σb(C,h); for all h)

The whole set of parameters for the modelθ is:

θ = (θα, θϕ(C)) .

4. PARAMETERS IDENTIFICATION AND
CONFIDENCE COMPUTATION

We face two tasks: estimate the parameters to identify the
model, and define and compute states confidence values.

Parameter identification is an off-line process and within
this graphical framework, we choose a Maximum Likelihood
(ML) criterion such that:

θ̂ = argmax
θ

p(Y (1 :T )|θ) .

For problems with hidden states, because the likelihood
p(Y (1 : T )|θ) is untractable, we use a numerical approach
based on Expectation-Maximization (EM) algorithm [9] to
infer the estimatêθ. The computation is performed using the
Bayes Net toolbox for Matlab [10].

We now define for each timet the confidence value for the
states as their posterior probabilities:

c(Eα(t) = k) , p (Eα(t) = k|Y (1 : t), θ),

=
∑

u

p (Eα(t) = k,Eϕ(t) = u|Y (1 : t), θ) ,

c(ej(t) = 1) , p (ej(t) = 1|Y (1 : t), θ),

=
∑

k

∑

u|u(j)=1

p (Eα(t) = k,Eϕ(t) = u|Y (1 : t), θ) ,

with k ∈ {1 · · ·Mα} andu is a binary vector of sizeMϕ with
elementj notedu(j).

5. PRELIMINARY RESULTS

We illustrate our model with the following simulated data.
We first describe the adjustment functions withH = 5:

fc(P, h) =























10 if h = 5
20 if h = 4
· · · · · ·
50 if h = 1

γ(P) if h = 0

, fb(P, h) =























0 if h = 0
∆ if h = 1
2∆ if h = 2
· · · · · ·
5∆ if h = 5

,

whereγ(P) = Fmax
c (P)−F rest

c (P) and∆ =
60− F basal

b (P)

5
.

We note that estimatingFmax
c requires very specific ex-

perimental settings not available for us and we use the well-
known deterministic functions:

Fmax
c (P ) =

{

220− age(P) for men
206− 88%age(P) for women

We simulate a sequence of data for a men aged 32 with
F rest
c = 80 bpm and F basal

b = 14 breaths/min: Eα(1 :
200) = “inactive”, Eϕ(1 : 200) = “basal” ; Eα(201 :
500) = “medium movement”,Eϕ(201 : 500) = “exercise” ;
Eα(501 : 600) = “inactive”, Eϕ(501 : 600) = “recovery” ;
Eα(601 : 800) = “inactive”, Eϕ(601 : 800) = “basal”. Val-
ues of correspondingh(·, ·) are given in the second column
in Table 1.

The goal is to (i) learn the parameter with ML criterion
and correctly recover the model ; (ii) compute confidence val-
ues for all states.

We display the estimated parameters obtained in Table 1.
We are able to recover the parameters except for the situa-
tion whereEα = “inactive” andEϕ = “recovery”, because
data could correspond to another situation:Eα = “medium
movement”,Eϕ = “basal”. This is due to the fact thath(·, ·)
is a surjection. In future work we must include this ambiguity
in the estimation criterion.

In the following, we use the model described above with
Mα = 4 and the set of physiology states of figure 2. With
the same simulated data and with parameters correctly esti-
mated, we compute the confidence values of states (see fig-
ures 4 and 5). Figure 4 shows confidence values of activity
states exhibiting that betweent = 200 andt = 500 there is
no clear choice between “medium movement” and “intense
movement”, explaining that we want to maintain both hy-
potheses in our monitoring system. Similarly, for physiology
states, figure 5 shows that if we want to select the real state
then maximizing the confidence values yields a wrong result.



situations
Model parameters

h mc m̂c mb m̂b µα µ̂α σc σ̂c σb σ̂b Σα Σ̂α

basal
0 80 79.96 14 13.98

[

560
440
580

] [

560.05
440.05
580.09

]

4 3.80 2 1.97
[

5 0 0
0 5 0
0 0 5

] [

5.08 0 0
0 5.44 0
0 0 4.93

]

inactive

exercise
4 168 168.52 50.8 50.86

[

560
440
580

] [

559.99
440.20
579.86

]

15 14.63 8 8.61
[

30 0 0
0 30 0
0 0 30

] [

23.53 0 0
0 22.71 0
0 0 23.64

]

medium
movement
recovery

2 148 163.52 32.4 44.98
[

560
440
580

] [

560.05
440.05
580.09

]

8 0.93 4 1.08
[

5 0 0
0 5 0
0 0 5

] [

5.08 0 0
0 5.44 0
0 0 4.93

]

inactive

Table 1. Model and learned parameters for the simulated sequence.

We thus prefer to select a set of hypothesis to monitor the
subject situation: for example, fort ∈ [200, 500], we main-
tain “recovery”, “sleep” and “exercise” states.

Fig. 4. Confidence values of activity states,t ∈ [1 · · ·T ]: “in-
active” (red), “low movement” (blue), “medium movement”
(magenta), “intense movement” (green).

Fig. 5. Confidence values of physiology states,t ∈ [1 · · ·T ]:
“basal” (blue), “exercise” (red), “recovery” (green), “sleep”
(magenta), “digestion” (cyan).

6. CONCLUSION

We presented a dynamic Bayesian network based on HMM
to model the physiological state of a subject allowing thus
to select a set of “plausible” hypotheses of the real situation.
Our model takes into account the specificity of the personal
physiology and the environmental conditions. This allows us

to learn parameters as an off-line process and then to com-
pute posterior probability for each state. The overall goalis
to use confidence values in the global multi-agent system that
manages the set of hypotheses. We present here some pre-
liminary results. Future work includes the adaption of the
learning algorithm, the validation on real data and the use of
approximation techniques to handle more complex models.
Thanks. PRETA/TIMC experts participated in elaborating physio-
logical models. This work is funded by DGA project “SuPerCo”.
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