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ABSTRACT

Brain functional exploration investigates the nature of neural
processing following cognitive or sensory stimulation. This
goal is not fully accounted for in most functional Magnetic
Resonance Imaging (fMRI) analysis which usually assumes
that all delivered stimuli possibly generate a BOLD response
everywhere in the brain although activation is likely to be in-
duced by only some of them in specific brain regions. Gener-
ally, criteria are not available to select the relevant conditions
or stimulus types (e.g. visual, auditory, etc.) prior to acti-
vation detection and the inclusion of irrelevant events may
degrade the results, particularly when the Hemodynamic Re-
sponse Function (HRF) is jointly estimated. To face this is-
sue, we propose an efficient variational procedure that auto-
matically selects the conditions according to the brain activity
they elicit. It follows an improved activation detection and lo-
cal HRF estimation that we illustrate on synthetic and real
fMRI data.

Index Terms— Irrelevance detection, Stimulus type se-
lection, Joint detection-estimation, Bayesian hierarchical
modelling, Functional magnetic resonance imaging

1. INTRODUCTION

Event-related functional MRI refers to a technique for detect-
ing the brain’s response to brief stimuli. It relies on both (i) a
detection step to localize which brain regions are activated by
a given stimulus type, and on (ii) an estimation step to recover
the underlying Blood Oxygenation Level Dependent (BOLD)
signal dynamics. The latter is generally skipped and a pre-
defined (canonical) unique model for the HRF is assumed for
the entire brain although such an assumption may not be valid
typically in any pathological context. Event-related designs
allow different trials or stimuli to be presented in arbitrary
sequences, which enables to investigate both distributed and
local neural processing, convolved by the HRF, and provides
therefore a powerful tool for functional brain exploration. For
relevant cognitive interpretation, an important challenge con-
sists of optimally designing such event-related fMRI exper-
iments so as to maximize the accuracy with which the ac-

tivation probabilities can be evaluated and the event-related
hemodynamic response to different stimuli estimated. Once
the data has been acquired, a crucial issue concerns the de-
sign of the activation model: most often, this question is ad-
dressed in the General Linear Model (GLM) context, using a
predefined global HRF model, by comparing different model
structures (eg sparse design matrix [1]) using Fisher tests be-
tween reduced and full models [2]. Following [2], a critical
point in such attempts is the risk of discarding relevant activa-
tion due to HRF mis-specification. In the alternative Bayesian
detection-estimation approach (JDE) of [3], this model defi-
nition becomes region or (parcel)-specific so as to account
for spatial hemodynamic variability. The JDE enables HRF
estimation in addition to activation detection. Then, to opti-
mize the activation probabilities, it makes sense to consider
the most sparse model by assessing the relevance to include
or not each of the experimental conditions in a specific par-
cel. Indeed, the activation of interest is likely to be induced by
only a subset of these conditions when functional segregation
of the parcel can be assumed with respect to a specific cog-
nitive task. The relevant stimulus types may fluctuate across
regions making this optimization procedure a complex com-
binatorial task.

In this paper, we address this issue as a model specifi-
cation problem within the JDE framework. In contrast to
model selection approaches (e.g. [4]) that require to compare
the performance of several models and select the most appro-
priate one, we propose a single parsimonious procedure that
includes the automatic selection of the experimental condi-
tions that best explain brain activity. This is done by intro-
ducing for each stimulus type an additional binary variable as
a measure of its relevance (in terms of evoked activity). In
a regression context, the idea of adding such indicator vari-
ables is usually referred to as variable selection (see e.g. [5])
and has been used in [6, 2] to capture evoked brain activity in
a sparse manner. In the JDE framework, this activity detec-
tion task is already handled within the model in a more gen-
eral way. Activated and non-activated voxels are modelled
using a two-class Gaussian mixture instead of a Bernoulli-
Gaussian prior [6]. Our use of binary variables is then rather



oriented toward the selection of stimulus types which has to
be done across the whole set of voxelwise regressions (Sec-
tion 2). The proposed approach is carried out in a variational
EM framework (Section 3), which offers a faster alternative
to intensive stochastic procedures as used in [7]. Simulated
experiments confirm the ability of our model to select the rel-
evant conditions while real fMRI data illustrate an enhanced
determination of activated brain regions (Section 4). The pro-
posed model is referred to as the parsimonious model while
the model in which all stimulus types are included is referred
to as the complete model.

2. PARSIMONIOUS JOINT DETECTION
ESTIMATION MODEL

A vector is by convention a column vector. The transpose
is denoted by t. The Gaussian distribution with mean µ and
variance Σ is denoted using N (µ,Σ).

Following [3, 8], for a given brain parcel γ, the observed
data is denoted by y = {yj , j ∈ γ}where yj is a N-dimensional
vector representing the BOLD signal measured at voxel j ∈
γ. Activity status are indicated by activation class assign-
ment variables q = {qm,m = 1 : M} where qm =

{
qmj , j ∈ γ

}
and qmj = i means that voxel j lies in activation class i for
the mth experimental condition. Typically the number of
classes is 2 for activated (i = 1) and inactivated (i = 0) vox-
els. The activation amplitudes are modelled by the so-called
Neural Response Levels (NRLs) a = {am,m = 1 : M} with
am =

{
amj , j ∈ γ

}
and aj =

{
amj ,m = 1 : M

}
. In our parsimo-

nious context, our goal is to account for the fact that only a
subset among M experimental conditions (or stimulus types)
are necessary to explain the evoked BOLD signal in a given
parcel. A stimulus type will be identified as irrelevant for the
data under consideration if the average activation amplitude
is too small for this condition. In this case, we consider that
such evoked activity is artifactual and decide that the stimulus
type should be discarded from the model definition. This is
different from [7] in which a condition is considered as irrel-
evant when the number of activated voxels is too small. As
confirmed by the experiments below, defining an appropriate
relevance threshold appears to be easier and less data depen-
dent for the average activation amplitude criterion. To encode
such information, we then consider a set ofM binary variables
w = {wm,m = 1 : M}where wm = 1 (resp. wm = 0) means that
the mth stimulus type is relevant (resp. irrelevant). The un-
known HRF function denoted by h = [h0, h∆t, , . . . , hD∆t]

t is
then a (D + 1)-real valued vector with ∆t the sampling period
of the HRF. Physiological artifacts are modelled by P `where
P is a low frequency orthogonalN×Lmatrix and ` = {`j , j ∈ γ}
the set of low frequency drifts.

The observed signals are then explained by the following
generative model implying additional parameters to be esti-
mated or fixed as specified below:

∀j ∈ γ, yj =

M∑
m=1

wmamj Xmh+ P `j + εj , (1)

where Xm denotes the N×(D+1) binary matrix that codes the
arrival times of the events of type m which are approximated
to fit a ∆t-sampled grid, εj’s stand for the independent and
normally distributed noise, εj ∼ N (0, σ2

j IN ), (IN is the N×N
identity matrix).
Under standard additional assumptions (see in [3, 8]) and
omitting the dependence over parameters, the joint distribu-
tion p(y, w, a, h, q) reads p(y |w, a, h) p(a |w, q) p(w) p(h) p(q) and
can be further specified as follows.
The p(y |w, a, h) term follows from (1):
p(y |w, a, h)=

∏
j∈γ p(yj |w, aj , h;σ2

j ) with
(yj |w, aj , h;σ2

j ) ∼ N
(∑M

m=1 w
mamj Xmh+ P `j , σ

2
j IN

)
.

In the p(a |w, q) term, the assignment variables qmj are intro-
duced to segregate activated from non-activated voxels.
The NRLs are assumed to be independent conditionally
to the qmj ’s and wm’s: p(a |w, q) =

∏
m

∏
j p(a

m
j |wm, qmj ).

The relevance variable wm is then accounted for by as-
suming for i ∈ {0, 1},

(
amj |wm=1, qmj = i

)
∼ N (µmi , v

m
i ) and(

amj |wm = 0, qmj = i
)
∼N (µm0 , v

m
0 ). The Gaussian parameters

θa = {µm1 , vm1 , vm0 ,m= 1 :M} need to be estimated but we set
µm0 = 0 for all m. The idea is that for a relevant stimulus type
(wm=1), the distribution of amj depends on the activation state
qmj in voxel j while for an irrelevant stimulus type (wm= 0),
qmj has no influence on amj , which is distributed around 0 to
account for the absence of response to stimulus type m.
The p(w) term links the relevance variables to the activation
class means µm1 ’s. The binary relevance variables w are in-
dependent across stimulus types, p(w) =

∏M
m=1 p(w

m) and for
each m, wm follows a Bernoulli distribution whose probabil-
ity of success is given via a logit link to µm1 , P (wm = 1) =

F(µm1 ; τ1, τ2),where F is the sigmoid function F(x; τ1, τ2) =

(1 + exp(−τ1(x2 − τ2)))−1 with τ1 controlling the slope of the
sigmoid and τ2 the inflection point that can be seen as a
relevance threshold above which the stimulus type will be
considered as relevant with a high probability. A condition m
is considered as irrelevant when the estimated µm1 is close to
zero reflecting the absence of significant activations for m.
The p(h) and p(q) terms are then set as in [8] and thus not
detailed here. They involve respectively a HRF smoothness
parameter σ2

h and spatial interaction parameters for each con-
dition {βm,m = 1 : M}.
The set of parameters θ is then θ = {σ2

j , µ
m
1 , v

m
1 , v

m
0 , τ1, τ2,

σ2
h, β

m, j ∈ γ,m= 1 :M}. They will be inferred using the fol-
lowing variational EM framework except for the additional
parameters τ1 and τ2 involved in the F logit link which are
fixed as indicated in Section 4.



3. ESTIMATION BY VARIATIONAL EM

Our Bayesian model is too complex to be amenable to analyt-
ical calculations. Hence, we resort to an iterative variational
Expectation-Maximization (EM) procedure as in [8]. Com-
pared to [8], this implies adding in the E-step, M additional
stages for the M binary variables w and reporting their im-
pact on the other unobserved variables in the E-step and the
unknown parameters in the M-step. Here, of particular inter-
est are the variational estimates of the posterior probabilities
p(wm | y) for the stimulus types. At iteration (r), the current
estimates of these probabilities are denoted by p̃

(r)
wm . We can

then derive a relevance profile (a M-dimensional vector of 0
and 1 depending on whether a stimulus type is relevant or
not). Denoting in addition the current parameter values by
θ(r) and Ep̃

[
.
]

the expectation with respect to some pdf p̃, for
each m = 1 : M , p̃(r)

wm (wm) is proportional to:

exp

(
E
p̃
(r−1)

a,q,h,w\m

[
log p(wm | y, a, q, h, w\m, θ(r))

])

where w\m = {wm′ ,m′ 6= m} and p̃
(r−1)

a,q,h,w\m
= p̃

(r−1)
a p̃

(r−1)
q

p̃
(r−1)
h p̃

(r−1)

w\m
denotes the current estimated variational pdf

over variables a, q, h and w\m. It follows that p̃(r)
wm (wm) is

proportional to the product of three terms involving dif-
ferent groups: ∏

j∈γ
exp
(
E
p̃
(r−1)

h,aj,w
\m

[
log p(yj |w, aj , h;σ

2(r)
j )

])
,

∏
j∈γ

exp
(
E
p̃
(r−1)

am
j
,qm
j

[
log p(amj |wm, qmj ; θ

(r)
a )

])
and p(wm;µ

m(r)
1 ,τ1,τ2).

More specifically, further calculations show that the proba-
bility of wm is impacted by the estimated value of µm1 in the
third term above. When µm2

1 ≥ τ2, the third term tends to
favor wm = 1 vs wm = 0. Similarly, the second term depends
on the p̃(r−1)

amj
’s for j ∈ γ. When the means of these pdfs tend

to 0, wm = 0 is favored. The expression of the first term is
more complex but wm = 0 is favored when the yj’s are well
explained by the model without type m or equivalently when
the current noise model parameters can accommodate the ab-
sence of stimulus type m. The E-step can then be completed
using similar E-sub-steps obtained by exchanging the role
of the model variables (see [8] for details). Regarding the
M-step, it also decomposes into four sub-steps involving sep-
arately {σ2

j , j ∈ γ}, σ2
h, {µmi , vmi , i = 0, 1} and {βm,m = 1 : M}.

The first two maximizers admit closed-form expressions close
to that in [8] with an additional dependence on the current
p̃

(r)
wm (wm = 1) for the first one. The third maximizer leads to

close form expressions for the vmi ’s and uses a half-interval
search algorithm for the µm1 ’s. The last M-step requires an
iterative maximization procedure to update the βm’s as in [8].

4. RESULTS:

Simulated datasets. Experiments were carried out by sim-
ulating, in a 2D slice of 400 voxels, from the model given in
Eq.(1) with 2 conditions, one relevant (w1 =1) (Fig.1-(a,c)) and
the other irrelevant (w2 = 0) (Fig.1-(b,d)). The noise variance

σ2
j was set to 1 and the HRF fixed to a non canonical shape

(Fig.3-(a)). In the parsimonious model, appropriate values
are required for the sigmoid parameters τ1 and τ2. The τ2 value
was set to 0.05, which means that when |µm1 | > 0.25, wm = 1 is
favored. Parameter τ1 can be set to 1

τ2
log

1−pm0
pm0

where pm0 =

p(wm = 1;µm1 = 0, τ1, τ2) is the value of the sigmoid at 0 (for
τ2 = 0.05 and pm0 = 0.01, τ1 = 92). The VEM procedure es-
timates relevance probabilities p̃wm (wm = 1) close to 1 for
relevant condition and to 0 for irrelevant one. An improve-
ment of both detection and estimation is expected by dis-
carding irrelevant conditions. To quantify this potential gain,
tests were performed over 100 runs. Using the ground truth
NRL’s shown in Fig.1-(a,b), the mean square error (MSE) was
computed for the NRL’s at each voxel for both parsimonious
and complete models. The T statistic of the differences be-
tween these MSE’s are then plotted in Fig.2-(a) for the voxels
for which the difference was tested as statistically significant
(to a 1% threshold). Fig.2-(a) shows that for most voxels,
the error is significantly lower with the parsimonious model
(negative differences), especially for activated voxels. This
suggests a more acute activity detection for the parsimonious
model. Fig.2-(b,c) shows estimated probabilities p̃Qmj (qmj = 1)

of relevant condition for the parsimonious and complete mod-
els. The complete model tends to estimate this probabilities
around 0.5 for the irrelevant condition (Fig.2-(d)) causing a
high false positif rate ( 258

400
voxels are classified as activated).

As shown in Fig.3-(a) the estimated HRFs for both models
are close but their differences have been tested as statistically
significant (p < 0.01).
Real fMRI datasets. We considered real non smoothed data
recorded following a fast event-related paradigm [9] compris-
ing 80 auditory, visual and motor stimuli and cognitive tasks
such as number processing and language comprehension. It
consisted of a single session of N = 128 functional scans last-
ing 2.4s each, yielding 3D volumes composed of 96×96×40

voxels. The average ISI was of 3.76s with a std of 1.99s.

To better assess the impact of the relevance variables w,
we considered a brain region γwhere some of the stimulus
types are likely to be irrelevant. We focused on the right mo-
tor area (162 voxels) where motor stimuli are likely to induce
evoked activity. To derive relevant contrast, the experimen-
tal conditions were grouped in four categories: computation,
sentence, checkerboard and click (i.e., motor response). In
this motor region, it is expected that the checkerboard, sen-
tence and calculation categories are set as irrelevant. Sig-
moid parameters were set as before. Inference with the par-
simonious model concluded that the calculation, sentence and
checkerboard conditions were irrelevant, with estimated pos-
terior probabilities p(wm = 0 | y) close to 1. The click stim-
ulus type was estimated as relevant with probability 1. The
parsimonious model provided larger NRLs and normalized
NRLs for the relevant motor condition (click). As an alter-
native to statistical parametric maps (SPMs) used in classi-
cal inferences, posterior probability maps (PPMs) are images



of the probability p(amj > α|y) that a NRL amj exceeds some
threshold α, given the data [10]. The threshold α operationally
defines the meaning of ”activation” and was set to the prior
standard deviation of the nonactivated class (√vm0 ). We con-
sidered that below this value a NRL is not large enough to
be considered as activated. As vm0 is estimated and possibly
differently for the parsimonious and complete models, we set
α = 5 which is the average of the two estimations. The super-
imposed histograms of the PPMs (PPMα) values greater than
ρ = 0.5 for both models are shown in Fig.4-(a). It is then com-
mon to threshold the PPMs using a ρ = 0.95 or higher thresh-
old, i.e to show only the voxels j for which p(amj > α|y) > 0.95.
Fig.4-(b,c) shows these voxels in red for the parsimonious and
complete models. The complete model identifies a smaller
number of voxels (56 vs 116 for the parsimonious model) sug-
gesting that it may have missed some activation and that the
parsimonious model provides more confidence in the selected
activated voxels. Finally, Fig.3-(b) shows the estimated HRFs
superimposed to the canonical HRF.

(a) (b) (c) (d)

Fig. 1. Simulated NRLs (a,b) and activity status (c,d) resp. for the relevant
and irrelevant conditions.

(a) (b) (c) (d)

Fig. 2. T-statistic maps of the significant differences (parsimonious vs com-
plete) between NRLs’ MSE (a) over 100 runs. p̃Qmj (qmj = 1) maps for the
relevant condition in parsimonious (b) and complete (c) models and for the
irrelevant condition in the complete model (d).
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Fig. 3. Simulated and estimated HRFs for the complete and parsimonious

models for the simulated (a) and the real motor region (b) datasets superim-
posed to the canonical HRF.

5. CONCLUSION AND FUTURE WORK

We proposed to go beyond the standard event-related fMRI
data analysis which models all delivered stimuli as effects of
interest in the GLM context. Using a Bayesian hierarchical
approach we further explored the variable selection principle,
used previously to detect evoked brain activity [6], as a tool
to perform relevant condition selection. Experiments on syn-
thetic and real data suggested the ability of our model to accu-
rately select and exploit the most relevant stimulus types. Our
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(a) (b) (c)

PPMα

Fig. 4. PPMα for the relevant condition (click) in the right motor region
using an activation threshold α = 5: (a) superimposed histograms of the
PPMα (the darkest color shows the overlap). (b,c) Thresholded PPMα for a
confidence level of 95% superimposed on the anatomical image, for parsimo-
nious (b) and complete (c) models. Neurological convention: right is right.

parsimonious model improves both detection and estimation
compared to the complete model. An advantage over the se-
lection made in [7] is an easier choice for sigmoid parameters
τ1 and τ2 that can be set in practice independently of the par-
cel size and the number of activated voxels, allowing in partic-
ular to detect small clusters with a high activation. Eventually,
further real data analysis would be necessary for an extended
study with a particular emphasis on the group-level impact of
parcel-wise adaptive definition of parsimonious models [11].
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