
Chapitre 1

Joint detection-estimation
in fonctional MRI

1.1. Introduction to functional neuroimaging

The objective of functional neuroimaging is the characterization of the brain in
action. Its most conventional use consists of assigning a task to an individual while
simultaneously measuring a signal induced by the activity of the brain.

Several investigation modalities allow the neuroscientist to probe the operation
of the brain both in healthy volunteers and in patients, whether the pathology is
neurodegenerative (Alzheimer), psychiatric (schizophrenia) or neurological (AVC,
epilepsy). Without going into the details of a taxonomy of imaging modalities, it
is noteworthy to give a general overview (see Fig. 1.1) and distinguish those that
allow two fundamental questions to be answered in a simplified form: “where” and
“when” do brain processes occur? In fact, the brain is a complex structure where
specialization and functional integration coexist, so well it would be an illusion to
picture cognitive functions as very localized specialized modules. Among the tools of
functional neuroimaging, we quickly discuss the following:

– functional magnetic resonance imaging (fMRI) consists of measuring in a non-
invasive manner, BOLD signals1 which reflects the rate of oxygenation of blood
in the brain [OGA 90]. Through a neurovascular response mechanism, the flow of
oxygenated blood increases in the regions whose neuronal metabolism increases,
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in much more significant fashion than necessary. Because of its good spatial
resolution (around the mm), by using this method, it is possible to identify the brain
regions specifically involved in a given task. Since the 2000s and the emergence
of event-related fMRI, which consists in presenting stimuli in an isolated manner
in time, it is possible to recover the dynamics of the BOLD signal with a temporal
resolution of the order of the second. This is still slower than the dynamics of
cognitive processes (a few tens to hundreds of milliseconds). The choice of fMRI
as an investigation method is multiple: on the one hand, with the advent of very high-
field imagers2, of parallel imaging [CHA 11b, PRU 99], and compressed sampling
techniques [BOY 12, LUS 07], significant gains are still expected in spatio-temporal
resolution. On the other hand, the emergence of new contrast agents (CEST, USPIO)
could help to achieve a molecular resolution of the order of that attained in PET;

Figure 1.1. Comparaison of different brain imaging modalities in terms of spatio-temporal
resolution and invasiveness degree

– positron emission tomography (PET) consists of measuring the modifications
of blood flow through a radioactive tracer that must first be injected intravenously.
The diffusion of the tracer and the modulation of the blood flow being relatively
slow phenomena, this technique does not give access to the dynamics of neural
mechanisms. Its invasiveness and the low temporal resolution of the observed
biological phenomena make it an increasingly less used technique nowadays in
functional imaging, supplanted by fMRI;

– electroencephalography (EEG) was the first non-invasive neuroimaging method,
developed in 1929, by the neurologist Hans Berger. Unlike previous methods, it
is a measure of the electrical activity. EEG is relatively spatially inaccurate but it
does offer a good temporal resolution, limited only by the speed of the measurement
electronics (5 kHz) [SWA 98]. The conventional approach consists in measuring

2. MRI at 11.7 T expected end of 2013 at NeuroSpin.



Joint detection-estimation in fMRI 3

evoked potentials: repeating the same stimulation a large number of times, it is
possible to bring forward positive and negative waves characteristic of the different
stages of the information processing procedure (for example, evoked potentials N100,
P300, etc.) [HAL 98];

– magnetoencephalography (MEG) provides information relatively similar to the
EEG, but it measures magnetic fields induced by the activity of the brain. The
significance of MEG lies in the fact that, unlike electric fields, magnetic fields are
almost not distorted by their passage through organic tissues (notably the interface
between the cerebrospinal fluid and the skull). Just like with EEGs, it is possible
with the solution of a linear inverse problem to reconstruct the sources of the
electromagnetic signal on the cortical surface. This helps to identify with an accuracy
of half a centimeter the regions where evoked fields are issued [SEK 05]. These spatial
localization techniques have expanded with the help of regularization tools [BAI 97]
and the advent of efficient optimization algorithms [BAU 11, GRA 11].

A key step in the choice of imaging modality lies in the neuroscientific question
which must be answered. If the objective is to ensure the temporal decoding
of neuronal activity, the best choice seems to be MEG or EEG by default. If
on the other hand, spatial localization is being promoted, fMRI seems more
sensible. Beyond this choice, obtaining a reliable description of the neuronal activity
can be improved, firstly in designing more efficient measurement tools (imagers,
sensors), then by improving analysis methods to correct inaccuracies or measurement
artifacts (robust reconstruction, denoising, distortions, etc.) or by considering more
realistic mathematical models of underlying physiological processes.

This chapter falls precisely under the scope of a restoration and object detection
problematics related to brain activity from noisy fMRI signals, by exposing a Bayesian
approach to the joint detection-estimation (JDE) of cerebral activity, that is for solving
a spatio-temporal inverse problem (3D+time). The JDE approach calls into question
the conventional paradigm of activations detections in fMRI by estimating the impulse
response of the neurovascular system rather than assuming that it is known and
constant through the whole brain.

Afterwards, we present in Section 1.2 the problematics of JDE, then inversion
is addressed in a Bayesian framework in Section 1.3. Two alternative inference
patterns, that is, stochastic and variational, are then presented in Section 1.4 and 1.5,
respectively. A comparison of the results provided by these two approaches, both
with simulated and real data, is achieved in Section 1.6, thus initiating a discussion
regarding the contributions of each formalism at the end of the chapter.
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1.2. Joint detection-estimation of brain activity

1.2.1. Detection and estimation: two interdependent issues

The objective of the intra-suject fMRI analysis is twofold: on the one hand, (i)
to locate the neuronal activity evoked by cognitive tasks of interest during an
experimental paradigm, that is to say, to detect voxels activated by stimulation,
and on the other hand, (ii) to estimate the dynamics of the neurovascular system
which establishes the link between stimulation and measured BOLD signals, by
characterizing the haemodynamic response function (HRF) whose canonical form
is described in Fig. 1.2. The objective is therefore to create activation maps
as well as a local description of the response induced by stimulation, to better
understand neurovascular coupling but also to contribute to a dynamic pattern of
brain functioning, by considering, for example, the spatial variability of the time
taken to reach the peak of the response or by attempting to infer temporal scheduling
relationships between activation states.

The usual approach to address these two issues is based on multiple regression, still
known as the general linear model (GLM) [FRI 95]. In this context, an experimental
design matrix is built, that is to say, a set of regressors representing the activation
canonical time courses. These time courses are built as the convolution of canonical
HRF (see Fig. 1.2) with the binary signal deducted from each experimental condition
present in the paradigm, that is from the signal encoding stimuli occurrences specific
to this condition (for example, presentation of a known face): each “1” indicates an
instance of the stimulus. The detection is then performed voxel-wise by estimating the
GLM parameters with respect to the maximum likelihood and sufficient normalized
statistics (e.g. Student test) are then calculated in order to detect activations (difference
in activity or contrast between two experimental conditions as the activity in response
to familiar versus unfamiliar faces) by rejecting the zero hypothesis according to
which contrast is zero, with a specified first species risk.

In the framework of the GLM, hemodynamics estimation can only be effected in
regions detected as activated. As a result, it become biased because this detection
has relied on a predefined canonical model. It appears that these two tasks are
highly interdependent: a good HRF model is necessary to build the linear model
and to correctly detect activations whereas a reliable estimation of the HRF is only
available in correctly detected areas. Although it is possible to inject some temporal
flexibility within the linear model [CAS 08, HEN 00] by adding regressors (for
example, functions bases) [WOO 04a], derivation and dispersion of the canonical
HRF [HEN 00], FIR model [GOU 00], etc.), it is customary in GLM approaches to
use only a hemodynamic model fixed for the whole brain, which is contrary to the
knowledge about the BOLD signal (see Subsection 1.2.2). Furthermore, estimating
the HRF makes sense only in regions activated by a specific task, which induces a
preselection bias and does not reflect the hemodynamic activity of the whole brain.
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An approach to the voxel-wise HRF estimation [CIU 03, MAR 03] allows sometimes
the activation states to be inferred in a second phase. However,. this methodology
appears to be sometimes not very robust because of nuisance and noise components
prominent in the BOLD signal [CIU 04].

Figure 1.2. Canonical HRF and its main characteristics. This response performs a delay as
well as a slow variation transformation of the input stimulation signal. The initial dip or early
depletion is not always observed and reflects an immediate extraction of oxygen due to neuronal
excitement.

The idea of performing a joint detection-estimation (JDE) has originally appeared
in [MAK 05, MAK 08], where the problem of the reproducibility of the HRF is treated
spatially by adopting a 3D brain parcellation (see Fig. 1.3). The objective is thus to
bring out a spatial scale where this hemodynamic filter, embodied by the HRF can
be locally assumed as constant, so as to make its estimation the most robust possible,
unlike voxel-wise attempts [de 08]. It is now necessary to formulate the physiological
hypotheses underlying the retained model.
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Figure 1.3. Coronal, sagittal (on top), axial and 3D entire brain (bottom) views
of an intra-subject parcellation, where a color code for a parcel, superposed

to the anatomical MRI in grayscale as well as to the cortical surface (gray mesh)
(see color annex)

1.2.2. Hemodynamics physiological hypotheses

The significant characteristics of the BOLD signal synthesized here consists of all
the a priori knowledge about the observed signal [LOG 01].
H1) The signal is very noisy: variations in hemodynamic activity evoked by the

paradigm represent only a change in the order of 5 % with respect to the baseline
at 3 Tesla.
H2) There exists a spatial correlation of BOLD signals, due to observed physiological

phenomena and network neuronal functioning. These phenomena have a wider spatial
support than the spatial resolution of the data.
H3) The signal presents a short and long-range temporal correlation. The short-range

or high-frequency component comes naturally from the duration of physiological
phenomena that exceed the sampling period. Among these, some are of interest
as related to the paradigm, others reflect physiological regulations that are difficult
to explicitly model, due to their unexpected nature. Therefore, they fall under the
scope of noise modeling in the form of a temporally autocorrelated random process
[WOO 01]. Long-range correlation comes partly from artifacts: respiratory and above
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all cardiac pulsations have higher frequencies than those of the measurement of the
signal. The Shannon-Nyquist condition is not satisfied, thus inducing spectral aliasing
of cardiac and respiratory components in the low frequencies of the acquired signals.
In its very low frequency part, the long range component is also associated with
intrinsic cerebral activity of interest that can be highlighted in MRIf in rest functional
networks (for example, default mode) [CIU 08, LIN 01, ZAR 97].
H4) If neurovascular coupling can be physiologically described by the neurovascular

complex, the origin of the measured BOLD signal remains unclear and depends
on variations of several factors: blood volume, blood flow and deoxyhemoglobin
concentration, without being able to clearly establish the contributions of each one
of them [EKS 10, LOG 01].
H5) Hemodynamics spatially varies, both within a same subject [HAN 04, MIE 00]

and between subjects [AGU 98, BUC 98]. Inter-subject variations are even more
pronounced when populations that can differ in age [RIC 03], in pathology or in
therapeutics [D’E 99] are considered.

The balloon model [BUX 98] and its extensions [BUX 04, RIE 04] are those
that from a physiological point of view establish the finest description of
neurovascular coupling following hypotheses H1-H5. Governed by systems of
non-linear differential equations with unknown parameters, these models suffer
from identifiability problems and proved to be difficult to put into practice in
fast multicondition event-based paradigms. We rather consider in this chapter a
convolutive model, more easily manipulable but also able to cover a wider range of
paradigms. Below, we recall temporal hypotheses characteristic of the BOLD signal
which allow the implementation of this model.

1.2.3. Space variable convolutive model

Stationnarity. The BOLD response is assumed to be stationary in time, that is not
varying in different tests of a same stimulus: if given x(t) a stimulus presented at
time t and h(x(t)) the evoked hemodynamic response, then stationarity indicates:
h(x(t+∆t)) = h(x(t)) for ∆t an interstimulus interval such as ∆t > 3 s. Conversely,
response saturation phenomena are involved and the response becomes sub-linear
[BUC 98, DAL 97].

From a physiological point of view, this hypothesis is justified by the construction
of the paradigm where care is taken to pseudo-randomly distribute tests to prevent
learning or anticipating and limit the duration of the experiment to avoid fatigue in the
subject. A second justification comes from the raised cognitive question: a response
reproducible through testing is looked for.

Linearity. The vascular system is assumed to be linear which amounts to assume on
the one hand, that h(ax(t)) = ah(x(t)) for an amplitude a > 0 of the stimulus, and
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n ∈ N∗
N = {1, . . . , N} Scans index

j ∈ N∗
J Voxels index

RT Repetition time: data temporal resolution
V = {Vj}j=1:J Voxels set. For whole brain analysis,

J ≈ 5.104. For regional analysis, J ≈ 500.
m ∈ N∗

M Experimental conditions index
yj = (yj,n)n=1:N ∈ RN fMRI signal measured at voxel Vj
bj = (bj,n)n=1:N ∈ RN Noise measurement at voxel Vj
Y = (yj)j=1:J N × J acquired data matrix forV
`j = (`j,n)n=1:N ∈ RQ Low frequency derivative coefficients at Vj
L = (`j)j=1:J Q×N derivative coefficients matrix forV
qm = (qmj )j=1:J Activation states forV associated to the condition m
Q = (qm)m=1:M State matrix for all conditions andV
am = (amj )j=1:J NRL forV associated to the condition m
A = (am)m=1:M NRL matrix for all conditions andV
xm = (xdtm)dt=0:∆t:N×TR

∆t Sequence encoding the arrival times of stimuli m sampled on a
resolution grid ∆t

hγ = (hd∆tγ )d=0:D HRF with ∆t the sampling period of HRF

Tableau 1.1. Notation table

on the other hand, that it is additive with respect to experimental conditions, noted
here x1 and x2: h(x1(t) + x2(t)) = h(x1(t)) + h(x2(t)). However, a number of
saturation phenomena exist. Thus, for a doubling of the intensity of sound stimulus,
the response in the auditory cortex does only double in a restricted volume range in
decibels.

These hypotheses lead to a convolutional system, which is in addition justified by
the choice of a simple model but respecting the hypothesesH1-H4. In order to ensure
a certain flexibility, a linear finite impulse response (FIR) filter is retained so as to
formulate its identification as a non-parametric estimation problem. On the other hand,
in order to account for H5 while ensuring a parsimonious character and therefore a
larger robustness of estimation, we have proposed the following restrictions [MAK 05,
MAK 08]: “a single HRF form by region characterizes the hemodynamic system,
local variations of activity at the voxel level are reduced to amplitude modulations of
the HRF only. The model therefore decouples the form of the hemodynamic filter of
its amplitude, inducing a bilinear system”.

We are now introducing the notations used subsequently in the text. Table 1.1
indicates the variables associated with quantities of interest using the following
conventions: vectors3 and matrices are noted in lowercase and uppercase bold,



Joint detection-estimation in fMRI 9

respectively (example x et X). Scalars are noted in lowercase regular characters
characters and sets with double-bars (exampleV), transposition is symbolized by t.

1.2.4. Regional generative model

The approach assumes a prior partitioning of data, that is to say, parcellation
guaranteeing hemodynamic homogeneity within each parcel. Thus assuming the
brain previously subdivided into P = (Pγ)γ=1:Γ parcels, each having homogeneous
functional properties from the perspective of hemodynamics. The proposed model
will therefore be inferred parcel-wise, each one independently from the others.

Each parcel Pγ is defined by a connected set of voxels Vγ . It has a unique HRF
hγ characteristic of Pγ , which is thus considered identical for all voxels. Activation
levels A are unique to each voxel Vj and each experimental condition m (see BOLD
reponse stationarity hypothesis). In can be derived that in each voxel Vj ∈ Vγ the
following generative model, shown in figure 1.4:

yj = Sjhγ + P`j + bj , with Sj =

M∑
m=1

amj Xm [1.1]

where Sjhγ is the sum of the stimulus components induced from the BOLD signal.
Matrix Xm = (xn−d∆t

m )d=0:D
n=1:N is binary, of dimensions N × (D + 1), and code

occurrences of stimuli of the m-th condition. The parameter ∆t is the unknown
HRF sampling period hγ in Pγ . The scalar amj is the amplitude of the response at
voxel Vj for the condition m. These weights model the transition between stimulation
and vascular response. They can therefore be considered as “pre-vascular”. In
addition, since it is admitted that the occurrence of a stimulus coincides with neuronal
excitation, itself at the origin of the vascular response, amplitudes A are therefore
referred to as “neural response levels”(NRL). Matrix P is an orthogonal basis of
low frequency functions of size N × Q. At each voxel, a weight vector `j is
attached in order to estimate the derivative. The set of these vectors within Pγ is
grouped in L. Finally, bj is the noise vector in Vj whose structure is detailed in
Subsection 1.3.1.

3. Always in column.
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Figure 1.4. Parcel-wise model of the BOLD signal. The size of each parcel Pγ is typically of
some hundreds of voxels. The number M of experimental conditions of a paradigm usually
varies between 1 and 5; in this illustration, M = 2. This model supports asynchronous
paradigms for which the arrival times of the stimuli do not necessarily correspond to the
acquisition times. The NRL (a1

j ,a
2
j ) are voxel-specific whereas the HRF hγ is constant for

the parcel Pγ but varies from one parcel to another (not shown). It can be sampled at a period
of 0.5 s for a period ranging typically from 20 s to 25 s (for example D = 51). The coefficients
`j usually focus on a few composantes (Q = 4).

1.3. Bayesian approach

Bayesian formalism requires melting the problem in a probabilistic framework
and the main object of interest is the joint a posteriori density of all the unknown
parameters knowing observations Y . This latter allows the proposal of estimators
of the unknowns, particularly for (hγ ,A) that are the most relevant from a cognitive
perspective. It is defined by:

p(hγ ,A,L,Θ |Y ) ∝ p(Y |hγ ,A,L,θ0) p(A |θA) p(hγ |θh)p(L |θ`) p(Θ)
[1.2]

where Θ gathers all the hyperparameters of the model: θ0 contains those related to the
noise model and θx concerns those related to the unknown x ∈ {hγ ,A,L}. This joint
density requires the expression of the likelihood term as well as the a priori definition
of the modelised variables.

1.3.1. Likelihood

Likelihood is the density of the observations for a set of given parameters of the
concerned model. It models the uncertainty of the model to fit the observed data and
therefore is directly dependent on the hypotheses of the noise. Even if the structure
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of the noise is spatially correlated [WOO 04b], this dependency is negligible and
fMRI time-series are considered spatially independent but non-identically distributed.
Moreover, given the nature of the acquisition of data (see H2), noise is supposed
to be temporally autocorrelated and in this case, an AR(1) process is considered
following [WOO 01]: bj ∼ N (0,Γj) with Γj = σ2

jΛ
−1
j and where Λj is tridiagonal

symmetric and depends on the AR parameter ρj [MAK 08]: (Λj)1,1 = (Λj)N,N = 1,
(Λj)p,p = 1 + ρ2

j for p = 2 : N − 1 and (Λj)p+1,p = (Λj)p,p+1 = −ρj for
p = 1 : N − 1. These parameters are supposed to be variable from a voxel Vj to
another given their dependence to tissue [WOO 04a, PEN 07]. The likelihood is then
written:

p(Y |hγ ,A,L,θ0) ∝
Jγ∏
j=1

|Γj |−1/2 exp
(
−1

2
yt
jΓ
−1
j yj

)
[1.3]

where θ0 = (θ0,j)j=1:Jγ , θ0,j = (ρj ,σ
2
j ) and yj = yj − P`j − Sjhγ .

1.3.2. A priori distributions

In the Bayesian approach, a priori distributions are introduced for the unknown
(A,hγ ,L) and for the hyperparameters Θ.

1.3.2.1. Hemodynamic response function (HRF)

Following [CIU 03, MAR 03], an HRF with smooth variations is expected, its
a priori density is a multivariate Gaussian distribution whose variance-covariance
matrix expresses a constraint of the second derivative: hγ ∼ N (0,vhR) with
R = (Dt

2D2)−1. The aim is to penalize large slope variations. Boundary constraints
are also introduced in the form h0 = hD∆t = 0. The a priori retained for variance vh
corresponds to the Jeffreys a priori: p(vh) = v

−1/2
h . On the sole basis of this a priori,

in an inactive parcel, it can be derived that the estimated hemodynamic response will
be of very low amplitude, and therefore also its slope. It will thus have a strong
likelihood. Several solutions are conceivable to avoid in the case of inactive signals
that a HRF solution is aberrant, hence making believe that it is an active signal. One of
them consists of replacing the mean Gaussian vector by imposing it to a form similar
to canonical hemodynamics. Another consists in detecting the active parcels after
inference, that is to say, for which at least one experimental condition is relevant that
is that it delivers significant evoked response or positive NRLs [BAK 12].

1.3.2.2. Neural response levels (NRL)

In accordance with the principle of maximum entropy [ROB 07, p. 109], the inde-
pendance of the NRLs is postulated between conditions: p(A |θa) =

∏
m p(a

m |θm)
with θa = (θm)m=1:M grouping the set of hyperparameters for the m-th condition.
Mixing models are introduced to segment activated voxels from non-activated voxels.
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Given qmj the allocation variables that encode the activated (qmj = 1) or non-activated
(qmj = 0) state for the condition m within voxel Vj . NRLs remain independent
conditionally on qm: p(am | qm,θm) =

∏
j p(a

m
j | qmj ,θm).

Spatial mixture models (SMM) introduced in [VIN 10a] allow accounting for
a certain spatial correlation between neighboring voxels in order to facilitate the
detection of clusters of activation rather than isolated voxels. In SMMs, the mixture
weights are implicit and controlled only by the local interaction relationship between
latent variables. The marginal distribution of the NRLs, not factorizable with voxels,
is written as follows:

p(am |θm) =
∑

qm∈{0,1}Jγ
Pr(qm |θm)

Jγ∏
j=1

p(amj | qmj ,θm) [1.4]

Fortunately, as we shall see in Section 1.4, its explicit expression is not necessary
since only conditional laws are useful in the sampling scheme.

Spatial correlation is directly taken into account in the activation probability by
means of a hidden Ising field4 of the variables qm, according to previous works
[HIG 98, SMI 03]. Here, the a priori field of qm is expressed in the form:

Pr(qm |βm) = Z(βm)−1 exp
(
βmU(qm)

)
where U(qm) =

∑
j∼k

I(qmj = qmk )

[1.5]

and I(A) = 1 if A true and I(A) = 0 otherwise. The notation j ∼ k means that the
sum extends over all pairs (Vj ,Vk) of neighbouring voxels. The neighbourhood system
can be 3D in the cerebral volume intersecting parcel Pγ or 2D along the cortical
surface. In this chapter, we only discuss the 3D case using 6-connectedness. The
extensions to 18 and 26 neighbours are direct. In [1.5], we do not consider external
fields in order to not promote an a priori state. Nevertheless, previous works have
showed that anatomical information could be modeled through an external field such
that to increase the likelihood of activation (classe 1) in gray matter [SMI 03]. The
parameter βm > 0 controls the level of spatial regularization: a large value of βm
associates high probabilities to homogeneous configurations, that is to say, containing
voxels of the same class. It should be noted that activation patterns within a parcel Pγ
are likely to vary from a condition m to the other. That is why different parameters
βm are considered. The partition function (FP) Z(·) of the Markov field is written:

Z(βm) =
∑

qm∈{0,1}Jγ
exp
(
βmU(qm)

)
[1.6]

4. It should be noted that if the aim is to manage deactivations, 3-class Potts fields are substituted
to the Ising fields (see [RIS 11] for details).
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and ensures the normalization of the probability Pr(qm |βm). In the following, we
assume that (amj | qmj = i) ∼ N (µi,m,vi,m), for i = 0,1. We impose µ0,m = 0 for
the average of NRLs in inactive voxels leading to the hyperparameters vector θm =
[v0,m,µ1,m,v1,m,βm] for each condition m.

We should observe that a similar formulation such as Bernoulli-Gaussian has
also been proposed in fMRI in [SMI 03]. This situation corresponds to the case of
degenerate mixing, that is to say, v0,m = 0. However, this formulation is too coarse,
as different configurations of activation can appear in the current parcel and the mixing
parameters θm for the condition m are supposed to adapt themselves to this latter set:

– in the case where all voxels are activated as a result of the condition m, the
proposed model is too rich and therefore the estimation of v0,m tends towards 0. Once
again, the BG model reappears without having imposed it;

– in the case where all voxels are inactivated, the estimate of µ1,m is close to 0
and the two mixing classes are superimposed. There again, the model is too rich, and
the approach developed in [BAK 12] for the automatic selection of relevant conditions
provides an effective solution to this problem. Considering a BG model would not add
anything in this case, because it would also be redundant;

– in the intermediate case where only a part of the voxels is activated in response
to the condition m, the proposed mixing model can adapt itself to heterogeneous
configurations and leads to consider as inactive weakly activated voxels with regard to
the others present in the parcel. It is in this kind of configurations that the BG model
is questioned because it can lead to false positives. The introduction of a variance
v0,m 6= 0 therefore helps to not bring the estimation µ1,m close to 0 by excluding
activated voxels (those whose evoked activity is too low);

– in the presence of light deactivations5, that is negative NRLs, the BG model is
also considered in default and there again, the proposed formulation, more flexible,
adapts itself to this configuration provided that the number of deactivations and their
amplitude is low faced with those of activations, in order to keep µ1,m > 0;

– richer three-class mixing models and considering support distributions in R+

or R− for NRLs of activated and deactivated voxels have been successfully tested
in [MAK 08] but the generated numerical complexity does not easily consider the
introduction of spatial models with an autodidact estimation of the parameters.

It is interesting to observe that the spatial regularization introduced in A is
non-quadratic due to the introduction of a composite model of (A,Q), it therefore
enables raising the activation boundaries on the furrow walls within the cortex, in a
simpler manner than through the use of convex non-quadratic regularization directly

5. Well known phenomena brought forward in the functional network of the mode by default
[CIU 12, FOX 07, GRE 03], where the level of activity decreases as a result of the action of a
stimulus.
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applied to A. The reason is due to the fact that the automatic estimation of the
regularization level βm does only involve the a priori Ising or Potts field whose
partition function calculation can be tabulated in advance because the variablesQ are
hidden: they are therefore not intervening in the observation model [1.1]. Moreover,
the regulation remains separable through the experimental conditions, whereas a direct
regularization on each vector am would induce non-separability due to the shape of
the observation model.

1.3.2.3. Mixing hyperparameters

We consider a priori conjugate distributions for variances v0,m and v1,m, that
is to say, inverse-gamma distributions, IG(av0 , bv0) and IG(av1 , bv1), identical for
all conditions m. The adjustment of the meta-hyperparameters (av0,1 , bv0,1) must
be carried out by taking care to be the least informative as possible. Besides the
fact that the a posteriori conditional distribution remains conjugate inverse-gamma,
the significance of this choice lies in the fact that it remains clean. Thus, sampling
conditional a posteriori distributions of variances v·,m is still possible even when
one of the mixing classes is empty or consists of a single element, in contrast to
the situation generated by the use of non-informative Jeffreys a priori, that is of a
distribution p(v0,m) = v

−1/2
0,m . For the same reasons, a clean a priori N (aµ1

, bµ1
) is

retained for µ1,m. The choices of constants (aµ1 , bµ1) are effected to express diffuse
densities, that is slightly informative.

1.3.2.4. Noise and derivatives

The parameters of noise and derivative, θ0 and L respectively, are supposed to
be spatially independent: p(θ0,L | v`) =

∏
j p(θ0,j) p(`j | v`) and without a priori

information, the following is chosen: `j ∼ N (0,v`IQ)6 and p(ρj ,σ2
j ) = σ−1

j I(|ρj | <
1) in order to ensure the stability of the AR(1) process for the noise [KAY 88]. As
with vh, we choose a non-informative Jeffreys a priori for v`: p(v`) = v

−1/2
` .

1.3.3. A posteriori distribution

From the equations [1.2]–[1.3], and defined a priori distributions, we get the a
posteriori distribution:

p(hγ ,A,L,Q,Θ |Y ) ∝ p(Y |hγ ,A,L,θ0) p(A,Q |θA) p(hγ | vh)

p(L | v`) p(θ0) p(θA) p(vh) p(v`)

6. Where IQ is the size Q identity matrix.
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that is developed as follows:

p(hγ ,A,L,Q,Θ |Y ) ∝ v−D/2h v
−JγQ/2
`

Jγ∏
j=1

(1− ρ2
j )

1/2σ−N−1
j I(|ρj | < 1)

exp

−ht
γR
−1hγ

2vh
−

Jγ∑
j=1

(
yt
jΛjyj
2σ2

j

+
‖`j‖2

2v`

) [1.7]

M∏
m=1

p(am | qm,θm)p(qm,θm)

It appears in [1.7] that this a posteriori distribution is specific to Pγ through the
HRF hγ . This density is however too complex to allow the analytical calculation of
an estimator. Consequently, we exploit in Section 1.4 stochastic simulation tools, still
called Markov Chain Monte-Carlo (MCMC) methods to simulate samples from [1.7].
A variational alternative is then presented in Section 1.5.

1.4. Schema for stochastic MCMCinference

The inference scheme revolves around a hybrid Gibbs-Metropolis sampler in
which conditional a posteriori distributions are sampled in turn, either directly (Gibbs)
or using an instrumental distribution (Metropolis-Hastings). The algorithm is detailed
in [VIN 10a, table I]. After convergence of the Markov chain, the quantities of interest
are then estimated with regard to the a posteriori (PM for Posterior Mean) as follows:
∀x ∈ {hγ ,A,Θ}: x̂MP = (Tc − T0)−1

∑Tc

t=T0+1 x
(t), where T0 defines the warming

period and Tc the convergence number of iterations. For detection, we use the
estimator of the maximum marginal a posteriori: (q̂mj )MMAP = arg maxi Pr(qmj =
i |yj).

Briefly, we present the two stages of the simulation of hγ and of A, in order to
highlight the links between the variational and stochastisc schemes.

1.4.1. HRF and NRLs simulation

The a posteriori distribution p(hγ |Y ,A,L,Θ) is Gaussian and is written
N (µhγ ,Σhγ )7:

Σ−1
hγ

= v−1
h R−1 +

Jγ∑
j=1

St
jΓ
−1
j Sj , µhγ = Σhγ

Jγ∑
j=1

St
jΓ
−1
j

(
yj − P`j

)
[1.8]

7. The authors report an error in the expression of Σ−1
h in [MAK 08, equation (B.1)].
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Similarly, by an argument of conjugation, the a priori distribution [1.4] of the
NRLs A being Gaussian mixture and the likelihood of A being Gaussian when
hγ is fixed, the a posteriori marginal density p(A |Y ,hγ ,L,Θ) is also Gaussian
mixture. Given the introduction of Q in the sampling schema8 and the spatial
correlation model retained in [1.5], the simulation of A is simplified and factorized:
p(A |Y ,Q,hγ ,Θ) =

∏
j p(aj |yj ,qj ,hγ ,Θ). Within the voxel Vj , the last thing

is to successively consider the different experimental conditions m ∈ N∗M and to
simulate according to p(amj | qmj = i,yj , · · · ) = N

(
µmi,j ,v

m
i,j

)
. The identification of

the parameters (µmi,j ,v
m
i,j) of the Gaussian distributions leads to:

vmi,j =
(
v−1
i,m + gt

mΓ−1
j gm

)−1
, µmi,j = vmi,j

(
gt
mΓ−1

j em,j + i µi,mv
−1
i,m

)
[1.9]

where gm = Xmhγ and em,j = yj − P`j −
∑
m′ 6=m a

m′

j gm′ = yj + gm. The
identification of the weights λmi,j of the a posteriori mixture is detailed in [VIN 10a,
annexe B].

1.4.2. Unsupervised spatial and spatially adaptive regularization

Within a parcel Pγ , unsupervised spatial regularization consists of automatically
adjusting the vector β from data Y . With the proposed Gibbs sampler, this step
is performed by probabilizing β and by adding a sampling step of p(β |Q), which
depends on p(qm |βm) and on the a priori p(β):

p(β |Q) =

M∏
m=1

p(βm | qm) ∝
M∏
m=1

Z(βm)−1 exp
(
βmU(qm)

)
p(βm) [1.10]

where p(βm) is chosen truncated on an interval [0,βmax] such that to avoid phase
transition phenomena. The distribution [1.10] depends on Z(·), independent of m.
As a result, the estimation of Z(·) remains a prerequisite to any sampling attempt
of p(βm | qm). In [VIN 10a], a Metropolis-Hastings algorithm was implemented to
perform this step. The acceptance likelihood of a candidate value β(c)

m is written:
α(β

(t)
m → β

(c)
m ) = min(1, Amt→c) where the acceptance ratio Amt→c is given by:

Amt→c =
p(β

(c)
m |q(t)

m )g(β
(t)
m |β(c)

m )

p(β
(t)
m |q(t)

m )g(β
(c)
m |β(t)

m )
=
Z(β

(t)
m )

Z(β
(c)
m )

exp
(

(β(c)
m − β(t)

m )U((qm)(t))
)
Bmt→c

with Bmt→c function the instrumental distribution g. The exact evaluation of Z(β) in
a reasonable time is impossible for conventional images sizes. Its accurate estimation
is accessible by adopting a significant sampling scheme on a discrete grid of values of
β. However, the computational cost remains important during a whole brain scan

8. See details in [VIN 10a, annexe B].
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involving multiple parcels for each of which the FP of the hidden field must be
estimated. As a matter of fact, these plots have all different sizes and geometries
as it is illustrated in Fig. 1.5.

To overcome this difficulty, an FP extrapolation scheme is implemented, relying
on a few reference functions to adapt itself to geometry variations. The algorithmic
details are available in [RIS 11, VIN 10a].

de
ns

ity

taille

Figure 1.5. Variability of parcels resulting from real data, forming the input parcellation of the
JDE approach. Left: histogram of parcels sizes; right: illustration of a few parcels with varied

geometries

1.5. Alternative variational inference schema

1.5.1. Motivations and foundations

The exact Bayesian analysis of the JDE model is difficult and has lead to the
approximated calculation of the a posteriori distribution [1.7] with the help of an
MCMC process, whose asymptotic convergence is ensured by a number of conditions
simple to verify [GEM 84, HAS 70]. However, difficulties of implementation may
appear due to the extended calculation time, to the need to establish a convergence
diagnosis sometimes sophisticated of simulation algorithms [BRO 98], and to the
additional work cost required to address issues of model selection based on the
samples of the a posteriori distribution [MAR 07]. These considerations have
prompted us to develop deterministic approximations, as a matter of fact variational,
of the distribution [1.7]. Unlike MCMC schemas, variational calculation techniques
are generally not accurate even asymptotically but their computational flexibility often
justify their use.

The main idea here consists in approaching the target distribution, that is to
say, the a posteriori distribution with a distribution for which the calculations
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inherent to a maximization likelihood algorithm can be achieved, such as the
EM algorithm (Expectation Maximization) [DEM 77]. The identification of the
best distribution approximating the target distribution is performed relatively to the
Kullback-Leibler divergence by imposing additional constraints when the target
distribution is not directly computable. The most common procedure thus consists in
assuming a product form for the approximating distribution as we will now illustrate
in the JDE model.

In addition to the approximation based on a variational principle, the difference
with the previous approach resides in the lack of a priori of the parameters.
We are here considering a non-Bayesian framework with missing variables. The
variables of interest considered as missing are A, hγ , Q whereas L and Θ hold
the status of parameters estimated by maximum likelihood in an iterative scheme
such as Expectation Maximization (EM) [DEM 77]. It should be noted that from
the perspective of the probabilistic process, there is no difference between a missing
variable and a parameter with an a priori distribution such that it is easy to incorporate
it to certain parameters if necessary. We will illustrate this flexibility in the following
by adding an a priori to the spatial regularization parameters βm.

1.5.2. Variational EM algorithm

We are looking for an approximation in the form p̃ = p̃A p̃Hγ p̃Q of the target
a posteriori distribution fHγAQ = p(hγ ,A,Q |Y ; Θ)9 minimizing the Kullback-
Leibler divergence D(p̃||fHγAQ):

D(p̃ || fHγAQ) =

∫
p̃(hγ ,A,Q) ln

p̃(hγ ,A,Q)

fHγAQ(hγ ,A,Q)
dhγ dAdQ [1.11]

or equivalently by maximizing the free energy F(p̃; Θ) = ln p(Y ; Θ) −
D(p̃ || fHγAQ) [NEA 98]. The terms of the optimal distribution then verify:

(p̃A, p̃Hγ , p̃Q) = arg max
pH ,pA,pQ

F(pA pH pQ; Θ)

which is again simplified due of the product form but results in formulas that remain
coupled and for which explicit direct solutions for p̃A, p̃Hγ and p̃Q are not available.
However, the above formulation has the advantage of leading to an iterative solution
in which one of the terms p̃A is successively updated, p̃Hγ and p̃Q as follows, the two

9. The use of the semicolon makes it possible to distinguish unknown deterministic parameters
in a parameters or random variable probabilistic model.
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others being fixed:

stage E-H: p̃(r)
Hγ

= arg max
pHγ

F(p̃
(r−1)
A pHγ p̃

(r−1)
Q ; Θ(r−1)) [1.12]

stage E-A: p̃(r)
A = arg max

pA

F(pA p̃
(r)
Hγ

p̃
(r−1)
Q ; Θ(r−1)) [1.13]

stage E-Q: p̃(r)
Q = arg max

pQ

F(p̃
(r)
A p̃

(r)
Hγ

pQ; Θ(r−1)) [1.14]

by noting p̃(r−1)
A , p̃(r−1)

Q and Θ(r−1), common solutions and parameters at r − 1.
The expressions [1.12]-[1.14] can then be written in terms of the Kullback-Leibler
divergence whose properties enables the identification of solution distributions as
follows:

p̃
(r)
Hγ

(hγ) ∝ exp

(
E
p̃

(r−1)
A p̃

(r−1)
Q

[
ln p(hγ |Y ,A,Q; Θ(r−1)

])
[1.15]

p̃
(r)
A (A) ∝ exp

(
E
p̃

(r)
Hγ

p̃
(r−1)
Q

[
ln p(A |Y ,hγ ,Q; Θ(r−1))

])
[1.16]

p̃
(r)
Q (Q) ∝ exp

(
E
p̃

(r)
A p̃

(r)
Hγ

[
ln p(Q |Y ,hγ ,A; Θ(r−1))

])
[1.17]

With respect to the estimation of the parameters Θ, updates are performed
according to:

Θ(r) = arg max
Θ

E
p̃

(r)
A p̃

(r)
Hγ

p̃
(r)
Q

[
ln p(Y ,hγ ,A,Q ; Θ)

]
[1.18]

Distribution expressions p̃(r)
Hγ

, p̃(r)
A and p̃(r)

Q prove to be explicit, as well as those

of part of the parameters Θ. In particular, distributions p̃(r)
Hγ

and p̃(r)
A are Gaussian.

In the following text, to alleviate notations, we eliminate the exponent r and we
note p̃Hγ = N (mHγ ,VHγ ) and p̃A =

∏
j p̃Aj with p̃Aj = N (mAj ,VAj ). The

expressions of mHγ et VHγ are similar to those obtained with the MCMC procedure
in equation [1.8]. The terms which in [1.8] depend on amj are replaced by their
expectation with respect to the distribution p̃A. From [1.15], it is obtained:

mHγ = VHγ

Jγ∑
j=1

S̃t
jΓ
−1
j (yj − P ˜̀j) [1.19]

V −1
Hγ

= v−1
h R−1 +

Jγ∑
j=1

( ∑
m,m′

vAmj Am
′

j
Xt
mΓ−1

j Xm′ + S̃t
jΓ
−1
j S̃j

)
[1.20]
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where S̃j =
∑M
m=1mAmj

Xm. Notations mAmj
and vAmj Am

′
j

respectively represent
components m and (m,m′) of the mean vector and of the covariance matrix of the
current distribution p̃Aj . In the case of the distribution p̃Aj defined inRM , it yields:

mAj = VAj

( ∑
i=0,1

∆ijµi + G̃tΓ−1
j (yj − P`j)

)
[1.21]

VAj =

( ∑
i=0,1

∆ij + H̃j

)−1

[1.22]

where µi = [µi,1, . . . , µi,M ]
t, G̃ = Ep̃Hγ

[
G
]

with G = [g1, . . . , gM ] (the column

m of G̃ is denoted g̃m = XmmHγ ), ∆ij = diag[p̃Qmj (i)/ṽi,m] and H̃j =

Ep̃Hγ
[
GtΓ−1

j G
]
, a matrix M ×M whose element (m,m′) is:

Ep̃Hγ
[
gt
mΓ−1

j gm′
]
=Ep̃Hγ

[
gm
]t

Γ−1
j Ep̃Hγ

[
gm′
]

+ tr
(
Γ−1
j covp̃Hγ (gm,gm′)

)
= g̃t

mΓ−1
j g̃m′ + tr

(
Γ−1
j XmVHγX

t
m′
)

In this case, the similarity with updates obtained by MCMC is less obvious. In
MCMC as a matter of fact, amj are simulated in turns and conditionally to qmj and
other am

′

j . In the variational EM algorithm (VEM), marginals are calculated and
integration is performed with regard to the other variables (qmj ). However, a way
to show consistency with the times [1.9] of the conditional Gaussian distribution
p(amj | qmj = i,yj , . . .) is to assume the equivalent of qmj = i, that is to say,
p̃Qmj (i) = 1 and p̃Qmj (1−i) = 0. In equation [1.22] of the variance, them-th diagonal

term of
∑
i ∆ij + H̃j is then equal to v−1

i,m + g̃t
mΓ−1

j g̃m + tr(Γ−1
j XmVHγXm

t).
It can be observed in the first two terms that an expression similar to [1.9] reappears
with a third additional term.

In the case of the average, the m-th diagonal term of
∑
i ∆ijµi + G̃tΓ−1

j (yj −
P`j) in [1.21] est i µi,m v−1

i,m + g̃t
mΓ−1

j (yj − P`j). Thus, the second factor appears
once again in the expression [1.9] when replacing gm par g̃m and up to the term∑
m′ 6=m a

m′

j gm′ . It is in this last term that conditioning by am
′

j , non-existing in the
variational formulation, is expressed, as well as the interaction between the different
conditions. It is carried out naturally by means of conditioning by am

′

j in MCMC
whereas that it achieved by more complex matrix expressions and additional terms in
VEM.

With respect to p̃Q, the variables (am, qm) constitute independent pairs whose
respective a priori distributions are hidden Ising models respectively with interaction
parameter βm, without external field and with Gaussian emission distributions.
It follows that p̃Q(Q) has a product form: p̃Q(Q) =

∏
m p̃Qm(qm) with
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p̃Qm(qm) = f(qm |am = mAm ;µ.,m,v.,m,βm) where the right member represents
the conditional distribution for a joint distribution noted f which is the distribution
of a hidden Ising field modified relatively to the a priori hidden Ising field (am,qm).
The modification consists in replacing the comments amj by their mean mAmj

(which
become the new observations) and in adding an external field for j ∈ Jγ and i ∈ {0,1},
αi,j = −vAmj Amj /vi,m, the remaining regularization parameter βm. However the
expression of the modified hidden Ising is not available explicitly due to the partition
function. However, it is still possible to find a variational approximation, also known
as mean-field, as specified in [CEL 03]. It is tantamount to consider the achieved
approximation: p̃Qm(qm) ≈

∏
j p̃Qm(qmj | {q̃mk , k ∼ j}) with q̃m a field of fixed

values that verifies a fixed point equation to solve. This solves the problem because
the above conditional distributions for the hidden Ising field p̃Qm are now calculable.
Furthermore, by applying the principle of the mean field, the q̃mk is interpreted as
the mean values of the hidden Ising fields at each site k. Other approximations are
possible (see [CEL 03]).

Relatively to the update of the parameters Θ, the expression [1.18] gives rise to
four independent updates. The first two are self-explanatory. It should be noted p̄im =∑
j p̃Qmj (i) for i ∈ {0,1}. It gives:

µi,m =

Jγ∑
j=1

p̃Qmj (i)

p̄im
mAmj

, vi,m =

Jγ∑
j=1

p̃Qmj (i)

p̄im

(
(mAmj

− µi,m)2 + vAjmAjm

)
vh = (D − 1)−1Ep̃Hγ

[
ht
γR
−1hγ

]
= (D − 1)−1(mt

HγR
−1mHγ + tr(VHγR

−1))

= (D − 1)−1tr((VHγ +mHγmHγ
t)R−1)

With respect to Gaussian parameters and for a comparison with MCMC
procedures, the a posteriori distributions obtained for these parameters can be referred
to such as detailed in [VIN 10b, annexe A]. Recalling the notations in [VIN 10b],
when in the above formulas p̃Qmj (1) = 1 is given for j such that qmj = 1 in the MCMC
procedure, µ1,m =

∑
j∈C1,m

mAmj
/J1,m is met once more. This is consistent with

the expression of η1,m (see [VIN 10b, equation (A.4)]) when replacing amj by mAmj
(in variational, the hyperparameter aµ1

does not have to be included). Respectively
to variances, it gives vi,m =

∑
j∈Ci,m((mAmj

− µi,m)2 + vAmj Amj )/Ji,m, which
up to the term vAmj Amj is consistent with the mean (see [VIN 10b, equation (A.4)])
of the inverse-gamma distribution vi,m in the MCMC procedure. Also the fact
that in MCMC, conditioning is achieved for these calculations by amj , the observed
differences are due to the presence of hyperparameters and to a priori distributions
that do not exist in the VEM algorithm discussed here.

For vh there is in VEM an expression consistent with the simulation of vh in
MCMC (see [MAK 08, paragraph B.1]). While vh is conditionally simulated with
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hγ fixed to its current value in MCMC, the expressions in hγ are replaced by their
expected values relatively to the current approximating distribution in VEM.

The other two updates (interaction parameters β and noise parameters) require an
iterative maximization procedure. With respect to parameters βm, the approximation
created above [CEL 03] leads to an equation for which a gradient-based algorithm
can be used. A tendency towards the overestimation of these parameters can then be
observed . This can be partly compensated by introducing an a priori distribution
p(βm) aiming to reduce the estimated value βm. We thus illustrate the possibility
mentioned previously to incorporate, as with the MCMC case, a priori distributions
of the parameters. More specifically, if it is assumed that p(βm) is an exponential
distribution with a parameter λm, it gives:

βm = arg max
β′m

Ep̃Qm [ln p(qm |β′m)p(β′m)]

= arg max
β′m

{− lnZ(β′m) + β′m(
∑
j∼k

Ep̃Qm
[
I(qmj = qmk )

]
− λm)}

If derivation is carried out with respect to βm, the outcome is again then, the
conventional expression detailed in [CEL 03] in which the constant λm is subtracted
from the usual quantity

∑
j∼k Ep̃Qm

[
I(qmj = qmk )

]
representing the mean number

of homogeneous cliques of the approximating distribution. It is easy to see that this
subtraction has the effect of decreasing the value of βm estimated as desired.

With regard to the parameters {`j ,σ2
j ,Λj , j = 1..Jγ}, they satisfy a fixed-point

equation of that we do not fully detail. In the AR(1) case, it can be shown that:

`j = (P tΓ−1
j P )−1P tΓ−1

j

(
yj − S̃jmHγ

)
= F1(ρj) [1.23]

Hence a similarity with [MAK 08, equation (B.2)] can be observed in [1.23] when
replacing hγ et A par mHγ and mA. In a similar manner, it can be shown that the
optimal values verify two other relationships σ2

j = F2(ρj , `j) and ρj = F3(ρj ,σ
2
j ).

This then allows these different relationships to combine to estimate ρj as a solution
to a fixed point equation and to derive then `j and σj .

1.6. Comparaison of both types of solutions

In order to compare the two methods, a number of simulations as well as
experiments on real data have been carried out [CHA 11a].

Experiments on simulated data. Firstly, we have simulated data from the
equation [1.1] and the p(A |Q) distribution with a matrix P defined as a discrete
cosine transform basis, white Gaussian noise (σ2

j = 0,5, Λj = IN ) and
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M = 2 experimental conditions with variable contrast-to-noise ratios (CNR). More
specifically, we have set: µ1,1 = 2,8, v1,1 = 0,3 and µ1,2 = 1,8, v1,2 = 0,4, such that
µ1,1/v1,1 > µ1,2/v1,2. The other variances v0,· are set to 0.3. Using this mixture, the
artificial NRLs are generated conditionally to synthetic binary images of size 20× 20
representing activated and non-activated pixels (figure 1.6). In addition, the initial
paradigm is constituted of fifteen stimuli for each of the conditions. Simulated data
are thus constituted of 152 scans time series.

NRN Labels
Truth MCMC/VEM MCMC VEM

m = 1

m = 2

Figure 1.6. On the left: NRLs simulated and estimated by MCMC and VEM (very similar
results);

on the right: a posteriori probability maps obtained by the approximation p̃Qm (VEM)
and by the MMAP estimator q̂m (MCMC) (see color annex)

The two MCMC and VEM procedures are then applied to these data. We are under
the scope of the true noise model, that is to say, white Gaussian as in simulations.
Both approaches produce very similar NRLs. A slight difference is observed in the a
posteriori activation probabilities of the condition with a low CNR (m = 2). These
probabilities are given by pQmj (1) in the variational case and by q̂mj (1) defined in
Section 1.4 in the MCMC case. This difference suggests a gain in robustness in favor
of the variational approach. The estimated levels of spatial regularization also differ
with β̂1 = 0,78, β̂2 = 0,92 for MCMC and β̂1 = 1,04, β̂2 = 1,08 for VEM.

For a more quantitative comparison, additional simulations have been performed
with varying stimuli densities (from five to thirty), variable noise variances and
different temporal correlation models for the noise (AR structure for Λi). The results
are shown in Fig. 1.7 that shows (a) the evolution of the mean squared error (MSE)
of NRLs estimated based on the number of stimuli for simulations following a AR(2)
noise model such that the estimation assumes a white Gaussian noise as previously.

Fig. 1.7 shows that for a low stimuli density, that is to say, for a low signal-
to-noise ratio (SNR), the variational version is more robust. In the case of higher
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Figure 1.7. (a) Evolution of the MSE of the NRLs as a function of the number of stimuli,
(b)-(c) ground truth and HRF estimated with VEM inferences and MCMC

for two different stimuli densities, using an A(2) noise

densities (higher than twenty) the two approaches behave in the same manner. On the
other hand, Fig. 1.7b and 1.7c show for two densities from different stimulations (five
and fifteen) the HRFs estimated with respect to the canonical HRF used for simulation.
The main features (peak value, arrival times at the peak and undershoot) are correctly
estimated by the two approaches. However, we observe in Fig. 1.7b shows that for
a low stimuli density, the variational approach is less accurate than its stochastic
counterpart at the undershoot level. This observation is also confirmed when the three
above characteristics of the real HRF used in the simulations are varied. However,
when estimations and simulations are made with the same noise model, the differences
observed between the two approaches are minimal and not significant.

Figures 1.8a and 1.8b show the evolution of the MSE of NRLs depending on the
NSR when the variance of the noise and autocorrelation are respectively varied.

In the latter case, the two parameters of the AR(2) model are modified in such a
way as to maintain a stable AR process. Similarly as already observed in [CAS 08], for
a given NSR, a larger autocorrelation implies an increase of the MSE more significant
than the increase of the noise variance, and this for both approaches. Moreover, the
two methods behave in the same manner over a large range of values for RSB >
5,5 dB.

Finally, the most notable advantage of the variational approach reside in
calculations times. On a Core 2 - 2,26 GHz - 2 Gb RAM Intel architecture, results
have been obtained approximately thirty times faster.

Experiments on real data. We have also considered real fMRI data output from
a 3T MRI (Siemens Trio) with a gradient echo sequence EPI (TE = 30 ms/TR =
2,4 s/FOV = 192 mm2) and a paradigm resulting from a Localizer protocol [PIN 07].
The acquisition carried out includes a single session of N = 128 3D volumes scans
with a 2 × 2 × 3 mm3 resolution. The paradigm includes ten conditions (heard and
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Figure 1.8. Evolution of the MSE of the NRLs as a function of the input NSR (AR(2) noise)
(a) by varying noise variance and (b) the correlation level of AR(2) noise

read sentences, aurally induced and read calculations, left and right clicks aurally and
visually induced, horizontal and vertical checkerboards) divided into sixty stimuli.

We have focused on the contrast calculation-sentence (combined
auditory and visual stimuli) taking into account the differences of activations induced
by the calculation and the sentence conditions in the left intraparietal sulcus,
subdivided into 17 parcels for JDE analyses. The choice of this region lies in the
fact that it is likely to induce a HRF which deviates from the canonical form. An
extended version of these results is presented in [CHA 13].

Figure 1.9 shows that NRLs estimated by both approaches are very similar and
follow in a satisfactory manner the underlying anatomy of the furrows. It should be
noted here that only the most activated cut is visualized in Fig. 1.9, where we also
show the two estimations (MCMC and VEM) of the HRF in the most activated parcel
that includes approximately 200 voxels. The HRF are similar in both approaches and
clearly deviate from the canonical form particularly at the level of the time of arrival
at the peak and at the undershoot, that is, postactivation depletion. The variational
approach generates a HRF which oscillates more at the level of this depletion but this
is tempered by the fact that in a general fashion, the estimation the tail of the HRF
is less reliable than the peak for which the BOLD signal level is more important.
In addition, the event-based nature of the paradigm under consideration here is not
adapted to precisely study the characteristics of the tail of the HRF. With a slow
event paradigm for which responses do not overlap in time, our tests show that
these oscillations disappear. A pragmatic solution proposed to solve this issue in the
framework of fast event-related paradigms consists of introducing in the design of the
paradigm zero events, that is to say slightly longer periods without stimulation, such
as to allow time for the hemodynamics response to recover its base line. Another
way consists in restraining the HRF model using a semi-parametric approach as in
[GEN 00, WOO 04a].
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Figure 1.9. Coronal (top row, exterior), sagittal (top row, center) and axial (middle row) views
of the calculation-sentence contrast estimated by MCMC JDE (on the left) and VEM
(on the right). At the center: HRF estimated by MCMC (in green) and by VEM (in blue) and
HRF canonical in dashed. Bottom row maps of spatial regularization levels estimated for the
conditions calculation and sentence by MCMC (left) and by VEM (right) (see color
annex).

On the other hand, the estimated spatial regularization levels, as shown in the maps
at the bottom of Fig. 1.9, are significantly different from an approach to the other, with
stronger estimated levels for VEM. However, for the most activating parcel, it can be
noted that for both approaches there is coherence with the contrast achieved: the value
of β̂ is stronger for the calculation condition than for the sentence condition.
Finally, respectively to calculation times, in the study of this parcel, a same gain by a
factor of 30 for the variational approach as for simulations can be observed.

1.7. Conclusion

The experiments described in the previous section aimed essentially to compare
both VEM and MCMC approaches proposed for the estimation of the JDE model.
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More detailed results with the JDE approach itself and its comparison with other
models can also be found in [BAD 11].

The results of Section 1.6 confirm the conventional advantages of the variational
approach, namely the simplicity of implementation, the speed of calculations,
etc. With respect to the comparison with the MCMC procedure, what appears as
particularly advantageous is the simplicity of the convergence criterion in variational
and the possibility to relatively easily extend the procedure to more complex models
including for example AR noises of higher order or a model of neural habituation.
Aspects of model selection are also accessible if considering penalized likelihood-
based criteria whose variational approach can easily provide an approximation
[FOR 03].

With regard to performance, they are often very similar for the two inference
schemes, if the interest is as here towards point estimators. However, significant
differences appear in the uncertainty measures of these estimators, that is to say, in
the estimation variances.

This result with point estimators may seem surprising to the extent where only the
MCMC procedure offers guarantees of theoretical convergence but in reality it can
hide different situations. On the one hand, this does not exclude that the variational
approach has also in some cases the same convergence properties but so far there exist
no fairly general results about the quality of these approximations. On the other hand,
it is not excluded that simplifications introduced in the variational approach of the
factorization of the target distribution induce a greater robustness regarding certain
model errors (response stationarity, noise, etc.).

In the specific case of the JDE, a more in-depth study by means of simulations
could be envisaged in order to try to better identify at which stage of the model the
variational approximation is the most active and potentially indicate if this action is
prone to important errors or not. Another interesting aspect observed in our simula-
tions, and which is not contradictory to the approximation aspect, is the greater
robustness of the variational approach to model errors.

Finally, to complete the comparison of approaches and the evaluation of the
potential of the variational solution, it would be interesting to carry out a group
analysis with it such as the one achieved with the MCMC procedure in [BAD 11].
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