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MODELLING STRUCTURED DATA WITH PROBABILISTIC
GRAPHICAL MODELS

Florence Forbes1

Abstract. Most clustering and classification methods are based on the
assumption that the objects to be clustered are independent. However,
in more and more modern applications, data are structured in a way
that makes this assumption not realistic and potentially misleading.
A typical example that can be viewed as a clustering task is image
segmentation where the objects are the pixels on a regular grid and
depend on neighbouring pixels on this grid. Also, when data are geo-
graphically located, it is of interest to cluster data with an underlying
dependence structure accounting for some spatial localisation. These
spatial interactions can be naturally encoded via a graph not necessarily
regular as a grid. Data sets can then be modelled via Markov random
fields and mixture models (e.g. the so-called MRF and Hidden MRF).
More generally, probabilistic graphical models are tools that can be
used to represent and manipulate data in a structured way while mod-
eling uncertainty. This chapter introduces the basic concepts. The two
main classes of probabilistic graphical models are considered: Bayesian
networks and Markov networks. The key concept of conditional inde-
pendence and its link to Markov properties is presented. The main
problems that can be solved with such tools are described. Some illus-
trations are given associated with some practical work.

1 Introduction

Graphical models are used in various domains including machine learning and
artificial intelligence, computational biology, statistical signal and image process-
ing, communication and information theory, and statistical physics to name a few.
Probabilistic graphical models refer to a set of tools based on correspondences
between graph theory and probability theory and that aim at solving mainly two
types of important but difficult problems, namely 1) the computation of likeli-
hoods, marginal distributions and modes of distributions in non trivial settings
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and 2) the estimation of model parameters and model structures from noisy data.
In this task, the role of the graphs is to provide a graphical representation of
a probability distribution of interest and this with the objective of providing an
easier way to deal with this distribution. The graphical representation can help
in visualizing the structure of a model and can provide better insights into the
model properties. It allows for instance an immediate visualization of conditional
independences by inspection of the graph. More generally, complex computations
required to perform inference and learning in sophisticated models can be ex-
pressed in terms of graphical manipulations. In addition, the framework is quite
general in that a number of standard statistical models such as Kalman filters,
hidden Markov models, Potts models, can be described as graphical models. The
combination of graph theory and probability theory is not providing new models
per se but the diagrammatic representation can help in designing and motivating
new probabilistic models and also in designing graph based algorithms for their
estimation.

In this chapter, we will review the main concepts of probabilistic graphical
models. For a more detailed treatment, the interested readers are referred to
better and more complete monographs on the subject Koller and Friedman 2009,
Murphy 2012. A number of good tutorials are also available on the web, e.g.
- http://www.di.ens.fr/~fbach/courses/fall2014/,
- http://cs.nyu.edu/~dsontag/courses/inference15/slides/lecture1.pdf
- http://www.cedar.buffalo.edu/~srihari/CSE574/
as well as recent Moocs: https://class.coursera.org/pgm/lecture/preview.

In section 2, we recall the main useful probability notation and concepts. In the
sequel, two main classes of probabilistic graphical models are introduced. Section 3
presents the class of directed graphs also referred to as Bayesian networks in which
the links have directional meaning. The key concept of conditional independence
and its link with Markov properties is presented in section 4. Then the second
class of undirected graphical models which contains the famous Markov random
fields is presented in section 5. Mixed directed and undirected graphs (e.g. chain
graphs) will not be covered here. Section 6 presents the main problems that can be
solved with such tools considering inference and learning issues. Some illustrations
are given with practical work proposed in section 7.

2 Elements of probability theory

Probability theory plays a central part in modern pattern recognition. It can be
expressed in terms of two simple equations corresponding to the sum rule and the
product rule below. All of the probabilistic inference and learning manipulations
amount to repeated application of these two equations.

Let us first recall some notation. Let X1, X2, . . . , Xn be random variables with
distribution:

P(X1 = x1, X2 = x2, . . . , Xn = xn) = pX(x1, . . . , xn) = p(x) (2.1)
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where x stands for (x1, . . . , xn). p is also called the probability density function
(pdf) of X. Given A ⊂ {1, . . . , n}, we denote the marginal distribution of xA by:

p(xA) =
∑
x∈Ac

p(xA, xAc). (2.2)

Note that the above equation is written for discrete variables but the extension to
continuous variables is straightforward using integrals instead of sums. With this
notation we can write the conditional distribution as:

p(xA|xAc) =
p(xA, xAc)

p(xAc)
(2.3)

The sum rule links the marginal probability distribution function (pdf) of some
variable X to the joint probability distribution of (Y,X):

Sum rule : p(x) =
∑
y

p(x, y) ,

while the product rule expressed the joint pdf as a product of conditional and
marginal pdfs:

Product rule : p(x, y) = p(x|y)p(y) .

From these two equations, we can derive Bayes’ theorem:

Bayes’ theorem : p(y|x) =
p(x|y)p(y)

p(x)
,

where we can also write p(x) =
∑
y p(x|y)p(y).

We also recall the so-called chain rule which can be derived from a repeated
application of the product rule :

p(x1, . . . , xn) = p(x1)p(x2|x1)p(x3|x2, x1) . . . p(xn|x1, . . . , xn−1) . (2.4)

3 Directed graphs and Bayesian networks

Bayesian networks also called belief networks or causal networks are based on
directed graphs. The nodes of the graph are the random variables and the edges
correspond intuitively to direct influence of a node on another. The graph can be
seen as a compact representation of a probability distribution. Let us show how
this can be done by considering a first simple example with 3 variables. The chain
rule leads to:

p(x, y, z) = p(x)p(y|x)p(z|x, y) (3.1)

in which we observe 3 factors that involve separately only parts of the variables.
The underlying directed graph semantics is to associate each variable to a node
and to draw an arrow from X to Y whenever X is in a conditioning term for Y .
This leads to the graph in Figure 1.
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Figure 1. A general 3 variable DAG representing the pdf in (3.1).

In the general case, as an arbitrary joint distribution can always be decomposed
using the chain rule (2.4) above, the corresponding graphical representation would
correspond to a fully connected graph with n nodes and where each node is linked
by an edge to all lower-numbered nodes. It appears that useful information about
the specificity of a joint distribution is not so much in the edges but rather relies in
the absence of links between variables. This idea leads to the concept of Directed
Acyclic Graphs (DAG) also called Bayesian networks. The general factorization
property can then be stated as follows. Let X1, . . . , Xn be n random variables
with distribution p(x) = pX(x1, . . . , xn).

Definition 3.1 Let G = (V,E) be a DAG with V = {1, . . . , n}. We say that p(x)
factorizes in G, denoted p(x) ∈ L(G) iff p(x) is of the form:

∀x, p(x) =

n∏
i=1

p(xi|pai) (3.2)

where pai stands for the set of parents of the vertex i in G.

We can then observe that a missing link in G implies conditional independence
between the corresponding variables. The graph can be used to impose or to
account for constraints on the random vector i.e. on its distribution p.

Example 3.1 Some DAGs

• Trivial Graphs : Assume E = ∅, i.e. there is no edges. Then we have
p(x) =

∏n
i=1 p(xi), implying the random variables X1, . . . , Xn are indepen-

dent. Hence variables are independent if they factorize in the empty graph.

• Complete Graphs : As already mentioned, the chain rule leads to p(x) =∏n
i=1 p(xi|x1, . . . , xi−1) which is always true, corresponds to a complete graph

with n(n−1)/2 edges as we need acyclicity for it to be a DAG. Every random
process factorizes in the complete graph.

• 7 node graph example : As an illustration, let us consider a 7-dimensional
vector (x1, . . . , x7). If p admits the following decomposition

p(x1 . . . x7) = p(x1)p(x2)p(x3)p(x4|x1, x2, x3)p(x5|x1, x3)p(x6|x4)p(x7|x4, x5)

(3.3)
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(a) (b)

Figure 2. (a): 7 node DAG with independence constraints corresponding to factorization
(3.3). (b) : same model with only part of the variables observed.

it can be translated into the graph in Figure 2 (a).

Example 3.2 Hidden variables: Variables may be hidden (latent) or visible (ob-
served). In Figure 2 (b), some of the nodes correspond to missing variables which
may have a specific interpretation or may be introduced to permit a richer class of
distributions.

• Mixture of Gaussians: A typical hidden variable model is that of mixtures of
Gaussians. A mixture of Gaussians is a linear combination of K Gaus-
sians whose pdf is denoted by N (y;µk, σ

2
k). The mixture pdf is p(y) =∑K

k=1 πkN (y;µk, σ
2
k) with

∑K
k=1 πk = 1 and πk ∈ [0, 1]. We can recover

this model by adopting a latent variable viewpoint. Let X be a discrete latent
variable that takes values in {1, . . . ,K} and that describes which component
of the mixture generated data point y. Let us consider the model defined by:

Conditional distribution of the observed variable: p(y|X = k) = N (y;µk, σ
2
k)

Prior distribution of the latent variable: p(X = k) = πk .

Marginalizing over the latent variable X, we recover:

p(y) =

K∑
k=1

πkN (y;µk, σ
2
k).

In terms of graphical model this corresponds to the simple graph of Fig-
ure 3 (a).

• Hidden Markov Chain : Another example is that of state space models also
referred to as Hidden Markov chains or Kalman Filters whose graphical rep-
resentation is given in Figure 3 (b). In such a setting, frequently the goal
is to solve the problem of computing p(xi|y1, . . . yn) where the yi’s are the
observed variables and xi one of the hidden ones.



6 Title : will be set by the publisher

(a) (b)

Figure 3. (a): Mixture model. (b): Hidden Markov Chain.

At last, let us say a word about an important but subtile concept of causality.
Indeed directed graphs can naturally express causal relationships. Often child
variables are observed and the goal is to infer the posterior distribution of parent
variables as illustrated in the example of Figure 4 where the result of a blood
test is hoped to inform on the presence of a disease. However, note that often
statistical analysis leads to the determination of correlation which is a symmetric
notion while causality is a directional notion and his therefore much more difficult
to infer in a reliable manner. In this chapter we will not address further this issue.
Last, it is important to note that not every relationships can be expressed in terms
of graphical modes. As a counter-example take three random variables that are
pairwise independent, but not fully independent.

Figure 4. Inferring causal structure from data.

4 Conditional independence and Markov properties

Conditional independence is a key concept in practical applications as we can rarely
work with a general joint distribution. The conditional independence between X
and Y given a third variable Z is denoted by X ⊥⊥Y | Z and is characterized by
two equivalent formulations:

X ⊥⊥Y | Z ⇔ p (x, y|z) = p (x|z) p (y|z)

⇔ p (x|y, z) = p (x|z) =
p (x, y|z)
p (y|z)

.

To comment on the difference between dependence and conditional dependence,
consider the Traffic jams and snowmen example of Figure 5. In case of heavy
snowfalls, traffic jams and snowmen may occur simultaneously and we have no
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trouble understanding the possible causal relations between snow and traffic jams
and between snow and snowmen. However, ignoring this common cause, one may
conclude that traffic jams and snowmen are correlated. But conditionally on snow
falls, the size of the traffic jams and the number of snowmen are independent. In
other words, the whole link between snowmen and traffic jams is included in the
occurrence of snow falls. The concept of conditional independence is more suited
than dependence to capture "direct" dependencies between variables because it
potentially remove common effects that are by no means causal.

Figure 5. Traffic jams and snowmen are correlated.

Then a natural question is whether we can determine the conditional indepen-
dence properties of a distribution directly from its graph. The answer is "yes" via
the notion of "d-separation" that stands for directed separation. This extended
notion of separation is necessary to account for one subtlety due to the presence
of so called head-to-head nodes and the explaining away effect as detailed in the
next section.

4.1 Reading conditional independence

Conditional independences are readable from a directed graph by inspecting edges
as illustrated in the following 3-node examples. Besides the empty graph, leading
to independence, and the complete graph that gives no further information than
the chain rule, 3 different configurations of 3 nodes are possible.

• Tail-to-head node: it corresponds to the DAG showed in Figure 6. In this
configuration we show that we have:

p(z|y, x) =
p(x, y, z)

p(x, y)
=

p(x, y, z)∑
z′ p(z

′, x, y)
=

p(x)p(y|x)p(z|y)∑
z′ p(x)p(y|x)p(z′|y)

= p(z|y) ,

(4.1)
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which means that X and Z are independent conditionally to Y : X ⊥⊥Z | Y.
In the graph, we observe that Y separates X from Z in the sense that the
path from X to Z is blocked by Y .

Y ZX

Figure 6. Tail-to-head node: an observed Y separates X from Z.

• Tail-to-tail node: it corresponds to the DAG given in Figure 7. We show
that:

p(x, y|z)p(x, y, z)
p(z)

=
p(z)p(y|z)p(x|z)

p(z)
= p(x|z)p(y|z), (4.2)

which means that X ⊥⊥Y | Z and an observed Z separates X from Y in the
sense that the path from X to Y is blocked by Z.

X Z Y

Figure 7. Tail-to-tail node: an observed Z separates X from Y .

In these two first examples, conditional independence is easy to check on
the graph as it corresponds to removing the conditioning node and observe
whether or not the remaining nodes are connected. However this simple
visual rule does not hold in the third case below.

• V-structure or Explaining away: it corresponds to the DAG represented in
Figure 8. We can show for this type of graph that:

p(x, y) =
∑
z

p(x, y, z) = p(x)p(y)
∑
z

p(z) = p(x)p(y) (4.3)

that is X and Y are independent. But conditionally to Z, we can check
that this is not true anymore as p(x, y|z) 6= p(x|z)p(y|z), and we say that an
observed Z connects X and Y .

X Z Y

Figure 8. Explaining away: an observed Z connects X to Y .
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More generally, we want to answer queries such as, given three subsets A,B
and C, is XA⊥⊥XB |Xc true? As illustrated above, the notion of separation is not
enough in a directed graph and needs to be generalized to that of d-separation as
defined in the next section.

4.2 d-separation

Definition 4.1 Let a, b ∈ V , a chain from a to b is a sequence of nodes, say
(v1, . . . , vn) such that v1 = a and vn = b and ∀j, (vj , vj+1) ∈ E or (vj , vj+1) ∈ E.

We can notice that a chain is hence a path in the symmetrized graph, i.e. in
the graph where if the relation → is true then ↔ is true as well. Assume C is a
set that is observed. We want to define a notion of being ’blocked’ by this set C.

Definition 4.2 d-separation

1. A chain from a et b is blocked in d if:

• either d ∈ C and (vi−1, vi, vi+1) is not a V-structure;

• or d /∈ C and (vi−1, vi, vi+1) is a V-structure and no descendant of d is
in C.

2. A chain from a to b is blocked if and only if it is blocked at any nodes.

3. A and B are said to be d-separated by C if and only if all chains that go
from a ∈ A to b ∈ B are blocked.

Note that in other words, the d-separation definition implies that a variable
and its non-descendants are conditionally independent given its parents.

Example 4.1 Markov properties.
For a Markov chain whose DAG is shown in Figure 9, d-separation gives a

direct proof of the Markov property that states that the future is independent on
the past given the present.

Figure 9. DAG corresponding to a Markov chain

5 Undirected graphs and Markov Random Fields

The second major class of probabilistic graphical models corresponds to undirected
graphs. They include Markov random fields also called Markov networks. In
this class the graph specifies factorizations of distributions and sets of conditional
independence relations which correspond to Markov properties.
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5.1 Factorization

Definition 5.1 Let G = (V,E) be an undirected graph. We denote by C a set of
cliques of G i.e. a set of sets of fully connected vertices. We say that a probability
distribution p factorizes in G and denote p ∈ L(G) if p(x) is of the form:

p(x) =
1

Z

∏
C∈C

ψC(xC) with ψC ≥ 0, Z =
∑
x

∏
C∈C

ψC(xC). (5.1)

The functions ψC are not probability distributions like in the directed graphical
models. They are called potentials. With the normalization by Z of this expres-
sion, we see that the function ψC are defined up to a multiplicative constant.

Remark 5.1 The factorization is not unique. We may restrict C to Cmax, the set
of maximal cliques.

5.2 Trivial configurations

• No edges:

We consider G = (V,E) with E = ∅. For p ∈ L(G), we get:

p(x) =

n∏
i=1

ψi(xi) as C = {{i} ∈ V } (5.2)

This gives us that X1, ..., Xn are mutually independent.

• Complete graphs:

We consider G = (V,E) with ∀i, j ∈ V, (i, j) ∈ E. Then, C is reduced to a
single set V and for p ∈ L(G), we get:

p(x) =
1

Z
ψV (xV ) . (5.3)

This gives no further information upon the n-sample X1, ..., Xn.

5.3 Separation and conditional independence

When the graph is not complete, information lies in the absence of edges. In
contrast to the directed case, conditional independence is given by a simpler graph
separation in the undirected case. It follows the following characterization of
Markov networks. First, let us specify the Markov property w.r.t. a graph G
which generalizes the usual Markov property used to characterize Markov chains.

Definition 5.2 We say that p satisfies the Global Markov property w.r.t. G if and
only if for all disjoint subsets A,B, S ⊂ V :
A and B are separated by S ⇒ XA⊥⊥XB |XS.
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When V is finite, checking conditional independences for all A = {i}, S =
N(i), B = E\{i} is enough where N(i) = {j ∈ V, (i, j) ∈ V } is the set of neighbors
of i in G.

The following theorem makes the connection between conditional indepen-
dences or Markov properties and factorization.

Theorem 5.1 (Hammersley - Clifford) If ∀x, p(x) > 0 then
p ∈ L(G) ⇐⇒ p satisfies the global Markov property.

Note that the positivity constraint can be relaxed to a slighty less constrain-
ing condition sometimes called hereditary condition but positivity is however
the most common due to its link to Gibbs distributions. Indeed, a distribu-
tion p ∈ L(G) can also be referred to as a Gibbs distribution. It can be rep-
resented using the Boltzmann-Gibbs representation: ΨC(xc) = exp(−E(xc)) and
p(x) = 1

Z exp(−E(x)) where E(x) =
∑
c Ec(xc) is also called the energy function.

The minus sign convention in the exponential is not important but common in
statistical physics.

Example 5.1 Pairwise Markov Random Fields (MRF).
A pairwise MRF admits as cliques only pairs and singletons so that its energy

writes:

E(x) =
∑
i∈V
Ei(xi) +

∑
(i,j)∈E

Eij(xi, xj)

=
∑
i∈V

(Ei(xi) + 1/2
∑

j∈N(i)

Eij(xi, xj)) .

Note the 1/2 in the second expression above to ensure that each edge in counted
only once.

Famous such MRFs include:

• Ising model on G = (V,E): p(x; θ) = 1
Z exp(

∑
i∈V θixi +

∑
(i,j)∈E θijxixj)

where the xi ∈ {−1, 1} are binary variables.

• Potts model on G = (V,E): p(x; θ) = 1
Z exp(

∑
i∈V θ

T
i xi +

∑
(i,j)∈E θijx

T
i xj)

where the xi are now K-dimensional indicator vectors which components are
0 except 1 which is 1. This generalizes the Ising model to K-ary variables.
We can denote by X this finite set with K elements. Each of them will
be represented by a binary vector of length K with one component being 1,
all others being 0, so that X will be seen as included in {0, 1}K×K and its
elements denoted by {e1, . . . , eK}.
Parameters θi and θij are often called respectively the external field and
interaction parameters.

A typical application of MRF and hidden MRF in noisy settings, is image
segmentation or image region labelling. At each pixel i of an image, a value say
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a grey level Yi is observed and the goal is to recover from the observed image a
segmentation into regions. This corresponds to assigning a label xi for each pixel.
This task can also be viewed as a clustering of the pixels into a number of classes.
For a binary segmentation into two labels or equivalently into two classes, an Ising
model can be used as the hidden MRF, while for a more general segmentation a
Potts model is necessary. The corresponding graph is that of Figure 10 whose joint
distribution can be written as p(x, y) = 1

Z

∏
i∈V Ψi(xi, yi)

∏
(i,j)∈E Ψij(xi, xj).

Figure 10. Typical undirected graphical model for image segmentation using an hidden
Markov random field (HMRF)

(a) (b) (c) (d)

Figure 11. Illustration of image segmentation: a site/vertex corresponds to a pixel of
the image, yi is the observed grey level at pixel i in image (a). A 2 class segmentation
consists in associating a label 0 or 1 to each pixel like in (b) or (c). The ideal ground
truth segmentation is shown in (d).

6 Inference and learning

Frequently it is of interest to compute various quantities associated with an undi-
rected graphical model such as the log normalization constant logZ, local marginal
distributions p(xi) or other local statistics, modes and most probable configura-
tions. These tasks may represent challenging computational issues because the
complexity often grows rapidly with the graph size and maximum clique size. For
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instance, the complexity of computing the normalizing constant for n binary ran-
dom variables Z =

∑
x∈{0,1}n

∏
c∈C Ψc(xc), scales exponentially as 2n. Inference

in graphical models is based on exploiting the graphical structure to find efficient
algorithms and to make the structure of these algorithms clear, e.g. propaga-
tion of local messages around the graph. However, exact inference is not always
tractable and a number of approximate inference techniques have been developed.
In this chapter, we will focus on estimation in hidden Markov random fields. We
assume that we observe a number of measures denoted by Y = {Yi, i ∈ V } where
V is a set of sites that can be associated to vertices of a graph. The goal is to
recover from Y a number of hidden variables X = {Xi, i ∈ V } that represent for
instance labels and can take a finite number of values. X is assumed to follow a
discrete MRF distribution: p(x) = 1

Z exp(−E(x)). The link to the observations Y
is specified by a so-called data term that can be written as p(y|x) = exp(−E(y|x)).
It follows that we can compute the conditional distribution which is also a MRF:
p(x|y) = 1

Zy
exp(−Ey(x)) with Ey(x) = E(x)+E(y|x). E(x) acts as a regularization

or prior or context term while E(y|x) acts as a data dependent term.
Let X̃ denote the set in which X takes values. For general graphical mod-

els, not tree-structured, say, p(x) = 1
Z

∏
c∈C Ψc(xc), all basic computations are

combinatorial for large G and intractable. This is generally the case for the nor-
malization constant Z =

∑
x∈X̃

∏
c∈C Ψc(xc) and the likelihood, marginals p(xj) =

1
Z

∑
xi,i6=j

∏
c∈C Ψc(xc), conditionals and modes x̂ = arg maxx∈X̃

∏
c∈C Ψc(xc).

Among approximate solutions, we can distinguish two classes, deterministic
approaches that involve relaxation, variational approximations (e.g. mean field)
and stochastic approaches such as Gibbs sampling and simulation methods (Monte-
Carlo). In the next section, we detail the variational principle.

6.1 Markov model based segmentation

A typical example in image analysis is the two dimensional lattice with a first-order
neighborhood system: for each site, the neighbors are the four sites surrounding
it. Let X be a finite set with K elements denoted by {e1, . . . , eK}. We define a
discrete Markov random field as a collection of discrete random variables, X =
{Xi, i ∈ V }, defined on V , each Xi taking values in X . The joint probability
distribution p of X is a Gibbs distribution given by

p(x) = Z−1 exp(−E(x)), (6.1)

where E is the energy function E(x) =
∑
c
Ec(xc). The Ec’s are also often called the

clique potentials and may depend on parameters, not specified in the notation.
Z =

∑
x

exp(−E(x)) is the normalizing factor also called the partition function;∑
x

denotes a sum over all possible values of x. The computation of Z involves

all possible realizations x of the Markov field. Therefore, it is, in general, expo-
nentially complex, and not computationally feasible. This can be an issue when
using these models in situations where an expression of the joint distribution p(x)
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is required. We will denote by D the set of probability distributions on X̃ .

In this section, we focus on Markov model-based image segmentation. Image
segmentation involves observed variables (e.g. noisy image pixels) and unobserved
variables (e.g. unknown class assignments) which have to be recovered. The hidden
variables are modeled as a discrete Markov random field, X, with distribution p
as defined in (6.1) and an energy function E depending on a parameter β ∈ B ⊆ R
and henceforth denoted by E(x;β). It is assumed that the observations Y are
conditionally independent given the Markov random field X, with conditional
distribution parameterized by θ ∈ Θ ⊆ Rnθ , where nθ is the dimension of θ
depending on the model under consideration. In the general case, the likelihood
of (Y,X) called the complete likelihood, is given by

p(y, x ; θ, β) = p(y | x; θ) p(x;β). (6.2)

It is easy to see that, for such a hidden Markov field model, the conditional field X
given Y = y is a Markov field as X is with energy function E(x;β)− log p(y | x; θ).
Hereafter, we will refer to the Markov fields X and X given Y = y as the marginal
and the conditional fields.
In image segmentation problems, the question of interest is generally to recover the
unknown image x, interpreted as a classification into a finite number K of labels.
This classification usually requires values for the vector parameter φ = (θ, β). If
unknown, the parameters are usually estimated in the maximum likelihood sense

φ̂ = argmaxφ∈Φ log p(y;φ), (6.3)

where Φ = Θ×B is the parameter space. This optimization is usually solved by the
iterative EM procedure (Dempster et al 1977). Any iteration of the algorithm may
be formally decomposed into two steps: given the current value of the parameter
φt, the so-called E-step consists in computing the expectation of the complete log-
likelihood knowing the observations y and the current estimate φt. In the M-step,
the parameter is then updated by maximizing this expected complete log-likelihood

φt+1 = argmaxφ∈Φ

∑
x∈X̃

log p(y, x;φ) p(x|y;φt). (6.4)

It is known that, under mild regularity conditions, EM converges to the set of the
stationary points of the incomplete likelihood φ 7→ p(y;φ) (Wu 1983). As discussed
in Csiszar and Tusnady 1984 and Neal and Hinton 1998, EM can be viewed as an
alternating maximization procedure of a function F defined, for any probability
distribution q ∈ D, by

F (q, φ) =
∑
x∈X̃

log

(
p(y, x;φ)

q(x)

)
q(x). (6.5)

Starting from the current value (qt, φt) ∈ D × Φ, set

qt+1 = argmaxq∈D F (q, φt), (6.6)
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and

φt+1 = argmaxφ∈Φ F (qt+1, φ) (6.7)

= argmaxφ∈Φ

∑
x∈X̃

log p(y, x;φ) qt+1(x).

The first optimization (6.6) has an explicit solution qt+1 = p(·|y;φt) so that the
optimization in (6.4) and (6.7) are equal. Hence the “marginal” sequence {φt}t
of the sequence {(qt, φt)}t produced by the alternating maximization procedure is
an EM path. The maximization (6.7) can also be understood as the minimization
of a Kullback-Leibler divergence, up to some convention on p thus justifying the
name of alternating minimization procedure often found in the literature (e.g.
Csiszar and Tusnady 1984, Byrne and Gunawardana 2005).

There exist different generalizations of EM when the M-step (6.4) is intractable;
it can be relaxed by requiring just an increase rather than an optimum. This
yields Generalized EM (GEM) procedures (McLachlan and Krishnan 1996; see
also Boyles 1983 for a convergence result).

6.2 Variational EM algorithm

Unfortunately, EM (or GEM) is not appropriate for solving the optimization prob-
lem (6.3) in Hidden Markov Random Field due to the complex structure of the hid-
den variables X; the distribution p(x;β) is only known up to a multiplicative con-
stant (the partition function) that depends upon the parameter of interest β and
the domain X̃ is too large so that the E-step is intractable. Alternative approaches
were proposed and they can be understood as generalizations of the alternating
maximization procedures mentioned above : the optimization (6.6) is solved over a
restricted class of probability distribution D̃ on X̃ and the M-step (6.7) remains un-
changed. This yields the Variational EM (VEM) algorithms (Jordan et al. 1998).
VEM can also be introduced as resulting from a relaxation of a convex optimization
problem; the objective function p(y; ·) is re-written as the ratio of two partition
functions and VEM results from the approximation of one of them using the no-
tion of conjugate duality in convex analysis (see Wainwright and Jordan 2003 and
Wainwright and Jordan 2005 for details).

Byrne and Gunawardana 2005 proved that, under mild regularity conditions,
VEM converges to the set of the stationary points of the function F in D̃. Here
again, generalizations of VEM can be defined by requiring an increase rather that
an optimum in the M-step (6.7) thus defining generalized VEM procedures. These
relaxation methods are part of the Generalized Alternating Minimization proce-
dures (Byrne and Gunawardana 2005).

The most popular form of VEM is the case when D̃ is the set of the inde-
pendent probability distributions on X̃ so that qt+1(x) is a factorized distribution∏
i∈V q

t+1
i (xi). Optimizing (6.6) with regards to qt+1

i (ek), i ∈ V and ek ∈ X leads
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to a fixed point equation:

∀i ∈ V,∀ek ∈ X , log qt+1
i (ek) = ci +

∑
x∈X̃

log p(x|y;φt) {δek(zi)
∏
j 6=i

qt+1
j (zj)} (6.8)

where ci is the normalizing constant and δe denotes the Dirac mass at point e.
The Markov property implies that the right-hand side of the equation only in-
volves the probability distributions qj , j ∈ N(i). Existence and uniqueness of
a solution to (6.8) are properties that have not yet been fully understood and
will not be discussed here. We refer to Tanaka 2001 for a better insight into
the properties of the (potentially multiple) solutions of the mean field equations.
Such solutions are usually computed iteratively (see Wu and Doerschuk 1995 and
Ambroise and Govaert 1998, Zhang 1996 and an erratum in Fessler 1998).

Despite the relaxation which may make the summation of the VEM E-step
explicit for a convenient choice of D̃ (i.e. the computation of F (qt+1, φ) in (6.7)),
VEM remains intractable for hidden Markov random fields. From (6.2) and (6.7),
θ and β are updated independently, given qt+1. Under additional commonly used
assumptions on p, θt+1 is computed in closed form. The issue is the update of
β since it requires an explicit expression of the partition function or an explicit
expression of some related quantities (its gradient for example).

To overcome this difficulty, different approaches have been proposed. TheMean
Field , Modal field and Simulated Field algorithms proposed in Celeux et al. 2003
are alternatives to VEM that propagate the approximation qt+1 of p(x|y, φt) to
p(x;β). Another simple presentation of the variational principle can be found in
Bishop 2006.

7 Practical work in R: Image segmentation

As mentioned earlier, image segmentation can be seen as a spatial clustering task
that can be solved using undirected graphical models (Hidden MRF) on a regular
grid. The segmentation can also be performed without accounting for spatial infor-
mation with a standard EM for mixtures of Gaussians. In this section, we propose
a simple segmentation task to illustrate the gain in accounting for interaction. The
R commands that can be used to answer the questions below are given in section
8. However, they should not be considered as a model of R implementation that
would be much better written and optimized in a genuine R package. At last in
section 9, we mention a link to the SPACEM3 software that can be used for spatial
clustering and classification tasks with additional features such as those related to
multimodal, high dimensional and partially missing or incomplete data.

7.1 Non spatial segmentation

The file "mickey.dat" contains a 200 x 200 grey level image. Each pixel can take
a value between 0 and 255. The pixels are ordered in the file line by line.

Read the file and plot the image.
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Plot a 20 class histogram of the pixels grey levels. Use the standard EM
algorithm to find the best mixture of two Gaussians that fits the data.

Initially this image was a binary image made of two colors that we will code
as 0 and 1. The goal is to recover the original color of each pixel.

Use the result of the previous EM algorithm to partition the pixels into two
groups.

7.2 Spatial segmentation.

The image can be seen as a regular 2D grid with a neighborhood structure of order
1 or 2. Use the following Hidden Markov Random Field (HMRF) model with two
classes to partition the image into two groups.

For all i ∈ [1 : n], xi ∈ {0, 1},
Data term:

p(y|x) =

n∏
i=1

p(yi|xi) with for k = 1, 0 p(yi|xi = k) = f(yi|µk, σ2
k)

and f(yi|µ0, σ
2
0) = N (yi|µ0, σ

2
0)

f(yi|µ1, σ
2
1) = N (yi|µ1, σ

2
1)

where N (.|µ, σ2) is the density of the univariate Gaussian distribution with mean
µ and variance σ2.

Hidden MRF:

p(x) =
1

Z
exp(E(x)) with E(x) = β

∑
(i,j)∈V

(2xi − 1)(2xj − 1)

Z is the normalizing constant, β is a positive scalar regulating interaction between
neighboring pixels.

7.2.1 Inference and learning

Estimate the Gaussian parameters and recover the two class segmentation using,

• a Variational EM algorithm.

• the ICM algorithm.

• a Gibbs sampler (optional).

The β parameter can be first set to a positive value, e.g. 0.5. The boundary
conditions can also be fixed to simplify the code, i.e. to induce a constant number
of neighbors for every pixels.
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7.2.2 Comparison

Plot and compare the obtained segmentations. What is the effect of β? Of the
neighborhood order and structure? What happens when β is large? When β
is negative? When two different β values are used for horizontal and vertical
neighbors?

7.2.3 External field

Add an external field to the previous model (optional).

8 R commands

The R function detailed in section 8.3 implements a Mean Field approximation of
EM for a HMRF with a 2 color Potts model (0,1) and ICM algorithm (which can
be seen as a modal field algorithm).

8.1 Input of the R function

imgobs : Matrix of the observed (noisy) image to be segmented into two classes
(x=0 or x=1), eg a greylevel image ;
meaninit and varinit are both vectors of size 2 containing resp. initial values for
the means and variances of the 2 Gaussian distributions (noise model);
beta : MRF interaction spatial parameter, here beta is fixed by the user and is
scalar and the same for all pairs;
maxite: number of iterations, no convergence criterion in this function;
imginit : matrix, either a hard segmentation used for initialize the posterior prob-
abilities or some soft segmentation, here we can for instance run the function with
beta=0 (standard EM) and use the estimated parameters and segmentation to
initialize.

8.2 Output of the R function

seg: matrix of the MAP segmentation;
mean: estimation of the 2 means;
var: estimation of the 2 variances;
prob1: matrix of the final posterior probabilities of being in class 1.
Note: all variables ending with ICM are similar definition but for the ICM algo-
rithm.

8.3 R function

The VarEMbin function below implements VEM for a binary hidden MRF. Com-
ments are outside the grey blocks and can be removed to obtain a single R code.
Some examples are given in the next section.
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VarEMbin<−function ( imgobs , meaninit , v a r i n i t , beta , maxite ,
img in i t ){
n_c <− ncol ( imgobs )
n_l <− nrow( imgobs )
img labe l<−matrix (0 , nrow = n_c , ncol = n_l )

ICM:

imglabelICM<−matrix (0 , nrow = n_c , ncol = n_l )

Initialisation:
1) Posteriors. In the binary case, only the probabilities to be in class 1 need

to be computed. Boundary conditions are set to 0 (binary case).

prob1 in i t <− matrix (0 , nrow = (n_c+2) , ncol = (n_l +2))
p rob1 in i t [ 2 : ( n_l +1) ,2 : ( n_c+1)]<−img in i t
prob1 <−prob1 in i t

ICM: prob1 is not a probability but a label.

prob1ICM<−matrix (0 , nrow = (n_c+2) , ncol = (n_l +2))
prob1ICM [ 2 : ( n_l +1) ,2 : ( n_c+1)]<−img in i t
# ok i f img in i t i s a hard c l u s t e r i n g image

2) Parameters.

bimean<−meaninit
b ivar<−v a r i n i t

ICM:

bimeanICM<−meaninit
bivarICM<−v a r i n i t

Mean Field EM:

for ( i t e in 1 : maxite ){
#Estep

mean1<−bimean [ 2 ]
sd1<−sqrt ( b ivar [ 2 ] )
mean0<−bimean [ 1 ]
sd0<−sqrt ( b ivar [ 1 ] )

#ICM
mean1ICM<−bimeanICM [ 2 ]
sd1ICM<−sqrt ( bivarICM [ 2 ] )
mean0ICM<−bimeanICM [ 1 ]
sd0ICM<−sqrt ( bivarICM [ 1 ] )

For simplicity, only the interior is updated, borders are set to label 0. Attention
boundaries are not taken into account, the number of neighbors is constant (either
4 or 8).
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for ( i in 2 : ( n_l +1)) {
for ( j in 2 : ( n_c+1)){

2 neighbors (directional):

#sumvois1<−2∗( prob1 [ i , ( j −1)]+prob1 [ i , ( j +1)])− 2

4 neighbors:

#sumvois1<−2∗( prob1 [ i , ( j −1)]+prob1 [ i , ( j +1)]+prob1 [ ( i −1) , j ]
+prob1 [ ( i +1) , j ])−4

8 neighbors:

sumvois1<−2∗ ( prob1 [ i , ( j −1)]+prob1 [ i , ( j +1)]+prob1 [ ( i −1) , j ]
+prob1 [ ( i +1) , j ]+prob1 [ ( i −1) ,( j −1)]+prob1 [ ( i −1) ,( j +1)]
+prob1 [ ( i +1) ,( j −1)]+prob1 [ ( i +1) ,( j +1)])− 8

dnorm with log=TRUE computes the log density

temp<−dnorm( imgobs [ i −1, j −1] ,mean0 , sd0 , log=TRUE)
− dnorm( imgobs [ i −1, j −1] ,mean1 , sd1 , log=TRUE)
− (2∗beta∗sumvois1 )
prob1 [ i , j ]<−1/(1+exp( temp ) )

ICM:

sumvois1ICM<−2∗ (prob1ICM [ i , ( j −1)]+prob1ICM [ i , ( j +1)]
+prob1ICM [ ( i −1) , j ]+prob1ICM [ ( i +1) , j ]
+prob1ICM [ ( i −1) ,( j −1)]+prob1ICM [ ( i −1) ,( j +1)]
+prob1ICM [ ( i +1) ,( j −1)]+prob1ICM [ ( i +1) ,( j +1)])− 8
tempICM<−dnorm( imgobs [ i −1, j −1] ,mean0ICM, sd0ICM , log=TRUE)
− dnorm( imgobs [ i −1, j −1] ,mean1ICM, sd1ICM , log=TRUE)
− (2∗beta∗sumvois1 )
prob1ICM [ i , j ]<−(tempICM <0)+0
}}

M- step:

prob1temp<−prob1 [ 2 : ( n_l +1) ,2 : ( n_c+1)]
n1<−sum( prob1temp )
n0<−n_c∗n_l−n1
prob0temp<−1−prob1temp

Update the 2 means:

bimean [ 2 ]<−sum( prob1temp∗ imgobs )/n1
bimean [ 1 ]<−sum( ( prob0temp )∗ imgobs )/n0

Update the 2 variances:
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bivar [ 2 ]<−sum( prob1temp∗ ( imgobs−bimean [ 2 ] ) ^ 2 )/n1
b ivar [ 1 ]<−sum( prob0temp∗ ( imgobs−bimean [ 1 ] ) ^ 2 )/n0
# beta i s f i x e d f o r now

ICM:

prob1ICMtemp<−prob1ICM [ 2 : ( n_l +1) ,2 : ( n_c+1)]
n1ICM<−sum( prob1ICMtemp)
n0ICM<−n_c∗n_l−n1ICM
prob0ICMtemp<−1−prob1ICMtemp

Update the 2 means:

bimeanICM [ 2 ]<−sum( prob1ICMtemp∗ imgobs )/n1ICM
bimeanICM [ 1 ]<−sum( ( prob0ICMtemp)∗ imgobs )/n0ICM

Update the 2 variances:

bivarICM [ 2 ]<−sum( prob1ICMtemp∗ ( imgobs−bimeanICM [ 2 ] ) ^ 2 )/n1ICM
bivarICM [ 1 ]<−sum( prob0ICMtemp∗ ( imgobs−bimeanICM [ 1 ] ) ^ 2 )/n0ICM
}

Compute final MAP:

img labe l [ prob1temp >0.5 ]<−1
imglabelICM<−prob1ICM [ 2 : ( n_l +1) ,2 : ( n_c+1)]
l i s t ( seg=imglabel ,mean=bimean , var=bivar , prob1=prob1temp ,
segICM=imglabelICM )
}

8.4 Example of use

mick<−matrix ( scan ( "mickey . dat" ) , ncol=200 , byrow=T)
image(mick )

The last command above plots the image in Figure 11 (a).
Plot the histogram of the data imgobs=mick to find initial values for mean and

var:

hist (mick )

1) Run the algorithm with beta=0 (VEM corresponds then to regular EM) and
use the output label and parameters to set meaninit, varinit, imginit:

resmick<−VarEMbin(mick , c (90 ,170) , c (400 ,1064) ,0 , 10 ,
matrix (0 , 200 ,200 ) )
image( resmick$ seg ) # to check i f ok
img in i t<−resmick$ seg
meaninit<−resmick$mean
v a r i n i t<−resmick$var



22 Title : will be set by the publisher

The plotted image is close to the one in Figure 11 (b). The absence of spatial
interaction implies the classification of each pixel in one of the two classes inde-
pendently. As a result, it remains a salt and pepper effect in the obtained binary
segmentation.

2) Run VEM with β = 0.4 and 10 iterations and initial values meaninit =
c(85.14, 148.71) and varinit = c(402.97, 1234.07):

resmick<−VarEMbin(mick , meaninit , v a r i n i t , 0 . 4 , 1 0 , img in i t )
image( resmick$ seg )
image( resmick$segICM)
# almost the same fo r h igh be ta

The obtained segmentation is shown in Figure 12 (a). Note that β should not
be too above the phase transition value (0.36 for 4 neighbors, about 0.88 for 8).
The run below produces a segmentation for β = 1. The effect is visible on Figure
12 (b): when the spatial interaction is too strong, pixels tend to all agree to be in
the same class, which results in a almost monocolor segmentation.

resmick<−VarEMbin(mick , meaninit , v a r i n i t , 1 , 1 0 ,
matrix (0 , 200 ,200))
image( resmick$ seg )
#almost monocolor

Some experiments to make:
Negative β:

resmick<−VarEMbin(mick , meaninit , v a r i n i t ,−0.15 ,50 ,
matrix (0 , 200 ,200 ) )
# or
resmick<−VarEMbin(mick , meaninit , v a r i n i t ,−0.18 ,10 ,
matrix (0 , 200 ,200 ) )

The obtained segmentation is shown in Figure 12 (c). All previous segmentations
were made with 8 neighbors on a 2D grid. Try with only 2 or 4 neigbors by
changing the lines referring to the computation of sumvois1 in the code.

For more sophisticated methods and applications, we include in the next sec-
tion a reference to the SPACEM3 software that implements a number of spatial
clustering methods.

9 The SPACEM3 software

The SpaCEM3 software is dedicated to Spatial Clustering with EM and Markov
Models. It proposes a variety of algorithms for supervised and unsupervised clas-
sification of multidimensional and spatially-located data. The main techniques
use the EM algorithm for soft clustering and Markov Random Fields (MRF) for
spatial modelling. The learning and inference parts are based on developments in
mean field-like approximations. Its applications range from image segmentation
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Figure 12. Output segmentations of the practical work: (a) VEM with 8 neighbors and
β = 0.4; (b) VEM with 8 neighbors and β = 1 and (c) VEM with 8 neighbors and
β = −0.18.

(e.g. tissue detection in MRI, retrieval of planet surface properties from hyperspec-
tral satellite images) to gene clustering (e.g. biological module detection), remote
sensing and mapping epidemics of ecological species. The main functionalities of
the program include:

• Model-based unsupervised segmentation including the standard EM algo-
rithm for mixtures and Hidden Markov Random Field models

• Model selection for the Hidden Markov Random Field model

• Simulation of commonly used Hidden Markov Random Field models

• Simulation of independent Gaussian noise for noisy images

• Non standard Markov models including various extensions of the Potts model
and triplet Markov models

• Additional treatment of very high dimensional data using dimension reduc-
tion techniques within a classification framework

• Models and methods allowing supervised classification with original learning
and test steps

• Integrated treatment of missing observations

• Summary statistics of the data and visualization

The interface is shown in Figure 13 with an example of hyperspectral im-
age segmentation into 4 classes. The data to be segmented are spatially local-
ized 184-dimensional spectra on the Mars’s surface. More details on the models
and algorithms implemented and on possible applications of the software can be



24 Title : will be set by the publisher

found in Forbes and Peyrard 2003, Celeux et al. 2003 , Blanchet and Forbes 2008,
Blanchet et al 2009, Blanchet and Vignes 2009 and Vignes and Forbes 2009.

The software can be downloaded at http://spacem3.gforge.inria.fr/.

Figure 13. SPACEM3 interface: illustration of an hyperspectral image segmentation.
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