
Harmony Search with Differential Mutation Based Pitch 
Adjustment 

 
A. K. Qin 

INRIA Grenoble Rhone-Alpes 
655 avenue de l’Europe, Montbonnot 

38334 Saint Ismier Cedex, France 
kai.qin@inrialpes.fr 

Florence Forbes 
INRIA Grenoble Rhone-Alpes 

655 avenue de l’Europe, Montbonnot 
38334 Saint Ismier Cedex, France 
florence.forbes@inrialpes.fr

  
ABSTRACT 
Harmony search (HS), as an emerging metaheuristic technique 
mimicking the improvisation behavior of musicians, has 
demonstrated strong efficacy in solving various numerical and 
real-world optimization problems. This work presents a harmony 
search with differential mutation based pitch adjustment (HSDM) 
algorithm, which improves the original pitch adjustment operator 
of HS using the self-referential differential mutation scheme that 
features differential evolution – another celebrated metaheuristic 
algorithm. In HSDM, the differential mutation based pitch 
adjustment can dynamically adapt the properties of the landscapes 
being explored at different searching stages. Meanwhile, the pitch 
adjustment operator’s execution probability is allowed to vary 
randomly between 0 and 1, which can maintain both wild and fine 
exploitation throughout the searching course. HSDM has been 
evaluated and compared to the original HS and two recent HS 
variants using 16 numerical test problems of various searching 
landscape complexities at 10 and 30 dimensions. HSDM almost 
always demonstrates superiority on all test problems. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – heuristic methods; G.1.6 [Numerical Analysis]: 
Optimization – global optimization 

General Terms 
Algorithms, Experimentation, Performance 

Keywords 
DE, Differential evolution, DE, Differential mutation, Harmony 
search, Metaheuristic 

1. INTRODUCTION 
Metaheuristic [1] is a generic computational technique aiming at 
efficiently solving optimization problems that arise in diverse 
scientific and engineering fields. Recent years have seen 

remarkable advances in metaheuristic methods inspired by 
different kinds of natural and behavioral phenomena, such as 
genetic algorithm [2, 3], evolution strategy [4, 5], artificial 
immune system [6], particle swarm optimization [7-10], ant 
colony optimization [11], and so on. These methods have 
demonstrated significant efficacy in numerous real-world 
applications. 

Harmony search (HS) [10, 12-21], as an emerging metaheuristic 
algorithm, mimics the musicians’ improvisation behavior. In HS, 
a candidate solution of an optimization problem corresponds to a 
musical harmony composed of notes played by a group of 
musicians. Each decision variable in a candidate solution is 
analogous to a musician with its value range analogized by the 
pitch range within which the corresponding musician plays the 
note. The quality of candidate solutions corresponds to the 
euphoniousness of musical harmonies. By simulating how a group 
of musicians keep enriching their experiences to collaboratively 
seek for the most euphonious harmony in the improvising 
procedure, HS searches for global optima using harmony 
improvisation operators to iteratively update the harmony 
memory (HM) that contains promising candidate solutions. 

HS has succeeded in a wide range of applications [13-15], which 
thus attracts much research attention devoted to further improve 
its performance. Such research effort is mainly made in terms of 
the HM initialization, the harmony improvisation, the HM 
updating and hybridizing HS with other metaheuristic methods. 
This work focuses on enhancing the pitch adjustment operator of 
the original HS using the self-referential differential mutation 
scheme that features another well-known metaheuristic algorithm 
– differential evolution (DE) [22]. 

The original pitch adjustment operator of HS intrinsically 
performs the mutation of a fixed step size with a pre-specified 
execution probability on those decision variable values generated 
by the HM consideration operator. Although empirical 
experiences induce some generic guidelines on how to set up the 
mutation step size and operator execution probability, these two 
parameters are closely related to specific problems and searching 
stages: 

 For the mutation step size, larger sizes facilitate jumping out 
of undesirable local optima while smaller sizes help to refine 
the already found promising solutions. Problems of different 
searching landscape’s properties (e.g., narrow or wide 
attraction basins) may prefer distinct step sizes. Moreover, at 
different searching stages when candidate solutions spread 
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over different sub-regions of the solution space, the mutation 
step size is expected to adapt the landscape of the 
corresponding sub-region. Therefore, the fixed-step-size 
mutation is not a desirable choice. 

 For the operator’s execution probability, it is not reasonable to 
freeze it throughout the searching course because both wild 
exploitation (when the large probability is applied) and fine 
exploitation (when the small probability is applied) around 
those decision variable values generated by the HM 
consideration operator could be expected during the search. 

To address the above issues, we propose a harmony search with 
differential mutation based pitch adjustment (HSDM) algorithm. 
HSDM incorporates differential mutation, the essence of the DE 
algorithm, into the pitch adjustment operator of HS to replace the 
original fixed-step-size mutation with the DE-style self-referential 
mutation. Consequently, the mutation step size can be adjusted 
according to the distribution of promising candidate solutions at 
any searching stage, which characterizes the landscape of the 
corresponding sub-region being explored. Moreover, we allow the 
operator’s execution probability to vary randomly between 0 and 
1 during the search such that both large and small probabilities 
can be applied throughout the searching course to enable both 
wild and fine exploitation around those decision variable values 
generated by the HM consideration operator. 

Experiments on 16 numerical test problems at both 10 and 30 
dimensions demonstrate the superiority of HSDM over the 
original HS and two recent HS variants. 

The remaining paper is organized as follows. Section 2 and 3 
reviews the original HS and DE algorithms, respectively. HSDM 
is detailed in Section 4 followed by experiments in Section 5. 
Section 6 concludes the paper with some future plans. 

2. HARMONY SEARCH 
HS has received considerable attention since its invention [12], 
and already developed into an independent research branch of 
metaheuristic. It evolves a HM as shown in (1), composed of 
HMS (i.e., harmony memory size) candidate solutions with D 
decision variables [ ])(,(1), Dxx iii K=x , { }HMSi ,,1K∈ , 
towards global optima using three harmony improvisation 
operators, i.e., O1: HM consideration operator, O2: random 
selection operator and O3: pitch adjustment operator, as well as 
the greedy replacement based HM updating scheme. The 
objective function ( )⋅f  in (1) measures the solution quality. This 
work only considers single-objective optimization problems 
where ( )⋅f  is a scalar function indicating better quality when its 
value is smaller (larger) in the case of minimization 
(maximization). 

( )
( )

( )⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

HMSHMSHMSHMS fDxxx

fDxxx
fDxxx

HM

x

x
x

 | )(    )2(  )1( 
       |                                            
   |    )(       )2(       )1(  

    |    )(        )2(       )1(  

2222

1111

L

MMKMM

L

L

         (1) 

Firstly, a HM of fixed size HMS is randomly initialized within the 
solution space. Then, a new harmony newx  is created by applying 

either O1 or O2 with probabilities HMCR and 1-HMCR 
respectively to determine the value of each decision variable 

)(new dx , { }Dd ,,1K∈ , and subsequently applying O3 with 
probability PAR to refine the values of those decision variables 
produced by O1. HMCR and PAR denotes the HM consideration 
rate and the pitch adjustment rate (i.e., the operator execution 
probability), respectively. The parameter BW associated with O3 
represents the bandwidth, which determines the maximum value 
range for the refining (i.e., the mutation step size). The newly 
generated harmony will replace the worst harmony in the current 
HM if it has better quality in comparison. This harmony creation 
and replacement process is repeated until certain termination 
criterion is met (e.g., the maximum number of function 
evaluations maxFEvals is reached).  

The following describes the pseudo-code of the original HS 
algorithm for solving minimization problems where ( )1 ,0U  
denotes a random number uniformly distributed between 0 and 1. 

)(U dx  and )(L dx  represent the upper and lower bounds of the 
solution space with respect to the dth decision variable. 

Step 1 Set HS parameters: HMS, HMCR, PAR and BW 

Step 2 Initialize the HM randomly 

 For (i = 1 to HMS) 
      For (d = 1 to D) 
          ( ) ( ))()(1 ,0)()( LUL dxdxUdxdxi −×+=  
      End 
      Evaluate  ( )if x  
 End 

Step 3 Create a new harmony  [ ])(,(1), newnewnew Dxx K=x  using 
three harmony improvisation operators 1O , 2O  and 3O  

 For (d = 1 to D) 
     If (U(0, 1) <= HMCR) 
        )()(new dxdx r=  , r is random from {1,…,HMS}           // 1O  
         If (U(0, 1) <= PAR)  
             If (U(0, 1) <= 0.5)                                                       // 3O  
                ( ) BWUdxdx ×+= 1 ,0)()( newnew  
             Else 
                ( ) BWUdxdx ×−= 1 ,0)()( newnew  
             End 

 End 
     Else 
         ( ) ( ))()(1 ,0)()( LULnew dxdxUdxdx −×+=                 // 2O  
     End 
 End 
 Evaluate  ( )newxf  

Step 4 Update the HM with newx  using the greedy replacement 

))((maxargworst ixf
i

=  

newworst xx = , if  )()( worstnew xx ff <  

Step 5 If any termination criterion is met, return the best harmony 
found so far, otherwise go to Step 3. 



Many improved HS algorithms have been developed recently. For 
example, the improved HS [16] dynamically adjusts the values of 
PAR and BW at different searching stages according to certain 
rules. The global HS [17] creates new harmonies using the global-
best harmony in the HM. The local HS [18] periodically regroups 
the HM, applies HS independently within each group, and uses 
the group-best harmony to create new harmonies for each group. 
The self-adaptive HS [19] utilizes the harmony distribution 
information to perform the pitch adjustment and thus eliminates 
the parameter BW. The self-adaptive global best HS [21] was 
derived from the global HS with its parameters self-adapted 
according to previously accumulated successful experiences. HS 
has also been successfully hybridized with other metaheuristic 
methods such as particle swarm optimization [10] and DE [14, 20] 
to collaboratively boost the optimization performance. 

3. DIFFERENTIAL EVOLUTION 
DE, as a simple yet powerful population-based stochastic search 
method, has demonstrated outstanding performances in various 
optimization scenarios [22, 23]. It evolves a population of 
candidate solutions towards global optima using three operators: 
mutation, crossover and replacement. The quality of candidate 
solutions is evaluated using certain objective function. 

Firstly, a fixed-size population of candidate solutions is randomly 
initialized within the solution space. Then, each candidate 
solution in the population, so-called target vector, respectively 
undergoes the following three operations in sequence: 

 Mutation: a base vector is first generated using population 
members, which determines the reference point of the 
mutation. Then, the vector difference of randomly sampled 
population members excluding the target vector under 
consideration is scaled and added to the basis vector to 
produce a mutant vector. There exist different ways to create 
the base vector and vector difference, which correspond to 
different mutation strategies [22-24]. 

 Crossover: the crossover is applied with certain probability 
between the above-generated mutant vector and the target 
vector under consideration to generate a trial vector. Two 
typical crossover schemes used in DE include binominal 
(uniform) crossover and exponential (circular two-point) 
crossover. 

 Replacement: if the trial vector has better quality than the 
target vector under consideration, it will replace the target 
vector and enter the population of the next generation. 
Otherwise, the target vector will remain in the population of 
the next generation. 

The population is iteratively updated by applying these three 
operations until certain termination criterion is met (e.g., the 
maximum number of function evaluations maxFEvals is reached). 

The success of DE is mainly attributed to its unique differential 
mutation scheme in the mutation operation, which distinguishes 
DE from other existing metaheuristic methods, and accordingly 
coins its name. Two widely used differential mutation schemes 
using one and two pairs of randomly sampled population 
members are as follows: 

One-pair differential mutation: ( )
21 rrF xx −⋅                             (2) 

Two-pair differential mutation: ( ) ( )
4321 rrrr FF xxxx −⋅+−⋅    (3) 

where r1, r2, r3 and r4 are mutually exclusive indices of the 
randomly chosen population members. The parameter F is a 
scaled factor controlling the mutation step size. Scaled difference 
vectors with respect to all possible pairs of population members 
adapt the property of the landscape currently explored, which can 
thus provide promising mutation directions with adjustable step 
sizes balancing between local and global search. Specifically, at 
the initial searching stage, population members spread over the 
entire solution space. Accordingly, lengths of difference vectors 
are large to favor the global search. As the evolution goes on, 
population members gradually converge to a small sub-region of 
the solution space. Consequently, the local search is advocated by 
small lengths of differential vectors. The adjustable scale factor F 
can preserve both exploration and exploitation capabilities 
throughout the searching course. 

Recent years have seen numerous DE variants, which improve the 
original algorithm mainly in terms of the population initialization 
methods, the mutation strategies, the crossover strategies and the 
replacement schemes. DE with strategy and parameter adaptation 
[24] helps to avoid the time-consuming trail-and-error algorithmic 
configuration and allows fitter strategies and parameters to adapt 
different searching stages. DE based on specific neighborhood 
topologies [25] prevents the premature convergence to improve 
the exploration capability. Hybridizing DE with other 
metaheuristic algorithms such as genetic algorithm [3], evolution 
strategy [5] and particle swarm optimization [9] promotes the 
optimization performance to surpass any individual components. 

4. HARMONY SEARCH WITH 
DIFFERENTIAL MUTATION 
As discussed in Section 1, the pitch adjustment operator of the 
original HS algorithm intrinsically performs the fixed-step-size 
mutation with a pre-specified execution probability, which cannot 
adapt the searching landscapes of different problems at different 
searching stages. On the other hand, the differential mutation 
scheme in DE provides a spontaneous self-adaptability to the 
searching landscape. Therefore, it is very desirable to incorporate 
differential mutation into the pitch adjustment operator of HS. 

4.1 HSDM 
In this work, we propose a harmony search with differential 
mutation based pitch adjustment (HSDM) algorithm. HSDM 
replaces the fixed-step-size mutation in the pitch adjustment 
operator O3 of the original HS with the two-pair differential 
mutation in (3) and leads to a new pitch adjustment operator new

3O . 
The scale factor F is randomly sampled from a normal 
distribution with mean value 0.5 and standard deviation 0.3. The 
execution probability of new

3O  is randomly chosen during the 
search from the set {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 
1.0} that evenly quantizes the range between 0 and 1. 

Two-pair differential mutation may yield better perturbation than 
one-pair differential mutation. It was claimed in [26] that 
according to the central limit theorem, the random variation of 
two-pair difference vectors is shifted slightly into the Gaussian 
direction, which has constituted many competent mutation 
operators. The advantages of using two-pair difference vectors 



were also discussed in the context of particle swarm optimization 
[9]. Empirical results demonstrate that the statistical distribution 
of the summation of all possible one-pair difference vectors in the 
population has a triangle shape while the summation of all 
possible two-pair difference vectors leads to a bell-shaped 
distribution that is commonly regarded as a better perturbation 
mode. 

As suggested in [24], the scale factor sampled from a normal 
distribution with mean value 0.5 and standard deviation 0.3 can 
guarantee its values between -0.4 and 1.4 with probability 0.99. 
As such, exploration and exploitation can be simultaneously 
maintained throughout the searching course.  

The varying new
3O  execution probabilities maintain the capabilities 

of both wild and fine exploitation, when large and small 
probabilities are applied respectively, around those decision 
variable values generated by the HM consideration operator O1 
throughout the searching course. 

The following summarizes the pseudo-code of the HSDM 
algorithm for solving minimization problems where ( )1 ,0U   and 

( )0.3 ,5.0N  denote a random number uniformly distributed 
between 0 and 1 and a random number normally distributed with 
mean value 0.5 and standard deviation 0.3, respectively. )(U dx  

and )(L dx  represent the upper and lower bounds of the solution 
space with respect to the dth decision variable. 

Step 1 Set HSDM parameters: HMS and HMCR 

Step 2 Initialize the HM randomly 

 For (i = 1 to HMS) 
      For (d = 1 to D) 
          ( ) ( ))()(1 ,0)()( LUL dxdxUdxdxi −×+=  
      End 
      Evaluate  ( )if x  
 End 

Step 3 Create a new harmony  [ ])(,(1), newnewnew Dxx K=x  using 

three harmony improvisation operators 1O , 2O  and new
3O  

 Create a two-pair differential mutation vector as 
( ) ( )

4321
0.3 ,5.0mut rrrrN xxxxx −+−⋅=  where r1, r2, r3 and r4    

 are random from {1,…,HMS} and mutually exclusive. 

 Choose PAR randomly from the set {0.0, 0.1, 0.2, 0.3, 0.4, 0.5,  
 0.6, 0.7, 0.8, 0.9, 1.0} 

 For (d = 1 to D) 
     If (U (0, 1) <= HMCR) 
        )()(new dxdx r=  , r is random from {1,…,HMS}         // 1O  

         If (U (0, 1) <= PAR)                                                     // new
3O  

            )()()( mutnewnew dxdxdx +=                                      
 End 

     Else 
         ( ) ( ))()(1 ,0)()( LULnew dxdxUdxdx −×+=               // 2O  
     End 
 End 

 Evaluate  ( )newxf  

Step 4 Update the HM with newx  using the greedy replacement 

))((maxargworst ixf
i

=  

newworst xx = , if )()( worstnew xx ff <  

Step 5 If any termination criterion is met, return the best harmony 
found so far, otherwise go to Step 3. 

4.2 Related Work 
Among the existing HS variants, two methods are related to the 
proposed HSDM algorithm and deserve more details. 

Self-adaptive harmony search (SaHS) algorithm [19] modifies the 
original pitch adjustment operator O3 of  HS using the distribution 
of harmonies in the HM. Suppose ( )dxmax  and ( )dxmin  
respectively denote the maximum and minimum values of the dth 
decision variable in the current HM. SaHS employs the following 
pitch adjustment operator to replace O3: 

If (U (0, 1) <= 0.5)  
    ( ) ( )( ))(1 ,0)()( newmaxnewnew dxdxUdxdx −⋅+=  
Else 
     ( ) ( )( )dxdxUdxdx minnewnewnew )(1 ,0)()( −⋅−=  
End 

Such an operator can also adapt the searching landscapes at 
different searching stages. However, using the value range in the 
HM cannot properly characterize the landscape’s properties 
especially when the landscape is rotated, and therefore may not 
provide promising mutation directions.  

SaHS follows the rules in [19] to dynamically change the pitch 
adjustment operator’s execution probability PAR as: 

                 t
maxFEvals

PARPARPARtPAR ⋅
−

+= minmax
min)(                 (4) 

where t, )(tPAR , maxPAR  and minPAR  represent the current 
number of function evaluations, the PAR value at the current 
number of function evaluations, the maximum and minimum PAR 
values, respectively. 

Differential harmony search (DHS) algorithm [20] incorporates 
differential mutation into HS in a different manner from HSDM. 
Specifically, DHS skips the original pitch adjustment operator O3 
of HS and applies the one-pair differential mutation in (2) on 
those decision variable values generated using the HM 
consideration operator O1 as well as the random selection 
operator O2. The scale factor F is randomly sampled from a 
uniform distribution between 0 and 1. The differential mutation’s 
execution probability takes a pre-specified value. 

In fact, it may not be reasonable to apply differential mutation on 
those decision variable values generated using the random 
selection operator O2. Differential mutation can only provide 
promising mutation directions within the sub-region explored by 
the current HM. However, the decision variable values generated 
by O2 are often outside such a sub-region. 



5. EXPERIMENTS 
The performance of HSDM is evaluated and compared to the 
original HS, SaHS and DHS using 16 numerical test problems [8] 
of different searching landscape complexities at 10 and 30 
dimensions (i.e., 10D and 30D). 

5.1 Test Problems 
The 16 numerical test problems defined in [8], including one 
unimodal functions and 15 multimodal functions, are employed in 
this work. All problems are tested at 10D and 30D. According to 
their properties, these 16 test functions are categorized into four 
groups as follows. 

Group A: Two unimodal and simple multimodal problems 

F1: Sphere function 

F2: Rosenbrock’s function 

Group B: Six unrotated multimodal problems 

F3: Ackley’s function 

F4: Griewanks’s function 

F5: Weierstrass function 

F6: Rastrigin’s function 

F7: Noncontinuous Rastrigin’s function 

F8: Schwefel’s function 

Group C: Six rotated multimodal problems 

F9: Rotated Ackley’s function 

F10: Rotated Griewanks’s function 

F11: Rotated Weierstrass function 

F12: Rotated Rastrigin’s function 

F13: Rotated noncontinuous Rastrigin’s function 

F14: Rotated Schwefel’s function 

Group D: Two composition problems 

F15: Composition function 1 (CF1) 

F16: Composition function 5 (CF5) 

The function definition, global optima and their corresponding 
objective function values, solution space ranges and initialization 
ranges are all detailed in Section IV in [8]. We do not reiterate 
them here due to page limitation. Note that unsymmetrical 
initialization ranges are used for those functions whose global 
optima are at the center of the solution space. 

5.2 Experimental Setup 
The parameters of HS are set as per empirical guidelines [12, 13] 
as: HMS = 50, HMCR = 0.98, PAR = 0.3, BW = 0.01. As 
suggested in [19], the parameters of SaHS are set as: HMS = 50, 
HMCR = 0.98, PARmin = 0.0, PARmax = 1.0. The parameters of 
DHS are set according to [20] as: HMS = 50, HMCR = 0.98, PAR 
= 0.3. The parameters of HSDM are set as: HMS = 50, HMCR = 
0.98. Note that common parameters among HS, SaHS, DHS and 
HSDM are set same for the fair comparison. 

All algorithms are implemented in MATLAB, and performed on a 
Linux PC with the Intel Xeon E5520 CPU at 2.27 GHz. 

For each test problem, each algorithm to be compared is executed 
25 times starting from different random seeds while all of four 
algorithms (HS, SaHS, DHS and HSDM) share the same random 
seed with respect to any individual run. 

Two stopping criteria are applied: (1) the maximum number of 
function evaluations (maxFEvals) is reached. Here, the 
maxFEvals is set to 104 times the problem dimension, which 
means 105 for 10D problems and 3×105 for 30D problems; (2) 
The difference of objective function values between the best 
solution found so far and the global optimal solution (i.e., error 
function value (EFV)) is smaller than 10-8. In such a case, the 
EFV is negligible and set to zero. 

The optimization performance is quantitatively measured by (1) 
the mean value and standard deviation of the best EFVs achieved 
when an algorithm terminates over 25 runs and (2) the success 
rate (SR) over 25 runs. An optimization algorithm is regarded as 
successfully solving the problem once it achieves an EFV smaller 
than the pre-specified accuracy level. In this work, the accuracy 
levels of all 16 functions are set to 10-8. 

Practical optimization tasks are often subjected to the strict 
requirement on the computation speed of the algorithm applied to 
solve them, which is proportional to the executed number of 
function evaluations. To inspect an optimization algorithm’s 
efficacy with respect to various computation budgets (i.e., the 
maximally allowed number of function evaluations), the empirical 
cumulative distribution function (ECDF) [27] with respect to the 
number of function evaluations at success (i.e., the number of 
function evaluations when the EFV just goes below the pre-
specified accuracy level) over 25 runs on all 16 test functions is 
illustrated. 

5.3 Results 
Tables 1 and 2 report and compare, with respect to each of 16 test 
functions at 10D and 30D respectively, the optimization 
performances of HS, SaHS, DHS and HSDM in terms of the mean 
value and standard deviation of the best EFVs over 25 runs as 
well as the SR under the accuracy level 10-8 over 25 runs. For 
each function, bold fonts show the largest SR (if not zero) and the 
optimal best EFVs (i.e., with the smallest mean value) as well as 
those best EFVs indiscernible from the optimal based on the 
Wilcoxon’s signed-rank test [28] at the significance level of 0.05.  
This nonparametric statistical hypothesis test assesses whether the 
medians of two sets of the best EFVs achieved by two algorithms 
over 25 runs are statistically significantly different.  

It is observed that, at both 10D and 30D, HSDM consistently 
demonstrates superior performances compared to HS, SaHS and 
DHS on all test functions except for F2. F2 is the Rosenbrock’s 
function, which has a long, narrow and parabolic shaped flat 
valley from the perceived local optima to the global optimum. 
The differential mutation in HSDM is not competent to adapt this 
valley. Moreover, the random scale factor and execution 
probability of the pitch adjustment operator in HSDM may even 
distract the evolution path from the valley. Therefore, HSDM is 
beaten by the original HS, which exploits the valley using the 
mutation of a small fixed step size with a small fixed execution 
probability. 



 
 

 
 

For 10D problems, although the original HS compares favorably 
with HSDM in terms of the best EFVs on four functions F6, F7, F8 
and F14, it underperforms HSDM from the aspect of the SRs on 
these functions. In fact, regarding functions F6, F7, F14, the mean 
value of the best EFVs over 25 runs for HSDM are augmented by 
a few failing runs. 

Another interesting observation is that compared to the original 
HS, both SaHS and DHS do not demonstrate prominent 
performances on many test functions at 10D and 30D. 

Figures 1 and 2 illustrate, at 10D and 30D respectively, the 
ECDFs with respect to the number of function evaluations at 
success under the accuracy level 10-8 over 25 runs on all 16 test 
functions. It is observed that HSDM always outperforms the other 
three algorithms in comparison after around 5000 (10D) and 
19000 (30D) function evaluations. Before that, all four algorithms 
are equally incompetent. 

 

Table 1. Performances of HS, SaHS, DHS and HSDM in 
terms of the mean value and standard deviation (italic below 

the mean value) of the best error function values achieved 
when the algorithm terminates as well as the success rate 

under the accuracy level 10-8 over 25 runs with respect to each 
of 16 test functions at 10D. Bold fonts show the optimal value 

as well as those indiscernible from the optimal based upon 
Wilcoxon’s signed-rank test at the significance level of 0.05. 

  HS SaHS DHS HSDM 
Best
EFV

3.519E-09
6.747E-09

1.903E-02 
1.953E-02 

8.125E-02
5.208E-02

0.000E+00
0.000E+00F1

SR 0.76 0.00 0.00 1.00 

Best
EFV

1.048E+00
4.971E-01

5.661E+00 
2.584E+00 

6.026E+00
1.648E+00

6.681E+00
9.942E-01F2

SR 0.00 0.00 0.00 0.00 

Best
EFV

9.562E-05
2.681E-05

5.823E-02 
4.897E-02 

1.472E-01
6.702E-02

0.000E+00
0.000E+00F3

SR 0.00 0.00 0.00 1.00 

Best
EFV

5.914E-02
3.372E-02

8.419E-02 
3.666E-02 

1.572E-01
4.996E-02

1.141E-02
8.883E-03F4

SR 0.04 0.00 0.00 0.24 

Best
EFV

4.144E-02
7.480E-03

1.308E-01 
5.040E-02 

3.103E-01
8.284E-02

0.000E+00
0.000E+00F5

SR 0.00 0.00 0.00 1.00 

Best
EFV

8.885E-07
6.041E-07

1.394E-02 
1.387E-02 

3.482E-02
2.312E-02

2.356E-04
8.800E-04F6

SR 0.00 0.00 0.00 0.80 

Best
EFV

8.986E-07
5.871E-07

9.955E-03 
1.100E-02 

3.292E-02
2.042E-02

9.472E-04
2.386E-03F7

SR 0.00 0.00 0.00 0.60 

Best
EFV

1.108E-09
5.540E-09

6.354E-02 
8.271E-02 

2.034E-01
9.216E-02

0.000E+00
0.000E+00F8

SR 0.96 0.00 0.00 1.00 

Best
EFV

1.776E+00
9.399E-01

1.313E+00 
9.651E-01 

1.176E+00
8.993E-01

0.000E+00
0.000E+00F9

SR 0.00 0.00 0.00 1.00 

Best
EFV

1.702E-01
1.120E-01

2.529E-01 
1.272E-01 

3.145E-01
1.151E-01

1.038E-02
9.165E-03F10

SR 0.00 0.00 0.00 0.20 

Best
EFV

7.348E-01
6.203E-01

1.790E+00 
6.721E-01 

1.475E+00
7.114E-01

2.201E-02
1.037E-01F11

SR 0.00 0.00 0.00 0.76 

Best
EFV

7.960E+00
2.829E+00

8.205E+00 
3.590E+00 

7.920E+00
3.773E+00

3.781E+00
1.770E+00F12

SR 0.00 0.00 0.00 0.00 

Best
EFV

6.840E+00
2.561E+00

7.121E+00 
2.385E+00 

7.009E+00
1.976E+00

5.325E+00
1.387E+00F13

SR 0.00 0.00 0.00 0.00 

F14
Best
EFV

5.868E+02
3.486E+02

7.095E+02 
2.942E+02 

5.567E+02
3.306E+02

4.385E+02
2.722E+02

Figure 2.  Empirical cumulative distribution function 
(ECDF) of the number of function evalutions (FEval) at 
success under the accuracy level 10-8 over 25 runs on all 

16 test functions at 30D. 

Figure 1.  Empirical cumulative distribution function 
(ECDF) of the number of function evaluations (FEval) at 
success under the accuracy level 10-8 over 25 runs on all 

16 test functions at 10D. 



SR 0.04 0.00 0.00 0.12 

Best 
EFV 

2.400E+01 
4.359E+01 

3.601E+01 
4.899E+01 

3.602E+01 
4.899E+01 

2.400E+01
4.359E+01F15 

SR 0.00 0.00 0.00 0.76 

Best 
EFV 

1.600E+02 
8.428E+01 

1.334E+02 
9.489E+01 

1.251E+02 
8.134E+01 

8.455E+01
3.682E+01F16 

SR 0.00 0.00 0.00 0.08 

Table 2. Performances of HS, SaHS, DHS and HSDM in 
terms of the mean value and standard deviation (italic below 

the mean value) of the best error function values achieved 
when the algorithm terminates as well as the success rate 

under the accuracy level 10-8 over 25 runs with respect to each 
of 16 test functions at 30D. Bold fonts show the optimal value 

as well as those indiscernible from the optimal based upon 
Wilcoxon’s signed-rank test at the significance level of 0.05. 

  HS SaHS DHS HSDM 
Best 
EFV 

2.920E-05 
5.389E-06 

1.100E-02 
7.020E-03 

5.650E-02 
2.645E-02 

8.055E-06
3.508E-05F1 

SR 0.00 0.00 0.00 0.80 

Best 
EFV 

2.458E+01 
1.759E+01 

4.538E+01 
2.917E+01 

4.460E+01 
2.790E+01 

2.629E+01
8.400E-01F2 

SR 0.00 0.00 0.00 0.00 

Best 
EFV 

4.001E-03 
2.954E-04 

3.145E-02 
1.657E-02 

6.169E-02 
1.326E-02 

4.395E-05
1.552E-04F3 

SR 0.00 0.00 0.00 0.52 

Best 
EFV 

1.406E-02 
1.366E-02 

5.934E-02 
3.994E-02 

1.205E-01 
3.284E-02 

7.186E-04
2.078E-03F4 

SR 0.00 0.00 0.00 0.64 

Best 
EFV 

8.216E-01 
8.927E-02 

2.570E-01 
5.796E-02 

6.142E-01 
6.688E-02 

2.295E-04
8.220E-04F5 

SR 0.00 0.00 0.00 0.84 

Best 
EFV 

5.391E-03 
9.596E-04 

5.900E-03 
5.019E-03 

3.059E-02 
1.298E-02 

7.079E-05
2.315E-04F6 

SR 0.00 0.00 0.00 0.80 

Best 
EFV 

5.535E-03 
7.296E-04 

7.053E-03 
5.838E-03 

2.773E-02 
1.039E-02 

4.908E-05
1.234E-04F7 

SR 0.00 0.00 0.00 0.76 

Best 
EFV 

4.117E-06 
5.359E-07 

3.583E-02 
2.079E-02 

1.587E-01 
5.545E-02 

1.429E-08
7.143E-08F8 

SR 0.00 0.00 0.00 0.96 

Best 
EFV 

2.344E+00 
7.473E-01 

1.980E+00 
5.194E-01 

1.233E+00 
7.737E-01 

6.187E-04
1.232E-03F9 

SR 0.00 0.00 0.00 0.36 

Best 
EFV 

1.761E-02 
1.633E-02 

1.345E-01 
6.672E-02 

1.823E-01 
5.729E-02 

3.704E-03
9.660E-03F10 

SR 0.00 0.00 0.00 0.00 

Best 
EFV 

4.686E+00 
1.456E+00 

5.718E+00 
1.573E+00 

5.602E+00 
1.342E+00 

3.487E-01
4.952E-01F11 

SR 0.00 0.00 0.00 0.00 

Best
EFV

2.914E+01
6.001E+00

2.540E+01 
6.108E+00 

2.593E+01
5.581E+00

1.437E+01
4.866E+00F12

SR 0.00 0.00 0.00 0.00 

Best
EFV

2.256E+01
5.066E+00

2.308E+01 
5.439E+00 

2.234E+01
6.001E+00

1.886E+01
1.090E+01F13

SR 0.00 0.00 0.00 0.00 

Best
EFV

2.283E+03
5.489E+02

2.234E+03 
5.016E+02 

2.340E+03
6.995E+02

1.699E+03
4.148E+02F14

SR 0.00 0.00 0.00 0.00 

Best
EFV

8.001E+00
4.000E+01

7.800E-04 
6.583E-04 

4.003E+00
2.000E+01

3.646E-06
1.375E-05F15

SR 0.00 0.00 0.00 0.84 

Best
EFV

2.846E+01
1.880E+01

2.039E+01 
1.877E+01 

2.106E+01
1.899E+01

4.162E+00
1.649E+00F16

SR 0.00 0.00 0.00 0.00 

6. CONCLUSIONS AND FUTURE WORK 
This work presents a harmony search with differential mutation 
based pitch adjustment (HSDM) algorithm, which incorporates 
the DE-style two-pair differential mutation scheme with the pitch 
adjustment operator of HS. Such introduced self-referential 
mutation can help HSDM to dynamically adapt the properties of 
landscapes being explored at different searching stages. Moreover, 
the execution probability of the pitch adjustment operator in 
HSDM varies randomly between 0 and 1, which can maintain 
both wild and fine exploitation on those values generated by the 
HM consideration operator throughout the searching course. 
HSDM has been compared to the original HS and two recent HS 
variants (SaHS and DHS) using 16 numerical test problems at 
10D and 30D. HSDM almost always outperforms its competitors 
on all test problems at both 10D and 30D. 

Ongoing and planned research agendas include: investigating the 
parameter self-adaptation in HSDM based on the accumulated 
evolution information, improving HSDM from more aspects such 
as the HM initialization, the HM topology and the replacement 
scheme, and evaluating HSDM extensively on more numerical 
and real-world optimization problems. 
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