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ABSTRACT2

As part of fMRI data analysis, the pyhrf package provides a set of tools for addressing the two3
main issues involved in intra-subject fMRI data analysis: (i) the localization of cerebral regions4
that elicit evoked activity and (ii) the estimation of the activation dynamics also referenced to5
as the recovery of the Hemodynamic Response Function (HRF). To tackle these two problems,6
pyhrf implements the Joint Detection-Estimation framework (JDE) which recovers parcel-level7
HRFs and embeds an adaptive spatio-temporal regularization scheme of activation maps. With8
respect to the sole detection issue (i), the classical voxelwise GLM procedure is also available9
through nipy, whereas Finite Impulse Response (FIR) and temporally regularized FIR models10
are implemented to deal with HRF estimation concerns (ii). Several parcellation tools are also11
integrated such as spatial and functional clustering. Parcellations may be used for spatial12
averaging prior to FIR/RFIR analysis or to specify the spatial support of the HRF estimates13
in the JDE approach. These analysis procedures can be applied either to volumic data sets or14
to data projected onto the cortical surface. For validation purpose, this package is shipped with15
artificial and real fMRI data sets, which are used in this paper to compare the outcome of the16
different available approaches. The artificial fMRI data generator is also described to illustrate17
how to simulate different activation configurations, HRF shapes or nuisance components. To18
cope with the high computational needs for inference, pyhrf handles distributing computing19
by exploiting cluster units as well as multiple cores computers. Finally, a dedicated viewer is20
presented, which handles n-dimensional images and provides suitable features to explore whole21
brain hemodynamics (time series, maps, ROI mask overlay).22
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1 INTRODUCTION

As Magnetic Resonance Imaging (MRI) is a growing imaging modality in neuroscience, the need24
for powerful tools to explore the increasing amount of data is more and more significant. This data25
growth is quantitative as cohort sizes are getting bigger through the development of international multi-26
centre projects like the Human Brain Project Koslow and Huerta (2013) but also qualitative as high27
field magnets become more and more available Duyn and Koretsky (2011). Functional MRI (fMRI)28
especially benefits from these improvements and the experimenter has access to finer spatial (∼ 1 mm)29
and temporal (∼ 1 sec.) resolutions and also higher signal-to-noise ratio (SNR). In particular, the higher30
temporal resolution combined with higher SNR allows a better recovery of dynamical processes so31
that we no longer have to accommodate with only static mappings of cerebral activity. In this context,32
pyhrf aims at extracting dynamical features from fMRI data and especially the Blood Oxygenated33
Level Dependent (BOLD) modality (Ogawa et al. (1990)). The observed BOLD signal is an indirect34
measure of the neural activity via the oxygen variation induced by the neuro-vascular coupling. Therefore,35
analysis methods have to formalize a hemodynamic model in order to make inference on neural processes.36
However, even if BOLD variations are known to correlate with neural activity, it is difficult to disentangle37
the dynamics of neural and the vascular components. As the employed methodology mainly resorts38
to linear systems, dynamical processes are summarized within the so-called Hemodynamic Response39
Function (HRF), which is the impulse response that links neuronal activity to the fMRI signal. In fact, the40
package offers various tools to analyze evoked fMRI data ranging from spatial mappings such as those41
provided by the General Linear Model (GLM) framework (Friston et al. (1995)) to finer hemodynamics42
models as provided by the joint detection-estimation (JDE) approach described in Makni et al. (2005,43
2008); Vincent et al. (2010). Through a bilinear and time-invariant system, the JDE approach models an44
unknown HRF at the level of a group of voxels (referred to as a parcel in the following) as well as voxel-45
and condition-specific response levels to encode the local magnitudes of this response. The HRF is only46
constrained to be smooth (temporal regularization) and can cover a wide variety of shapes. The response47
levels are spatially regularized within each parcel. Hence, the JDE approach is a spatially adaptive GLM48
built on unknown parcel-dependent HRFs with spatio-temporal regularization.49

The usage of each tool depends on a choice of model which is driven by the features required by the50
experimenter’s questioning. To obtain classical detection results, a GLM based on the canonical HRF (and51
possibly its temporal derivatives) may be sufficient. Even if the between-region hemodynamics variability52
is acknowledged, the canonical HRF can provide good results in regions where it has precisely been53
calibrated such as temporal and occipital cortices as studied by Boynton et al. (1996). However, to54
detect activations in regions involving more complex processes or where potential hemodynamics delays55
happen (varying reaction delays or pathological cases), hemodynamic fluctuations influencing detection56
activation may occur that are not caught by the HRF derivatives or function bases. Moreover, if one57
is interested in studying the dynamics features of the response, an explicit HRF estimation is required.58
The main question in this case concerns the need for condition-specific features or not, namely for an59
HRF estimation associated with each experimental condition or for a single HRF estimate associated60
with all conditions. If explicit condition-wise HRFs are required, the best methodological tool to use61
is the temporally Regularized FIR (RFIR) developed in Marrelec et al. (2003); Ciuciu et al. (2003).62
Otherwise, if variability is expected only across separated and specialized regions, the JDE framework is63
well-suited. Indeed, within a specialized region, if only one condition exhibits activity then the region-64
specific HRF can be considered a condition-specific HRF. The performance of RFIR models depends65
nonetheless on the number of experimental conditions involved in the paradigm because the higher this66
number, the larger the number of parameters to estimate and thus the fewer the number of degrees of67
freedom for statistical testing. The model choice depends thus also on the experimental paradigm. First, it68
is worth noticing that the use of the JDE formulation is less relevant to analyze block paradigm data since69
the signal variability in this case is hardly significant. The JDE formalism is actually more adapted to70
fast event-related paradigms or to paradigms including many conditions, like the localizer paradigm (1071
conditions) introduced by Pinel et al. (2007) and used hereafter in this paper. The JDE approach is also72
optimally tuned to combined analysis of hemodynamics features with the detection of activated brain73
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areas. To sum up on the model choice, the JDE model provides a fair compromise with the possibility for74
the user to adapt the model to the studied region.75

JDE also delivers interesting and complementary results for the sole activation-detection aspect76
compared with classical GLM. Spatial regularization, which is necessary due to the low SNR in fMRI, is77
not enforced in the same way between methods. In the GLM, FIR and RFIR cases, there is no embedded78
spatial regularization within models. Indeed, the data are usually spatially smoothed with a fixed Gaussian79
kernel as part of preprocessings. In contrast, JDE incorporates spatial correlation through hidden Markov80
models. The amount of spatial correlation is automatically tuned and also adaptive across brain regions,81
therefore avoiding any prior invariant smoothing.82

pyhrf is mainly written in python with some C code to cope with computationally demanding parts83
of algorithms. This python choice has been made possible thanks to the nipy1 project and especially84
nibabel2 to handle data reading/writing in the NIFTI format.85

In terms of package maturity, pyhrf is a research tool which has the ambition to target cognitive86
neuroscientists and clinicians. Efforts are made in terms of user-friendliness and the design is a trade-off87
between mutability which is required by methodological research where specifications change frequently88
and usability where user interfaces should be as stable as possible to ease external non-developer use89
cases.90

The rest of the paper is organized as follows. First, methods available in the package are presented,91
comprising parcellation and detection/estimation analyses. Then, the workflow and design of the pyhrf92
package are detailed which cover the user interface and code snippets for the main analysis treatments,93
simulation framework, distributed computations and data viewer. Results illustrate the outcome of94
geometrical and functional parcellations and their impact on detection/estimation treatments. Finally,95
conclusions are drawn and perspectives for future developments are indicated.96

2 METHODS

The main fMRI data analysis methods available in pyhrf are of two kinds: (i) parcellation tools that97
segment the brain into disjoint sets of positions and (ii) activation detection/HRF estimation tools that98
highlight correlations between the input experimental paradigm and variations in the measured fMRI99
signal. The first kind comprises two spatial parcellation tools: Voronoi-based random parcellation,100
as reviewed by Aurenhammer and Klein (2000) and balanced partitioning, developed in Elor and101
Bruckstein (2009). The second kind comprises the GLM introduced in Friston (1998), the FIR model102
described in Henson et al. (2000), the RFIR model developed in Ciuciu et al. (2003) and the JDE103
approach presented in Vincent et al. (2010); Risser et al. (2011). The GLM and FIR GLM procedures104
are provided by nipy while RFIR and JDE are originally implemented in pyhrf. For all these methods,105
we refer to their respective bibliographical references for an extensive presentation of their methodology.106
Nonetheless, the main aspects of these methods are summarized in what follows with the concern of107
allowing the comparison between them, especially in terms of model structure and assumptions.108

After detailing notations, we introduce detection/estimation methods, namely GLM, FIR and RFIR, which109
require the measured fMRI signal and the timing of the experimental paradigm as input. After setting110
the generative model common to all detection/estimation methods and a brief comparative overview,111
each approach is presented in more details. Subsequently, parcellation methods are presented. Spatial112
parcellation approaches can be applied directly to the input fMRI data and only depend on its geometry.113
Functional parcellation, which is a clustering of GLM results, is detailed afterwards.114

1 ADDEDwww.nipy.org
2 ADDEDwww.nipy.org/nibabel
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2.1 NOTATION

Conventions We denote vectors with bold lower case (e.g., y) and matrices with bold upper case letters115
(e.g., P ). A vector is by convention a column vector. Scalars are denoted with non-bold lower case letters116
(e.g., a). The transpose operation is denoted by t. Probability distribution functions (pdf) are denoted117
using calligraphic letters (eg, N and G for the Gaussian and gamma distributions).118

Data geometry As methods can be applied to data defined in the volume or on the cortical surface, the119
generic term “position” will be used in place of “voxel” (volume unit) and “node” (surface mesh unit).120
Position indexes are denoted by j = 1 : J to indicate a range between 1 and J . Data are assumed to be121
masked to only keep positions within the brain. J is the total number of positions within the functional122
mask. In addition, when considering parcellated data, this functional mask is divided into a set of Γ parcels123
denoted P = {P1, ...,Pγ , ...,PΓ}, where Pγ is the set of Jγ = |Pγ | position indexes belonging to parcel124
γ.125

Functional data We consider the usual case of evoked fMRI data analysis where the experimental126
paradigm comprising M conditions is known. The signal measured at each time of repetition (TR)127
is denoted yj = {yj,n}n=1:N where N is the number of scans. Stimulus timing onsets for a given128
experimental condition m = 1 : M are encoded by variable xm so that xmt = 1 if a stimulus occurs129
at time t up to a time step ∆t, else xmt = 0. The time step is such that ∆t 6 TR and depends on the actual130
temporal resolution sought by the analysis method.131

2.2 DETECTION/ESTIMATION METHODS

For ease of comparison, the presentation of all methods is immersed in the same formalism where the
signal is assumed generated by a linear and time-invariant (convolution) system with additive noise. We
also consider the usual case of taking into account a position-specific low frequency drift in the data which
is a well known fMRI artifact produced by the aliasing of respiratory and cardiac rhythms into the low
frequencies as studied in Yan et al. (2009). The generic forward model, reads:

yj =
M∑
m=1

Xmφmh + P`j + bj , (1)

where:132

• P is a fixed orthonormal basis that takes a potential drift and any other nuisance effect (e.g., motion133
parameters) into account. The low-frequency drift can classically be either polynomial with an order134
up to 5 or cosine with a cut-off of 0.01Hz,135

• `j are the unknown regression weights associated to P ,136
• bj is the noise component,137

• φmh is a “generic” hemodynamic filter of size D. For a typical duration of 25 sec., D = 25/TR for138
the GLM and FIR GLM3 approaches, while D = 25/(TR/4) for the RFIR and JDE approaches139
considering a typical oversampling factor of 4. In the GLM framework, φmh can be fixed to the140
canonical HRF or parametric when resorting to function bases and we will note R the number of141
unknown parameters. In non-parametric approaches, all HRF coefficients are estimated as in RFIR or142
JDE approaches,143

3 Over-sampling could be performed in the case of FIR GLM but is not advisable in terms of estimability since some FIR coefficients may be poorly or even
not associated with paradigm covariates in matrix Xm, depending on the paradigm jittering.
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• Xm is the N ×D stimulus occurrence matrix consisting of the lagged stimulus covariates for the144

experimental condition m:Xm=
[
xmt1 , . . . ,x

m
tN

]t with xmtn =
(
xmtn−d∆t

)t
06d6D,145

•
∑M

m=1X
mφmh is hence the summation of all stimulus-induced signal components which are146

generated as the convolution between the paradigm encoded in Xm and the hemodynamic filters147
φmh .148

For the sake of simplicity, multiple-run data are not considered here but all implemented methods can149
handle such data with a fixed-effect model (same effect size across runs), a homoscedastic noise model150
(one noise variance for all runs) and run-specific drift coefficients (see discussion for further extensions).151

To give a first overview of how this generative model structure is derived in the different approaches,152
Table 1 provides a comparison in terms of regularization, number of unknowns and analysis duration.153
Embedded spatial regularization is only available in the JDE procedure, while temporal regularization154
is available in RFIR and JDE (Table 1 – 1st, 2nd rows). In terms of constraints applied to the HRF155
shape (Table 1 – 3rd row), the basis set GLM (BS GLM) is the most constraining and the shape captured156
depends on the choice of the function basis. In the FIR, RFIR and JDE cases, any form of HRF shape157
can be recovered, provided that they are smooth in the case of RFIR and JDE. On Table 1 – 4th row,158
the information on the number of unknowns conveys the level of parsimony of a given model. BS GLM,159
FIR and RFIR have increasing model complexity as the number of parameters for the HRF increases. In160
contrast, JDE achieves larger parsimony by making the number of unknowns associated with the HRF161
dependent on the number of parcels rather than on the number of positions. When computing the ratio162
between the number of unknowns and the number of data points for a typical fMRI experiment (Table 1163
– 5th row), it appears that JDE is comparable to a GLM with derivatives. The RFIR presents the worst164
situation with 3 times more unknowns than data points. In terms of analysis duration (Table 1 – last165
row), GLM methods are almost instantaneous as their inference is straightforward. RFIR relies on an166
iterative scheme to perform unsupervised estimation of the amount of temporal regularization and is167
hence much slower. In addition, the implementation of RFIR is done in pure python with a main loop168
over positions which worsen its slow computation speed (∼ 30h. for a whole brain analysis)4. Therefore,169
this approach is rather limited to the processing of some regions of interest where we expect cerebral170
activity instead of whole brain data analysis. The computation speed of JDE is also slow, but to a lesser171
extent as results can be obtained overnight (∼ 8h. for a whole brain analysis) on a single processing unit.172
All these considerations on speed have to be nuanced with the access to increasing computing power and173
distributed computations, as will be seen in section 3.3.174

2.2.1 basis set General Linear Model
In any position j of the brain, the basis set GLM (BS GLM) allows for some limited hemodynamic
fluctuations by modeling the hemodynamic filter function φh in Eq. (1) as a weighted sum of the fixed
canonical HRF denoted hc and its first and second order derivative h′c, h

′′
c as proposed in Friston (1998).

The generative model, illustrated in Fig. 1(a), reads:

∀j, yj =
M∑
m=1

Xm
(
βmj hc + β′

m
j h
′
c + β′′

m
j h
′′
c

)
+ P`j + bj , (2)

where βmj , β′mj , β′′mj are the unknown effects associated with the mth stimulus-induced regressors
constructed with the fixed known vectors hc, h′c, h

′′
c respectively. To obtain the classical GLM with only

the canonical HRF, β′j and β′′j can be set to zero for all positions. It is worth noting that this formulation of

4 Note that the RFIR approach with supervised regularization is much faster with an analysis duration of 20 min. since the maximum a posteriori estimator
admits a closed form expression.
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Table 1. Comparative overview for all detection/estimation analysis procedures available in pyhrf in terms of model structure
and analysis duration. “2nd order deriv.” stands for a penalization on the energy of the HRF which penalizes abrupt shape
changes. The number of nuisance parameters was considered the same for all models, so that only the modeling of the stimulus-
induced component is relevant to assess model parsimony. The ratio “unknowns / data” is given for a typical fMRI data analysis
with J = 4 × 104, R = 3, D = 40, M = 10, Γ = 400 and N = 128 (total number of data points: N × J). The analysis
duration is for a whole brain data treatment on an Intel Core i5 (M480 2.67Ghz).

BS GLM FIR GLM RFIR JDE
Spatial regularization smoothing smoothing smoothing adaptive
Temporal regularization none none 2nd order deriv. 2nd order deriv.
HRF shape constraint function basis free smooth smooth
Number of unknowns J×R×M J×D×M J×M×(D+1) 2×J×M + Γ×(D+4M+1)

for the stimulus-induced 1 6 R 6 3 D ≈ 10 10 6 D 6 50 10 6 D 6 50,
component Γ ≈ 400

Typical ratio of 0.23 0.78 3.4 0.16
unknowns / data

Analysis duration 3 min. 5 min. 30 h. 8 h.

Figure 1. Forward models generating the stimulus-induced components for the methods available in pyhrf. In all cases, the scheme involves two
experimental conditions colored in blue and yellow with four stimulation events as depicted by vertical bars over the TR-sampled grid. (a): General Linear
Model (GLM). For a given condition in a given voxel, the stimulus event sequence is convolved with the fixed canonical HRF resulting in a fixed stimulus-
induced regressor. This regressor is then multiplied by an unknown effect βmj . All the condition-specific regressors are then summed to form the final
stimulus-induced signal sj . (b): Finite Impulse Response (FIR) Model. In a given voxel, the stimulus event-sequence is convolved with an unknown FIR
vector hm for each condition to yield a condition-specific component. All components are then summed to form the final stimulus-induced signal sj . (c):
Joint Detection-Estimation (JDE). For a given voxel in a given parcel Pγ , the stimulus sequence gathering all experimental conditions is multiplied by the
response levels {amj }. Then, this spike signal is convolved with an unknown spatially-invariant HRF h to form the stimulus-induced signal sj .

the forward model is equivalent to the classical one where all regressors are gathered in the design matrix
(noted X̄) and all corresponding effects gathered in a single vector β̄. Eq. (2) reads:

∀j, yj = X̄β̄j + bj , (3)

with: X̄ =
[
X1hc | · · · |Xmhc |X1h′c | · · · |Xmh′c |X1h′′c | · · · |Xmh′′c |P

]T
,

β̄j =
[
β1
j | · · · | βmj | β′

1
j | · · · | β′

m
j | β′′

1
j | · · · | β′′

m
j | `j

]T
.
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The hemodynamics fluctuations caught by such a model are limited to ∼1 second around the peak of the175
canonical HRF which is at 5 sec, see Calhoun et al. (2004). This model is massively univariate since every176
position j is analyzed independently, i.e., no correlation between neighboring signals is considered. It177
works well on spatially smoothed data to counter-balanced the low signal-to-noise ratio, at the expense of178
blurred activation clusters. In the nipy implementation of the GLM, the fitting process can be performed179
using ordinary least square in the case of white Gaussian noise or using Kalman filtering in the case of an180
AR(1) Gaussian noise process.181

2.2.2 FIR GLM and Regularized FIR
The generative BOLD signal modeling in the FIR context encodes all HRF coefficients as unknown
variables:

∀j, yj =
M∑
m=1

Xmhmj + P`j + bj (4)

Here, vector hmj =
(
hmj,d∆t

)t
d=0,..,D

represents the unknown HRF time course in voxel j which is182

associated with the mth experimental condition and sampled every ∆t. In its un-regularized version,183
the FIR model can be expressed in the GLM framework and hence its implementation in pyhrf relies on184
nipy.185

In the case of the Regularized FIR (Ciuciu et al. (2003)), the problem is placed in the Bayesian186
formalism in order to inject regularity on the recovered HRF coefficients hj . More specifically, hmj ∼187

N (0, vhm
j
R) withR = (Dt

2D2)−1 whereD2 is the second-order finite difference matrix enforcing local188

smoothness by penalizing abrupt changes quadratically and vhm
j

is the unknown HRF prior variance which189

is jointly estimated. Computational and inference details are given in Ciuciu et al. (2003).190

2.2.3 Joint Detection-Estimation191
The functional mask of a given subject’s brain is a priori divided in Γ functionally homogeneous parcels192
using methods described in subsection 2.3.2. In each parcel Pγ, the shape of the HRF hγ is assumed193
constant and the parcel-specific generative model reads:194

∀ j ∈ Pγ , yj =
M∑
m=1

amj X
mhγ + P`j + bj . (5)

where yj , Xm, P , `j and bj match the variables introduced in subsection 2.2.1. As shown in Fig. 1(c)195
which illustrates this forward model, the amj variables encode fluctuations that occur before the application196
of the hemodynamic filter. Therefore, they are assimilated to neural effects and referred to as “Neural197
Response Levels” (NRL). However, this term, which is historical, might be misleading as it is difficult198
to disentangle the contribution of the neural and the vascular components from single BOLD fMRI data.199
These variables can be more simply identified to the voxel- and condition-specific response amplitudes.200

In contrast to Eq. (2) for the GLM forward model, the fixed HRF components hc and h′c are replaced201
by an unknown parcel-based HRF hγ . Similarly, each unknown NRL amj embodies a single magnitude202
parameter per regressor whereas the GLM formulation implies that the magnitude is distributed between203
weights βmj , β′mj and β′′mj . To summarize, the HRF shape and the BOLD response magnitude are coupled204
in the GLM formulation whereas they are decoupled in the JDE formulation.205

In the Bayesian framework, priors are formulated to (i) enforce temporal smoothness on the HRF shape206
to perform estimation in the same manner as for RFIR and (ii) account for spatial correlations between207
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NRLs through spatial mixture models to perform detection, as described in Vincent et al. (2010). The208
regularization factor that controls the amount of spatial regularization is jointly estimated and optimized209
wrt parcel topology so as to perform an adaptive spatial smoothing. If the experimenter is not interested210
in the estimation of the HRF, then the HRF can be fixed typically to its canonical version in the JDE211
framework which hence amounts to a spatially adaptive GLM. The latter approach enables parcelwise212
multivariate detection of activations with adaptive regularization across parcels. As shown at the group-213
level in Badillo et al. (2013b), this strategy retrieves more peaked and less extended activation clusters214
compared to classical SPM-like analysis.215

The inference is performed by a stochastic sampling scheme where posterior mean estimates are216
computed from Markov Chain Monte Carlo samples. The implementation of the main sampling loop217
is coded in pure python and some intensive samplers such as the one for the HRF of the NRLs are218
coded in C. Still, the overall JDE procedure is computationally demanding. However, since there are as219
many independent models as parcels, the analysis can be split up into parcel-wise parallel analyses (see220
section 3.3). The efficiency of the inference scheme hasalso been improved by resorting to a variational221
formulation of the JDE Chaari et al. (2013) which is also available in pyhrf.222

2.3 PARCELLATION

2.3.1 Spatial parcellation223

Random Voronoi diagrams A Voronoi diagram consists of a spatial partitioning that builds parcels around224
predefined control points or seeds. The parcel boundaries are placed so that each point of a given parcel225
is closer to the associated parcel seed than any other seed in terms of the Euclidean distance, as illustrated226
in Fig. 2(left). To build a parcellation from such partitioning, i.e., to assign each cerebral position to a227
parcel identifier, we do not explicitly require the parcel boundaries. Accordingly, there is no need to rely228
on classical algorithms that precisely compute these boundaries. Instead, a given position is assigned to229
the closest seed by resorting to a kd-tree (5).230

Random Voronoi parcellations are convenient ways to generate samples in the space of sensible231
parcellations as they produce convex and compact parcels which are physiologically plausible. They have232
been used in Vincent et al. (2008) to study the sensitivity of the parcel-based JDE method.233

Balanced partitioning The goal of balanced partitioning is to build parcels of equal sizes. In the case of234
a non-regular topology such as the brain, there is no morphological tool to deterministically solve such235
partitioning problem which is known to be NP-complete as mentioned in Andreev and Räcke (2004).236
Hence, the algorithm implemented in pyhrf employs a heuristic and relies on a multi-agent system237
that mimics the inflation of balloons in a fixed volume (Elor and Bruckstein (2009)), as illustrated in238
Fig. 2(right).239

Balanced partitioning is useful to test the effect of parcel size. In pyhrf, balanced partitioning is240
implemented in pure python with a position-wise main loop and is hence rather slow: ∼ 1 minute to241
split 6000 voxels into 20 parcels. However, this performance is sufficient since we only employ balanced242
partitioning in the case of small scale testing data sets or when parcels obtained on real data are too big.243

2.3.2 Functional parcellation244
The main goal of functional parcellation is to provide homogeneous parcels with respect to245
hemodynamics. It is mainly motivated by the JDE procedure which assumes that the HRF shape is246
constant within one parcel. To provide such parcellation, results obtained from a GLM analysis, or any247
given task-specific functional maps are clustered using different available algorithms: K-means, Ward or248

5 implemented in scipy.spatial.KDTree

Frontiers in Neuroinformatics 8



Vincent et al. fMRI data analyses with PyHRF

Figure 2. Illustration of spatial parcellation methods in pyhrf. Left: Voronoi diagram where seeds are represented as crosses. The red point is assigned to
the red seed and verifies that its distance to any other seed is larger (d1 < d2, d1 < d3). Right: balanced partitioning performed by patrolling a(ge)nts, image
extracted from Elor and Bruckstein (2009).

spatially-constrained Ward as provided by scikit-learn6. To objectively choose an adequate number249
of parcels, theoretical information criteria have been investigated in Thyreau et al. (2006): converging250
evidence for Γ ≈ 400 at a spatial resolution of 3 × 3 × 3 mm3 has been shown for a whole brain251
analysis leading to typical parcel sizes around a few hundreds voxels (≈ 2.7cm3). As the parcel size is not252
fixed, some big parcels may arise from the parcellation process and may slow down the overall parallel253
processing. To overcome this, the maximum parcel size was controlled by splitting too big parcels (larger254
than 1000 voxels) according to the balanced partitioning presented in section 2.3.1, which also guarantees255
the spatial connexity and thus properly satisfies the JDE assumptions on the HRF.256

Such “hard clustering” approach yields sharp parcel boundaries that prevent from capturing smooth257
transitions between HRF territories. To avoid wrong boundaries, one can resort to over-segmented258
parcellations (high number of parcels).259

3 PYHRF

The installation of pyhrf relies on the setuptools python package and requires the following260
dependencies: numpy7 and scipy8 for core algorithms, nibabel for nifti or gifti input/outputs, nipy261
for the GLM implementation and parcellation tools, matplotlib for plots and PyQT4 for GUIs.262
Optional dependencies comprise joblib, scikit-learn and soma-workflow. pyhrf is mainly263
intended for linux-based distributions as it has especially been developed under Ubuntu. Installation264
notes and documentation can be found online at http://www.pyhrf.org. Withing the package,265
the following data files9 are shipped:266

• 2 volumic fMRI data sets (paradigm as CSV files, anatomical and BOLD data files). One serves267
quick testing while the other is intended for validation/demonstration purpose, which is used to268
generate results in section 4.3,269
• 1 surfacic fMRI data set mainly intended for testing,270
• several simulation resources in the form of png images to provide 2D maps of various activation271
labels and HRF territories.272

6 sklearn.cluster.ward
7 www.numpy.org
8 www.scipy.org
9 There is no special licence on the shipped data sets.
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The rest of this section is organized as follows. First, the overall workflow of how to use pyhrf is273
presented, which mainly resorts to command lines and some dedicated GUI tools. Second, to go further274
into the package architecture and also to address some features available when scripting, the design of275
pyhrf is introduced. Third, distributed computation is explained in terms of resource handling. Finally,276
the pyhrf viewer is presented with a focus on ergonomics.277

3.1 WORKFLOW

The typical usage of pyhrf relies on shell commands which work on XML files. This XML format278
was chosen for its hierarchical organization which suits well the nested nature of the algorithm279
parametrizations. A dedicated XML editor is provided with a PyQt4 graphical interface for a quicker280
edition and also a better review of the treatment parameters. When such an XML setup file is generated,281
it defines a default analysis which involves a small volumic real data set shipped with the package. This282
allows for a quick testing of the algorithms and is also used for demonstration purpose. Here is a typical283
example of shell commands sequence used to perform a JDE analysis:284

$ pyhrf_jde_buildcfg -o jde.xml # generate a default XML file
$ pyhrf_xmledit jde.xml # set up custom experiment
$ pyhrf_jde_estim -c jde.xml # run the analysis
$ pyhrf_view *nii # view all output nifti files

The “buildcfg” command offers various options to define setup items from the command line without285
having to edit the XML file. For example, the paradigm can be loaded from a CSV or a SPM.mat file.286
As for the JDE procedure specifically, the option --vem enables the variational EM approach developed287
in Chaari et al. (2013).288

3.2 DESIGN

An overview of the static design of the main package components of the package is shown in Fig. 3. The289
class FmriData is the within-subject fMRI data representation, for any spatial support: on the cortical290
surface, in the volume, or from a simulation. This data representation comprises spatially flat data (fMRI291
time series and parcellation) and a connectivity matrix which holds the data topology. At the centre of the292
analysis component is the Analyzer class that handles parcelwise data splitting which is done according293
to the input data parcellation by default, and also takes care of merging parcel-specific outputs at the end294
of the analysis. This Analyzer class is then specialized into various method-specific analyzers: GLM,295
RFIR and JDE. Note that the analyzer component is decoupled from the data component, as classically296
done in scientific programming because they do not have the same life-cycles (e.g., the same model can be297
applied to various data objects). The FmriTreatment packs the data and analysis definitions together298
and handles distributed computation across parcels.299

In the following sub-sections, two specific components are further explained: XML parametrization300
through the XmlInitable class, and the handling of arrays with axis semantics through the xndarray301
class.302

3.2.1 XML parametrization The XML format was chosen for its hierarchical organization which suits303
the nested nature of the algorithm parametrizations. Indeed, for a JDE analysis, here is an example of304
such different levels: treatment → analyzer → sampler → hrf sampler. At a given level,305
different classes may be used as there exist, for example, different sampler types depending on the type306
of prior expressed in the JDE model, so that we require a seamless parametrization process that avoids307
rewriting code for the building of parameter files each time a new model is tested. To do so, any object308
whose initialization has to be exposed in the XML configuration file inherits the XmlInitable class.309
This system is not a serialization process as the whole python object is not dumped in the XML. Only the310
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Figure 3. Static organization of the main components in the pyhrf package (not exhaustive). Classes are represented as rounded blue rectangles and external
resources (file, computing units) as black rectangles. Note that the XmlInitable class is duplicated for layout convenience. As in UML class diagrams,
arrows have the following meaning:→ stands for an association, _ stands for a generalization.

from pyhrf.xmlio import XmlInitable, to_xml
import numpy as np

class FmriTreatment(XmlInitable):
def __init__(self, input_data=None,

analysis_parameters=None):
XmlInitable.__init__(self)

data = { ’bold_file’ : ’./my_bold.nii’,
’paradigm’ : np.array([0,2.3,6.]) }

analysis = { ’model’ : ’JDE_MCMC’,
’mcmc_sampling’ : {

’HRF’ : { ’duration’ : 25,
’type’ : ’canonical’ }}}

treatment_xml = to_xml(FmriTreatment(data, analysis))
f = open(’./test.xml’,’w’)
f.write(treatment_xml)
f.close()

Figure 4. Handling of XML parametrization. The left part shows a code snippet that defines a dummy yet typical fMRI treatment structure with nested
components. The init process of the resulting top-level object is then saved in an XML file. The right part is a snapshot of the pyhrf xmledit main window
where the XML file generated by the code snippet is browsed.

parameters provided to the init function are stored. In terms of object life cycle, this process handles311
object creation but is not able to track any subsequent modification. Fig. 4 shows a python code sample312
that illustrates how the XML file is generated from this nested configuration situation. The resulting XML313
file as viewed by the command pyhrf xmledit is also displayed.314

3.2.2 The xndarray class: data array with axis semantics The development of semantics-driven315
operations on data arrays were motivated by the parcel-driven nature of the analysis workflow which316
implied that parcel-specific results have to be merged in a transparent fashion, whatever their shape.317
Indeed, as pyhrf is the repository of all the methodological tools developed within the JDE framework,318
the number and the form of outputs is highly changing during the development and testing process.319
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This involves producing convergence tracking, intermediate quantities in addition to the final results320
of interest. To avoid writing specific saving procedure for such versatile and numerous outputs, the321
information about the interpretation of the data axes has to be explicit. The class xndarray handles322
any required reorientation prior to saving data arrays into nifti or gifti files. In the volumic data case, the323
reorientation follows the nibabel convention that is sagittal, coronal, axial and time. To store the extra324
axis information along with the data, a dedicated nifti-extension is also written in the volumic data case325
or add a “pyhrf xndarray data” field in the gifti meta data dictionary in the surfacic data case.326

Moreover, outputs are primarily generated at the parcel-level so that they are in a flat shape, i.e., the327
position axis represent indexes of positions in the spatial domain. To form the final whole brain outputs,328
the parcel-specific outputs have to be merged together and the position axis, if present, has to be mapped329
into the final spatial domain. Table 2 shows two examples of parcel-specific outputs that are merged to330
form whole brain data either by spatial mapping or by parcel stacking. To handle these two merging331
operations, stack and merge functions are provided. The reverse process is also available via the332
method explode which allows an array to be split according to a mask composed of integers, i.e. a333
parcellation. It returns the dictionary of ’flat’ parcel-specific data arrays associated with each integer label334
present in the mask.335

In terms of data life cycle, xndarray objects are used to prepare data before analysis and to336
pack results after analysis. During the analysis process, it is more convenient to work with numpy337
arrays directly. The following code snippet illustrates the usage of xndarray objects: functional and338
parcellation data are loaded, within-parcel means are computed and the results is saved to nifti:339

from pyhrf.ndarray import xndarray, merge
# Data loading
func_data = xndarray.load(’./bold.nii’)
parcellation = xndarray.load(’./parcellation.nii’)
# Split functional data into parcel-specific data
parcel_fdata = func_data.explode(parcellation)
# Fill parcel-specific data with spatial means
parcel_means = dict( (parcel_id, d.copy().fill(d.mean(’position’)))

for parcel_id,d in parcel_fdata.items() )
# Merge parcel-specific means (map ’position’ axis onto spatial axes)
parcel_means = merge(parcel_means, parcellation, axis=’position’)
# Save output
parcel_means.save(’./bold_parcel_means.nii’)

Table 2. Examples of merging operations performed on multiple parcel-specific data arrays, for some JDE outputs: parcel-
specific HRFs and condition- and voxel-specific activation labels. If the xndarray object contains the “position” axis, as for
the “labels” object, then all parcel-specific results are merged into the same target volume and we depict the spatial mapping
operation as “→” to map the “position” axis in to the spatial axes “axial”, “coronal” and “sagittal”. For other axes aside from
“position”, no merging operation is performed (“=” symbol). If the xndarray object does not contain the “position” axis, as for
the HRF object, then all parcel-specific results are stacked and a new “parcel” axis is created (“∪” symbol).

Parcel-specific flat data Merging operation Whole brain data
axis label axis domain axis label axis domain

HRF time [0, ..., hrf duration] = same
∪ parcel [0, ..., parcel max]

labels class [’activ’, ’non activ’] = same
condition [’audio, ’video’] = same
position [0, ..., pos max] → axial [0, ..., axial max]

coronal [0, ..., coronal max]
sagittal [0, ..., sagittal max]
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3.3 DISTRIBUTED COMPUTING

PyHRF provides parallel processing features by exploiting local resources (multiple processors on a single340
workstation) as well as remote parallel processing units such as a local grid network or a cluster. A whole341
brain JDE analysis then boils down from 10 hours to 15 minutes in parallel (on a 100-cores cluster). More342
precisely the available computing resources are handled as follows:343

• local multiple-cores CPUs: through the use of joblib parallel features. The latter works by344
spawning python sub-processes that are then run on the different processing units by the operating345
system. The number of used CPUs can be setup by the user.346

• machines over a local area network: through in-house code that relies on paramiko and347
hence uses ssh connections to distribute jobs on the LAN. A basic scheduler is implemented in348
pyhrf.grid that can also report faulty remote runs.349

• multiple-cores cluster: through soma-workflow10 developed by Laguitton et al. (2011), which350
relies on paramiko11 on the client side and on DRMAA12 on the server side.351

The distribution problem addressed here is a so-called embarrassingly parallel problem where the same352
treatment has to be repeated on several parcel-specific pieces of data. There is no shared memory353
management between distributed processes here.354

To optimize the distribution process, the order in which the parcel-specific treatments are pushed in the355
process queue is done by pushing the biggest parcels first. In the same optimization purpose, a safeguard is356
imposed on the maximum parcel size (more than 7 cm3 in the volume or 11 cm2 on the surface). If a parcel357
exceeds this limit, it is divided up according to the balanced partitioning presented in sub-section 2.3.1.358

3.4 VIEWER

pyhrf view is a dedicated viewer built on PyQt4 which embeds a matplotlib view. The purpose359
of pyhrf view is to provide convenient browsing into volumic data13. However, it does not provide360
advanced overlaying features such as the display of functional over anatomical data. Instead, to plot the361
final “publication-ready” maps after having selected the results of interest with pyhrf view, one can resort362
to the command pyhrf plot slice to directly generate a slice image of functional rendering along with363
anatomical overlay. One can also use a third party viewer such as Anatomist14, FSL view15 or xjview16.364

pyhrf view offers n-dimensional browsing while most viewers in neuro-imaging software handle up365
to 4D volumes. In fact, there is a limit to the number of dimensions inherent to the nifti format which366
permits 7 axes at maximum. The viewer is composed of two main components (see 5:367

• a main window handling object and slice selection,368
• plot windows which display the selected slice as curve or image.369

The slice selection tools provides sliders to browse through axes domain values and display related370
information: axis name, current selected domain values and projection states. There can be up to two371
projected axes (2D), i.e., axes which will mapped to the actual plot axes. When multiple objects are loaded,372

10 http://brainvisa.info/soma-workflow/
11 http://www.lag.net/paramiko/
12 http://www.drmaa.org/
13 Surface rendering is not available. Anatomist is recommended for such usage
14 http://brainvisa.info
15 http://fsl.fmrib.ox.ac.uk/fsl/fslview/
16 http://www.alivelearn.net/xjview8/
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slicers are synchronized to plotting views so that click events yield slider updates. This behavior can be373
modified in two ways. First, the reception combo box toggles whether the slider receives changes from374
other sliders. This is useful when one wants to prevent a given view from being updated by synchronization375
events (with reception off), e.g., when a reference slice should be compared to other slices. Second, the376
emission combo box toggles the spreading of slider changes to all other slicers. This is typically used to377
control a given axis across all displayed objects with a single slider (with emission on).378

Figure 5. Main widget components of pyhrf view to browse and view n-dimensional data. Left: the list widget on top displays the currently loaded
objects. The slicer panel at the bottom allows: projection of axes (combo boxes on the left), domain value slicing (sliders in the middle) and definition of view
synchronization (combo boxes on the right). For a given axis slicer, the two combo boxes defining synchronization are: (E) toggle emission of slice change to
other slicers, (R) toggle reception from other slicers or from click events on plots. Middle: plot window for the current selected slice. The top part displays the
actual plot as produced by matplolib.pylab. The bottom part offers changing the view mode (either curve, image, or histogram), and toggling display of
axes, colorbar and mask. The color button pops up a gradient map selector if in image mode or a color picker if in curve mode. Right: other plot window to
illustrate curve display.

4 RESULTS

4.1 EXPERIMENTAL PARADIGM

In all presented results, whether they focus on artificial or real data sets, we resorted to the same379
experimental paradigm. The latter is a multi-functional cognitive localizer paradigm designed in Pinel380
et al. (2007). This paradigm enables to map cognitive brain functions such as reading, language381
comprehension and mental calculations as well as primary sensory-motor functions. It consists of a fast382
event-related design (sixty stimuli, ISI = 3.75 sec.) comprising the following experimental conditions:383
auditory and visual sentences, auditory and visual calculations, left/right auditory and visual clicks,384
horizontal and vertical checkerboards.385

4.2 ARTIFICIAL DATA GENERATOR

Simulations in pyhrf mainly consists of building a script that defines a pipeline of versatile simulation386
bricks presented in Table 3. Writing a simulation script as a sequence of functions makes things difficult387
to read and to reuse. Instead, all simulation bricks are gathered inside a python dictionary that maps a388
simulation label to its corresponding value. This value can be directly defined as a python object or as a389
function which can depend on other simulation items and which is called when the simulation pipeline is390
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evaluated. The pipeline structure arises from the link between simulation labels and function arguments.391
An example of such simulation script is given below:392

import numpy as np
from pyhrf.ndarray import xndarray
from pyhrf.tools import Pipeline

# Functions used to generate items in the simulation Pipeline
def generate_rls(spatial_shape, mean_rls, var_rls):

rls = np.random.randn(*spatial_shape) * var_rls**.5 + mean_rls
return xndarray(rls, [’axial’, ’sagittal’, ’coronal’])

def generate_noise(stim_induced_signal, noise_var):
noise = np.random.randn(*stim_induced_signal.data.shape) * noise_var**.5
return xndarray.xndarray_like(stim_induced_signal, data=noise)

def create_stim_induced_signal(rastered_paradigm, hrf, response_levels):
signal = np.convolve(rastered_paradigm, hrf)[np.newaxis,:] * \

response_levels.data[:,:,:,np.newaxis]
return xndarray(signal, response_levels.axes_names + [’time’])

def create_bold(stim_induced_signal, noise):
return stim_induced_signal + noise

# Definition of the simulation pipeline
simulation_steps = {

’spatial_shape’ : (10,11,12), ’mean_rls’ : 3., ’var_rls’ : 0.5,
’response_levels’ : generate_rls,
’rastered_paradigm’ : np.array([0,0,1,0,0,0,1,0,0,0,1]),
’hrf’ : np.array([0,.5,1,0.5,0.,0]),
’noise_var’ : 1.,
’noise’ : generate_noise,
’stim_induced_signal’ : create_stim_induced_signal,
’bold’ : create_bold,
}

simulation = Pipeline(simulation_steps)

# Computation of all quantities in the pipeline and data saving
simulation.resolve()
simulation_items = simulation.get_values()
simulation_items[’response_levels’].save(’./response_levels.nii’)
simulation_items[’stim_induced_signal’].save(’./stim_induced_signal.nii’)
simulation_items[’bold’].save(’./bold.nii’)

The artificial data experiment presented here comprises the generation of BOLD time series within the393
volume and then projected onto the cortical surface. To do so, shipped data defines a volume of 4 HRF394
territories, as well as the grey/white matter segmentation obtained from real data in the occipital region.395
Within the grey matter mask, activation labels are generated and conditionally to them, response levels396
are simulated according to a bi-Gaussian mixture. For the sake of simplicity, a version of the localizer397
paradigm presented in the previous section is merged over the auditory and visual modalities so as to398
obtain only two conditions. In all HRF territories this paradigm is then convolved with HRF generated by399
Bezier curves that enable the control of the time-to-peak and time-to-undershoot. Finally, nuisance signals400
are added (Gaussian noise and polynomial drift) to obtain the volume of artificial BOLD data. To generate401
surfacic data, data are projected on a cortical fold that is also shipped in the package and we resorted to an402
external projection tool, developed in Operto et al. (2006) but others are available such as Freesurfer.403
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Figure 6. Results on volumic and surfacic artificial data. Left part: HRF estimates obtained by JDE on the 4 artificial parcels. Ground truth HRFs are depicted
in black line while colored HRF are HRF estimates that match the color of the parcels. Right part, top: labels simulated in the cortical fold for two conditions
(in blue and red). Right part, bottom: response levels estimates obtained by JDE on the cortical surface and in a selected slice of the volume. 3D renderings
were produced with anatomist.

Fig. 6 presents the results obtained on artificial data using the JDE procedure. HRF estimates recover their404
respective ground truth profiles with a slightly more deformed curve obtained on the cortical surface for405
the bottom right (green) HRF territory, compared with the volumic data case. Detection results (response406
levels maps in Fig. 6) also shows the correct recovery of the simulated ground-truth, in the volume and on407
the cortical surface.408

4.3 WITHIN-SUBJECT METHOD COMPARISON

The analyzed real data set, which is shipped with pyhrf, was a subset of an fMRI acquisition performed409
on a single healthy subject with a 3-Tesla Tim Trio Siemens scanner using an EPI sequence. The following410
settings were used for this acquisition: the fMRI session consisted of N = 128 scans, each of them being411
acquired using TR = 2400 ms, TE = 30 ms, slice thickness: 3 mm, FOV = 192 mm2 and spatial in-plane412
resolution of 2 × 2 mm2. In order to reduce disk usage and to focus only on areas of the brain which are413
expected to elicit activity in response to the paradigm, functional data was restricted to selected regions of414
interest that comprise occipital, temporal, parietal and motor regions. To improve interpretation and data415

Table 3. Different types of simulation bricks available in pyhrf. The “localizer” paradigm is described in Pinel et al. (2007).
Hand-drawn maps for activation labels are in the form of png images. Gaussian smooth generation of HRFs stands for the
regularized prior used in the JDE model.

Simulation item available generation process
Experimental paradigm localizer, random event-related
Activation labels hand-drawn 2D maps, 3D Potts realizations
Response levels bi / tri mixture of Gaussian or Gamma components
Hemodynamic response function canonical, Bezier curve, Gaussian smooth
Low frequency drift polynomial, cosine
Noise white, auto-regressive of order p
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plot rendering, an anatomical image is also shipped, with an in-plane resolution of 1 × 1 mm2 and slice416
thickness of 1.1 mm.417

This fMRI data set was analyzed using GLM with a canonical HRF, FIR, RFIR and JDE17. For JDE, the418
functional parcellation was built according to the method described in section 2.3.2. Fig. 7(a-b) depicts419
detection results for the auditory effect, obtained by GLM with canonical HRF (see Fig. 7(a)) and JDE420
(see Fig. 7(b)). Both methods highlight the same activation localization, with a slightly stronger sensitivity421
for JDE. Fig. 7(c) shows HRF estimation results as obtained by FIR, RFIR and JDE at the same local422
maximum on the left temporal region. Note that the HRF estimate provided by the JDE procedure is423
regional. The HRF profile delivered by FIR appears noisier than the JDE and RFIR counterparts. Also the424
temporal resolution of FIR is limited to the TR of input data. In contrast, RFIR and JDE offer an enhanced425
temporal resolution of 0.6 sec. In terms of timing, the FIR and JDE methods yield a peak at 5 seconds426
which is compatible with the canonical HRF that has been fitted on temporal auditory regions (Boynton427
et al. (1996)). Accordingly, the HRF estimates obtained by RFIR seems over-smoothed. Overall, JDE428
enables reliable activation maps and HRF profiles which can roughly be obtained by separate GLM and429
FIR analyses. Fig. 7(d-e) shows results on effect maps for the computation effect, obtained by GLM with430
canonical HRF (see Fig. 7(d)) and JDE (see Fig. 7(e)). JDE results have a higher sensitivity which can be431
explained by an estimated HRF that differs from the canonical version (see Fig. 7(f)). More specifically432
on the HRF estimation results shown in Fig. 7(f), we can draw the same comments as for the auditory433
results. However, the FIR HRF profile is here more chaotic and its peak is less easy to identify as the434
curve shows a plateau between 7 and 10 sec.435

4.4 GROUP-LEVEL HEMODYNAMICS

Using pyhrf, the hemodynamic variability was also studied on a group of 15 healthy volunteers (average:436
23.2 years, std: 2 years). The experimental paradigm is described in Section 4.1 and the fMRI acquisition437
parameters are similar to those previously mentioned in subsection 4.3. The results presented hereafter438
have been published in Badillo et al. (2013b). In this work, hemodynamic variability was investigated439
in four regions of interest, located in the left parietal cortex (P ), bilateral temporal (T ) and occipital (O)440
lobes and in the right motor cortex (M ), as shown in Fig. 8. These regions were defined after conducting441
a random-effect analysis to detect activation clusters showing a significant group-level effect. More442
precisely, we defined four contrasts of interest targeting brain activity in sensory and cognitive regions:443
a Auditory vs. Visual contrast for which we expect evoked activity in temporal regions in response, a444
Visual vs. Auditory contrast that induces evoked activity in the occipital cortex, a Left vs. Right click445
contrast for which we expect evoked activity in the right contralateral motor cortex, and a Computation446
vs. Sentence contrast which is expected to highlight activity in the frontal and parietal lobes specific to447
mental calculations. In terms of detection performance, at the group-level, JDE and GLM are comparable448
in primary sensory regions (where the canonical HRF is appropriate). However, in the parietal region449
involved in higher cognitive processes, the JDE approach yields more sensitive maps. In what follows, we450
summarize group-level hemodynamics results obtained in the regions of interest extracted from activated451
clusters.452

The group-level HRF extraction in each ROI involves the following steps: For each subject, we453
identified the parcel containing the mostly activated voxel across stimulus-dependent response levels.454
Each individual parcel-based HRF time course is then scaled by the corresponding maximum response455
level so as to account for the inter-subject variability of the effect size. Last, each group-level HRF456
profile (see Fig. 8) is computed as the average over the 15 subjects in the corresponding ROI.457

One of the main results concerns the spatial gradient of discrepancy to the canonical HRF shape between458
regions. As shown in Fig.. 8, the mean HRF time courses retrieved in occipital and temporal regions are the459
closest to the canonical shape hc. In the motor cortex, the HRF deviates a little more from the canonical460

17 analysis scripts are available at http://github.com/pyhrf/pyhrf/tree/master/script/frontiersBIM14/
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Figure 7. Detection and estimation results on the shipped real data set. Top and bottom rows: auditory and computation experimental conditions, respectively.
Columns from left to right: response level maps, for (a,d) GLM with canonical HRF, (b,e) JDE, superimposed with the functional parcellation (white borders).
Neurological convention: left is left. (c): Estimation results for GLM FIR (blue), RFIR (green) and JDE (red). The canonical HRF is shown in black.

filter, especially in terms of hemodynamic delay. Finally, the largest discrepancy to the canonical HRF461
was found in the parietal region.462

5 PERSPECTIVES

5.1 METHODOLOGICAL PERSPECTIVES

The main methodological developments are currently taking place in the JDE framework. In fMRI463
activation protocols, the paradigm usually consists of several runs repeating similar sequences of stimuli.464
For an increased stability of HRF estimates that cope with the between-run variability of the response465
magnitude, a hierarchical multi-run extension with heteroscedastic noise has been developed in Badillo466
et al. (2013c). It is particularly useful for pediatric imaging where runs are short in time. In the same vein467
of improving within-subject analyses, an approach to encode the condition-specificity at the parcel level468
is being developed to enforce non-relevant conditions to yield null activation, as in Bakhous et al. (2013).469

The variational EM version of JDE that has been published in Chaari et al. (2013) and that appeared470
to be 10 to 30 times faster than its MCMC alternative, has allowed us to address Chaari et al. (2012)471
the additional task of estimating the spatial aggregation support of HRF shapes (parcellation), which472
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Figure 8. Left: Definition of regions of interest to investigate hemodynamics variability from JDE-based group-level analysis. Top: Sagittal view. Bottom:
axial/top view. Left parietal area (P) appears in red, left motor area in the pre-central cortex is shown in green, Bilateral temporal regions along auditory
cortices and bilateral occipital regions in the visual cortices are shown in blue and cyan, respectively. Right: Group-average HRF estimates for the four regions
of interest: h̄P , h̄M , h̄T , h̄O stand for HRF means in parietal, motor, temporal and occipital regions, respectively. hc correspond to the canonical HRF.

is supposed given a priori in the current JDE approach. The so-called joint Parcellation-Detection-473
Estimation (JPDE) validation is still ongoing. In an attempt to solve the same issue, an alternative based474
on random parcellations and consensus clustering has been recently proposed in Badillo et al. (2013a).475

Closely related to the results presented in Section 4.4, a multi-subject extension of the JDE is currently476
developed to properly account for the between-subject HRF variability and recover a meaningful and477
potentially less biased group-level HRF profile. This development trail will bring modification in the core478
design of pyhrf so as to take into account the new “group” data axis.479

Finally, recent works have opened the path to multi-modality by the processing of Arterial Spin Labeling480
fMRI data Vincent et al. (2013). To analyze such data, physiologically-inspired models are investigated to481
establish parsimonious and tractable versions of physiological models such as the balloon model described482
in Friston and Buechel (2000); Buxton et al. (2004). Hence, for validation purpose, the artificial data483
generator is also being enriched with the simulation of physiological models.484

5.2 PACKAGE PERSPECTIVES

In addition to improving the documentation and usability of the current package version, additional485
developments will be first motivated by the above-mentioned methodological perspectives, namely re-486
factoring part of the data design to integrate the group-level and multi-session data components. This will487
mainly involve the modification of the FmriData class and the addition of a new FmriGroupData488
class. The handling of data input will have to be extended to exploit a hierarchy of subject-specific files.489

We also plan to enrich the parcellation component by handling classical atlases such as the490
Automated Anatomical Labeling (AAL) atlas built by Tzourio-Mazoyer et al. (2002), the Brodmann491
regions (Brodmann (1909)) and the Harvard-Oxford atlas (Desikan et al. (2006)) available in FSL 18.492
The goal is to enable the definition of functional parcels that are consistent with previous studies in the493
literature and also to further investigate the anatomo-functional link by comparing atlas-driven versus494
data-driven parcellations.495

In order to offer more user-friendliness, the building of a unified graphical user interface is foreseen,496
which will gather the XML editor and the viewer while also enabling the selection of the analysis497

18 http://http://fsl.fmrib.ox.ac.uk
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type. We also envisage resorting to wizard interfaces to guide the setup process and deliver contextual498
documentation. In terms of browsing features, tools to properly explore the surface-based results are499
currently missing, as we resort to an external tool, anatomist. The goal is not to reproduce all the500
features offered by the latter which enable the output of paper-ready figures through joint volume/surface501
rendering, data fusion and material handling. We rather think of a simple textured mesh viewer associated502
with a picking feature in order to synchronize other views. The main usage is to make the selection of503
a mesh node and the corresponding HRF estimate feasible. For making this surface-based rendering av504
available, mayavi19 is an appealing candidate since it has been already intensively used in the python505
community.506

Finally, we plan on incorporating GPU parallel computing features. This technology is becoming more507
and more available and powerful and may also appear cheaper than CPU computing systems (see Owens508
et al. (2008) for a review). Specifically, the NVIDIA chipsets are easily accessible for general509
purpose computing through the python package pyCUDA20. A simple test on matrix products with a510
complexity similar to that of our models showed a gain of one order of magnitude in favor of GPU511
computations21 (NVIDIA GeForce 435M graphics card) compared to CPU-based computations (Intel512
Core M480 @ 2.67GHz) with numpy.513

6 CONCLUSION

The pyhrf package provides tools to detect evoked brain activity and estimate the underlying dynamics514
from fMRI data in the context of event-related designs. Several “reference” methods are available: the515
GLM, FIR and RFIR approaches, and also more flexible models as provided by the JDE framework. The516
choice of the analysis tools depends on the experimenter’s question: if simple mappings are required, the517
GLM is appropriate provided that the HRF is expected to be close to its canonical version, but for finer518
dynamics estimation, the JDE procedure is more suitable. The design of pyhrf allows the handling of519
volumic and surfacic data formats and also the utilization of several distributed computing resources. The520
main user interface is done by shell commands where the analysis setup is stored in an XML configuration521
file. Two graphical components are provided: an XML editor and a n-dimensional volumic data browser.522

This package provides valuable insights on the dynamics of the cognitive processes that are not available523
in classical software such as SPM or FSL. Hence, it offers interesting perspectives to understand the524
differences in the neuro-vascular coupling of different populations (infants, children, adults, patients,525
etc.).526
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