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ABSTRACT

In this paper, we propose an algorithm that recovers binocu-
lar disparities in accordance with the surface properties of the
scene under consideration. To do so, we estimate the dispar-
ity as well as the normals in the disparity space, by setting the
two tasks in a unified framework. A novel joint probabilistic
model is defined through two random fields to favor both in-
tra field (within neighboring disparities and neighboring nor-
mals) and inter field (between disparities and normals) consis-
tency. Geometric contextual information is introduced in the
models for both normals and disparities, which is optimized
using an appropriate alternating maximization procedure. We
illustrate the performance of our approach on synthetic and
real data.

Index Terms— Stereo Vision, MRF, CRF, Alternating
Maximization

1. INTRODUCTION

Most of the recent algorithms in stereo disparity estimation
make an inherent fronto-parallel assumption in their mod-
eling, thus biasing the results towards piecewise- constant
“staircase solutions”. In an attempt to move beyond this as-
sumption, Devernay et. al. [1] proposed to extend the classi-
cal correlation method to compute both the disparity and its
derivatives, which relate to the differential properties of the
surface. In [2], the authors estimate the scene structure as a
set of smooth surface patches, while performing segmentation
and correspondence iteratively. However, they do not con-
sider the geometrical properties of the surface itself. Most of
the recent methods cast the problem as an energy minimiza-
tion in Markovian framework and use approximate inference
algorithms like Belief Propagation, Mean Field or Graph-cuts
to find the local minima. A good taxonomy of these ap-
proaches can be found in [3]. In such a setting, slanted sur-
faces are usually recovered by post-processing the dispari-
ties using plane-fitting on segmented regions [4]. These ap-
proaches implicitly assume fronto-parallel planes in the def-
inition of their objective function and cannot handle curved
surfaces. In order to overcome this limitation, [5, 6] present
a framework incorporating higher-order priors to encode the
surface properties. While [5] uses a new quadratic pseudo-
boolean optimization, [6] suggests a non-parametric approach

casting the pixels and disparity together as networks using
sparse graphs which are matched then using graph cuts.

Our work is inspired by Li et. al. ’s work [7], which explic-
itly takes into account the differential geometric contextual
information in a Markov Random Field (MRF) based dispar-
ity estimation framework. Li et. al. measure the consistency
of the normals by transporting them along the surface and
guide the disparity estimation towards a geometrically con-
sistent map. In order to overcome the numerical instability
issues encountered by [1], Li et. al. perform all the deriva-
tive computations in the depth space. As well as requiring the
knowledge of the internal camera parameters, this algorithm
precomputes the local surface normals.

In our work, we propose to carry out cooperatively both
disparity and normal estimations using two Random Fields
(RFs) that are linked to encode consistency between dispari-
ties and surface properties. This idea of using multiple RFs
to estimate one or more variables has been previously used
in contexts such as: estimation of motion discontinuities and
optical flow in [8], estimation of disparity by integrating it
with line process and occlusion in [9], estimation of dispar-
ity and image boundaries in [10]. In our case, the disparity
is modeled as a MRF including geometric contextual infor-
mation in the pair-wise regularizing term, thus favoring a dis-
parity solution consistent with the scene surfaces – possibly
slanted and/or curved. The normal field, modeled as Con-
ditional Random Field (CRF), is built under the assumption
that the scene in question is made of piecewise smooth sur-
faces and disparity is used as observed data. The proposed
joint model results in a posterior distribution, for both the dis-
parity and normal fields, which is used for their estimation ac-
cording to a Maximum A Posteriori (MAP) principle. While
the Mean Field algorithm ([11]) is used to estimate the dis-
parities, the normals are estimated using Iterated Conditional
Modes (ICM).

2. JOINT DISPARITY AND NORMAL MODEL

We consider a finite set S of p × q pixels on a regular 2D-
grid. The observed data are made of left and right images,
IL and IR, which are together referred to as I. In our setting,
the left image is taken as the reference image. We denote by
D = {Dx,x ∈ S} the unknown disparity values at each pixel
x = (u, v). TheDx’s are considered as random variables that



take their values in a finite discrete set of L disparity labels
L. D is referred to as the disparity field or disparity map and
takes its values in D = Lp×q . Similarly, we consider a sur-
face normal field N = {Nx,x ∈ S}. We use small letters
d and n to denote specific realizations of the random fields
D and N. Ideally, we are interested in finding the MAP es-
timates of D and N, (dMAP ,nMAP ) = arg maxd,n p(d,n|I).
However, this global optimization problem has in general no
straightforward solution. Thus, we consider instead an itera-
tive approach consisting in maximizing the posterior proba-
bility alternately in the first and second variable. At a given
iteration t, this alternation between the two variables can be
done as follows:

d(t+1) = arg max
d∈D

p(d|n(t), I) (1)

n(t+1) = arg max
n∈N

p(n|d(t+1), I) . (2)

It is, therefore, sufficient to define these two conditionals
p(d|n, I) and p(n|d, I) to account for cooperation mecha-
nisms between D and N.

2.1. Disparity Model given the Normals

We first specify the disparity distribution conditionally to the
normal field and the observed data as p(d|n, I). We model
this distribution as a MRF on D with an energy function con-
sisting of two terms, a data dependent term and an interaction
term, as follows:

p(d|n, I) ∝ Φd(d, I) Ψ(d,n) . (3)

Our data term Φd(d, I) is similar to the one described in
Yang et al [4]. A cost is assigned at location x based
on weighted window matching metric that takes into ac-
count both the color and the proximity of the pixels within
the window. We formulate this cost as a robust function
Φd(d, I) = exp

(
−
∑

x∈S λmin (φ(IL, IR,d), 2T )
)
, depend-

ing on two parameters λ and T , where,

φ(IL, IR,d) =

∑
y∈Wx,ȳ∈Wx̄

w(x,y)w(x̄, ȳ)e
(
IL(y), IR(ȳ)

)
∑

y∈Wx,ȳ∈Wx̄

w(x,y)w(x̄, ȳ)
. (4)

In order to understand the above equation, consider a candi-
date correspondence x̄ in the right image for the point x in
the left, i.e x̄ = x − (0, dx). To compute the cost of dx, the
pixel-wise cost e

(
IL(y), IR(ȳ)

)
= |IL(y)−IR(ȳ)|, within two

windows Wx and Wx̄ centered at x and x̄ are weighted and
summed. Each pixel within the window y ∈ Wx is weighted
according its color difference ∇cxy and its spatial proximity
∇gxy to x, as follows: w(x,y) = exp (−∇cxy/γc −∇gxy/γg)
. A similar weight is computed for x̄, ȳ ∈ Wx̄. The window
size parameter1 W in our case is set to 5 × 5 and the pa-
rameters γc and γg are set to 10 and 21 respectively. The
parameters of the robust function are set to λ = 1 and T is
fixed to the average pixel cost computed over all pixels and
disparity labels.

1The parameters are set manually and are the same for all experiments
shown in this paper.

Our interaction term is a symmetric modified version of
the one presented in Li et al [7]. Although the interpretation is
similar, we propose to include geometric information via sur-
face normals considered as a separate random field. Express-
ing compatibility between the disparity and normal fields en-
ables us to encode geometric constraints without computing
disparity derivatives directly from the disparity field. Further-
more, we use only first order differential information obtained
from the normal field, which avoids the numerical instabili-
ties. This term has then a standard pair-wise interaction form
Ψ(d,n) =

∏
(x,y) ψ(dx, dy,n) where (x,y) denotes neighbor-

ing pixels on the image grid. It is to be noted that we consider
8-neighborhood system. The term ψ(dx, dy,n) incorporates
a general surface model (the terms in exponential of (5)) to
ensure that the neighboring disparities lie on the same planar
surface. This term, thus, encodes geometric constraints via
consistency with the surface normal field n and is expressed
as follows:

ψ(dx, dy,n) =

exp

(
−
|dy − dx − ∂dx

∂u
(uy − ux)− ∂dx

∂v
(vy − vx)|

σD

−
|dx − dy − ∂dy

∂u
(ux − uy)− ∂dy

∂v
(vx − vy)|

σD

)
, (5)

where x = (ux, vx), y = (uy, vy) and σD are scalar parame-
ters for robustness. σD is set to 3.0 in our experiments. With
nx = (nu, nv, nd) , the disparity partial derivatives are com-
puted from the normals as ∂dx

∂u = −nu

nd
and ∂dx

∂v = −nv

nd
.

The optimization for disparity is done using Mean field
approximation. At each iteration of the Mean Field proce-
dure, we compute an interpolated disparity map using plane
fitting. This enables us to follow [7] by considering so-called
floating disparity labels. Starting from a discrete set of L in-
teger disparity labels L = {d1, . . . , dL}, we allow them to
move to another set of L possibly non-integer labels. The
idea is to capture finer geometric features by adapting the ini-
tial disparity discretized grid to the image scene. Importantly,
this can be done while keeping the discrete pair-wise MRF
formulation. Considering at iteration t a current continuous
value d at pixel x, we find l such that d ∈ [dl; dl+1) and then
change the disparity label dl to d. This provides an efficient
alternative to the quickly intractable increase of L.

2.2. Normal Model given Disparity

We express the disparity conditional normal model as a Con-
ditional Random Field with a Gaussian distribution:

p(n|d, I) ∝
∏
x∈S

∏
y∈Nx

exp

(
− ‖nx − ~Exy(d, I,ny)‖2

2σ2

)
(6)

whereNx is the 8-neighborhood set. The above equation rep-
resents a pairwise relationship between the normal at x and its
neighbors y ∈ Nx. Instead of just computing an Euclidean
distance between the two normals at positions x and y, we
compute the distance between nx and vector ~Exy, which is
the influence of the neighboring normal ny taking into ac-
count disparity d and the image I information. The vector



~Exy is determined using a method inspired by Page et. al.
[12]. We express ~Exy as:

~Exy = wxy(d, I) ~Nxy, (7)

where,

~Nxy = ny + 2 cos
(
θxy(S,d)

)
( ~xy/‖ ~xy‖) (8)

The first term in the above equation is the current normal
estimate at site y. The θxy in the second term, is the angle
between the normal at y and the vector ~xy, from x to y,
where x = (x, dx) and (y, dy). If the two points (x, dx) and
(y, dy) are on a plane consistent with ny then this value is
zero. The second term, thus, gives the error between ~xy and
the plane described by ny. The weightwxy(d, I) is described
as wxy(d, I) = exp

(
− |dx−dy|+|∇I(x)|

σN

)
where |∇I(x)| rep-

resents the gradient magnitude at x of the reference image2.
The image gradient is used to weight the influence of the
neighbors so as to prevent normals from being smoothed
across boundaries. As it can be seen, σN is the only parame-
ter to be controlled in the estimation of normals which is set
to 1.9 in our experiments.

While Page et. al. describe a deterministic voting proce-
dure that uses eigen decomposition to determine the normals,
we maximize p(n|d, I) using an approximate the MAP esti-
mate of n. This is done by using an ICM procedure, in which
n is set iteratively ∀x ∈ S as follows,

nMAP
x ≈ 1

Card(Nx)

∑
y∈Nx

~Exy(d, I,ny) (9)

where Card(Nx) is the cardinality of the set Nx. We use
ICM algorithm for the maximization here because it allows
for the optimization of the normal energy in the continuous
domain. It can be seen from equations (9) and (7) that the
normals are not determined by a simple mean, but their esti-
mation incorporates disparity information and the piecewise
smooth assumption.

3. ALTERNATING MAXIMIZATION

The resulting alternation procedure is the following: at iter-
ation t = 0, all the normal field values are assumed to be
{0, 0, 1} and the first step (1) is performed to get an initial
estimate of the disparity map. Then denoting by n(t) and d(t)

current estimates of the normal and disparity fields, the two
steps below are carried out alternately,

1) Update normal field n(t) into n(t+1) by applying ICM on (6).
2) Update disparity field d(t) into d(t+1) by:

(i) computing the first order disparity derivatives using
n(t+1) and

(ii) updating disparity estimates into d(t+1) with Mean
Field applied to the conditional disparity model (3).

2For color images I(x) represents the average of the RGB channels.

This alternation is carried out for a prescribed number of iter-
ations (in our case we obtained good results with 5 iterations)
at 4 different scales, ranging from coarse to fine. Each of
the Mean Field processes is performed until the total average
energy change is less than 0.01 which corresponds to about
4− 5 iterations. The ICM for normals was carried out for 10
iterations.

4. EXPERIMENTAL RESULTS AND DISCUSSION

The examples used to test our models are Corridor (fig. 1),
Head (fig. 2) and Cloth (fig. 3) from the Middlebury database.
During testing the disparity range and therefore the value of L
is fixed to different values depending on each image pair. We
use an HSV color-code3 to represent the normals.The color is
obtained by mapping the azimuth and elevation of each nor-
mal to hue and saturation, respectively. The first example is
the Corridor image (fig. 1(a)) of size 256 × 256 pixels and
the disparity range set to 11 pixels. Figure. 1(c) shows the
result by just applying straight forward estimation disparity
with fronto-parallel assumption. The estimated disparity and
normal maps using our approach are shown respectively in
fig. 1(d) and fig. 1(e). These figures indicate that the nor-
mals rightly follow the slanted surface of the corridor dis-
parity map. The fig. 1(f) shows the bad pixels map obtained
by thresholding the absolute error between the estimated dis-
parity and the groundtruth. The percentage bad-pixel error,
which is computed by taking the ratio between the number
of bad pixels to overall image pixels, is 3.3%. The Head im-
age (fig. 2(a)) is of size 219 × 255 pixels and the disparity
range of 40 pixels. The fig. 2(b) shows the result obtained
when the disparity plane fit is used directly as a post pro-
cessing. Figures. 2(c) and 2(d) show the results obtained for
disparity and normals using our approach. The direct repre-
sentation of the normals using arrows, corresponding to the
color-coded one in fig. 2(d), is shown in fig. 2(e). Our re-
sult shows how the proposed procedure captures the surface
deformations through the normals which is in-turn used to ob-
tain a consistent disparity map. Finally, we show our results
for the Cloth image (fig. 3(a)), of size 370×417 and disparity
range 60 pixels, in figures. 3(c) and 3(d). The bad pixels map
is shown in fig. 3(e) with percentage bad-pixel error of 5.4%.

In conclusion, we proposed a new joint probabilistic
model with the following advantages: 1) it does not require
the direct computation of high-order disparity derivatives as
in [1], 2) it embeds the estimation of surface properties in the
model rather than refining the results using post-processing as
done by [4] , 3) the consideration of two conditional models
allows for more dependence or independence according to the
information to be incorporated 4) unlike [7] where normals
are precomputed, the alternating procedure in our approach
results in mutual improvement of both disparities and nor-
mals. As for the probabilistic setting itself, we first focused
on defining a valid unified framework to model cooperations

3Note that the same color code is used for all the other normal-maps



(a) Left reference image (b) Disparity ground truth (c) Staircase effect (d) Estimated Disparity (e) Normals color coded (f) Bad pixels error = 3.3%

Fig. 1. Results using our approach shown in 1(d) and 1(e). 1(f) shows the bad pixels map for error > 1.0.

(a) Left reference image (b) Disparity with plane-fit (c) Estimated Disparity (d) Normals color-coded (e) Normals using our approach

Fig. 2. Face Image: Our results are shown in 2(c), 2(d) and 2(e)

(a) Left reference image (b) Disparity ground truth (c) Estimated Disparity (d) Normals color coded (e) Bad pixels error = 5.4%

Fig. 3. Cloth Image: Our results are shown in 3(c) and 3(d). 3(e) shows the bad pixels map for error > 1.0

and used MAP principle for inference. A natural future di-
rection of research is to investigate the possibility of richer
modeling alternatives in which rather than estimating the re-
alizations of fields D and N, we would be able to estimate
their full distributions like Expectation Maximization.
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