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a b s t r a c t

Copulas are a useful tool to model multivariate distributions. While there exist various
families of bivariate copulas, much less work has been done when the dimension is higher.
We propose a class of multivariate copulas based on products of transformed bivariate
copulas. The analytical forms of the copulas within this class allow to naturally associate
a graphical structure which helps to visualize the dependencies and to compute the full
joint likelihood even in high dimension. Numerical experiments are conducted both on
simulated and real data thanks to a dedicated R package.
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1. Introduction

The modeling of random multivariate events is a central problem in various scientific domains and the construction of
multivariate distributions able to properly model the variables at play is challenging. A useful tool to deal with this problem
is the concept of copula. Let (X1, . . . , Xd) be a random vectorwith distribution function F . Let Fi be the (continuous)marginal
distribution function of Xi, i = 1, . . . , d. From Sklar’s Theorem [27], there exists a unique function C such that

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), (x1, . . . , xd) ∈ Rd. (1)

This function C is called the copula of F and is the d-dimensional distribution function of the random vector (F1(X1), . . . ,
Fd(Xd)). For a general account on copulas, see, e.g. [24]. Copulas are interesting since they permit to impose a dependence
structure on pre-determinedmarginal distributions.While there exist many copulas in the bivariate case, it is less clear how
to construct copulas in higher dimension. In the presence of non-Gaussianity and/or tail dependence, various constructions
have been adopted, such as, for instance, Archimedean copulas [13], Vines [1] or elliptical copulas [5].

Archimedean copulas write

C(u1, . . . , ud) = ψ(ψ−1(u1)+ · · · + ψ−1(ud)),

where ψ is a function from [0,∞) to [0, 1] which has to verify certain properties for the copula to be well defined,
see [23]. The generator ψ may be chosen in a given parametric family of functions. For instance, ψθ (t) = exp(−t1/θ ),
θ ≥ 1 yields the Gumbel family of copulas, see Example 1 in Section 3. Since there is a single parameter to model a
d-dimensional phenomenon, thismodel is recognized not to be very flexible. Indeed, Archimedean copulas are exchangeable
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i.e. C(u1, . . . , ud) = C(uπ(1), . . . , uπ(d)) for any permutation π of {1, . . . , d}. In particular, all pairs of variables share the
same statistical distribution. These properties may not be desirable in practice.

Vines, on the opposite, achieve greater flexibility but at the price of increased complexity. As an illustration, we briefly
describe a canonical vine copula – one of the two main types of vine copula models – through a decomposition of its
density [1]:

c(u1, . . . , ud) =

d−1
j=1

d−j
i=1

cj,j+1|1,...,j−1

F(uj|u1, . . . , uj−1), F(uj+i|u1, . . . , uj−1)


where cj,j+1|1,...,j−1(·, ·) is the (conditional) bivariate density of the jth and (j+1)th variables andwhere F(·|·) represents the
conditional distribution of the variables at play. When d = 10, there are more than one million possible decompositions,
and, for each decomposition, there are many choices of parametric families for each conditional bivariate density in the
product.

A third class of copulas to be presented in this introduction is the class of elliptical copulas. An elliptical copula is the
copula of an elliptical distribution, whose density is given by [5,22]

f (x) = |Σ |
−1/2g


(x − µ)⊤Σ−1(x − µ)


, x ∈ Rd,

for some positive definite matrix Σ and vector µ. The function g is called the density generator. This model implies, in
particular, that if X has density f as above, then X −µ is distributed asµ−X . This, in turn, implies that the lower and upper
tail dependence coefficients (defined in Section 3) are equal, which is unrealistic in some applications, as, for example,
extreme-value statistics. Moreover, elliptical copulas have in general as many as O(d2) parameters and it is thus difficult to
carry out maximum likelihood inference [3] when d is large.

The main contribution of this paper is to propose a new class of multivariate copulas based on a product of bivariate
copulas. The product is performed following the edges of a graph which permits to visualize the dependencies and to
efficiently compute the likelihood, even in high dimension. The use of bivariate copulas as building blocks allows to take
profit of the numerous parametric families proposed in the copula literature.

The rest of this paper is organized as follows. The newcopulamodel is introduced in Section 2. Some linkswith Liebscher’s
construction [19] are stressed. Section 3 discusses some properties of the new copulas. The ability to construct new extreme-
value models is highlighted. The dependence properties of bivariate marginals of the proposed class are also established.
More specifically, some bounds are given on the most popular dependence coefficients (Spearman’s rho and Kendall’s tau)
and on tail dependence coefficients. Section 4 is dedicated to the numerical aspects. A simulation procedure is provided
and estimation by maximization of the pseudo-likelihood is discussed. The proposed copula model is applied in Section 5
to simulated and real datasets. Appendix gathers some proofs and technical details about the estimation procedure.

2. Constructing high dimensional copulas by multiplying bivariate ones

In this section, we propose a way to build high-dimensional copulas starting from bivariate ones. This construction
allows one to take advantage of the large number of bivariate copulas introduced in the statistical literature. It is well
known that a product of copulas is not a copula in general, the margins being no longer uniform. Roughly speaking, the new
copula is thus obtained by multiplying bivariate copulas after a suitable transformation of the margins. The main feature
of the new copula is that it can be associated with a graph describing the dependencies between the variables. To be more
specific, let U1, . . . ,Ud be d standard uniform random variables and denote by {ij} the index of the pair (Ui,Uj). Introduce
E ⊂ {{ij} : i, j = 1, . . . , d, j > i} a subset of the set of all pair indices. The cardinal of E, denoted by |E|, is less or equal to
d(d − 1)/2. The pair index e ∈ E is said to contain the variable index i if there exists k ≠ i such that e = {ik} or e = {ki}.
For all i = 1, . . . , d, let N(i) be the set of neighbors of i defined as N(i) = {e ∈ E such that e contains i} and introduce
ni := |N(i)|. It is then natural to associate a graph to the set E as follows: an element e = {ij} ∈ E is an edge linking Ui and
Uj in the graph whose nodes are the variables U1, . . . ,Ud. The example E = {{12}, {24}, {23}, {35}} is illustrated in Fig. 1.
For u = (u1, . . . , ud) ∈ [0, 1]d, consider the functional

C(u1, . . . , ud) =


{ij}∈E

C̃ij


u1/ni
i , u

1/nj
j


, (2)

where the C̃ij’s are arbitrary bivariate copulas for all {ij} ∈ E. Keeping in mind the graphical representation associated with
E, the function C defined in (2) is a product over the edges of the graph. For instance, when E = {{12}, {24}, {23}, {35}} as
in Fig. 1, function (2) can be written as

C(u1, u2, u3, u4, u5) = C̃12


u1, u

1/3
2


C̃24


u1/3
2 , u4


C̃23


u1/3
2 , u1/2

3


C̃35


u1/2
3 , u5


.

In the following, (2) is referred to as the Product of Bivariate Copulas (PBC) copula, or PBCmodel. The next result establishes
that (2) is a copula.

Proposition 1. PBC (2) is a well defined copula.
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Fig. 1. Graphical representation of the set E = {{12}, {24}, {23}, {35}}. The edges which are neighbors of each node are N(1) = {{12}}, N(2) = {{12},
{23}, {24}}, N(3) = {{23}, {35}}, N(4) = {{24}} and N(5) = {{35}}. The numbers of neighbors are respectively given by n1 = 1, n2 = 3, n3 = 2, n4 = 1
and n5 = 1.

The proof is postponed to Appendix. It is based on the remark that (2) can be interpreted as a particular case of Liebscher’s
construction [19]:

C(u1, . . . , ud) =


e∈E′

C̃e (ge1(u1), . . . , ged(ud)) (3)

where E ′ is some finite set. In the general case, C̃e is a d-dimensional copula for all e ∈ E ′ and gei is a univariate function for
i = 1, . . . , d and e ∈ E ′ which is either strictly increasing or identically equal to 1. Moreover, to ensure that (3) is a well
defined copula, the following constraints have to be verified:

e∈E′

gei(v) = v for all v ∈ [0, 1] and i = 1, . . . , d. (4)

Let us highlight that Liebscher’s construction (3) was originally designed to build an asymmetric d-dimensional C starting
from a family of symmetric d-dimensional copulas C̃e, e ∈ E ′. In contrast, our re-interpretation of (2) permits to derive
d-dimensional copulas starting from bivariate ones C̃ij, {ij} ∈ E and a graph. Another major difference between Liebscher
and PBC copulas lies in the tractability of the models. Indeed, Liebscher’s model is rather an abstract construction principle
and the applicability to data has not been addressed so far. For instance, taking gei(v) = vθei for v ∈ (0, 1] and 0 ≤ θei ≤ 1,
the parameters have to verify


e∈E′ θei = 1 for all i = 1, . . . , d. How to deal with these constraints in the estimation

procedure? As a matter of fact, the original paper [19] does not provide any such procedure. In contrast, one can view a
PBC copula (2) as a particular case of Liebscher’s construction where the constraints are met by construction. The remaining
parameters would be those of the C̃ij, but since they are arbitrary, we are left with |E| unconstrained parameter vectors
(one for each C̃ij). The use of bivariate copulas as well as the graph structure in the PBC model opens the way to an exact
computation of the (pseudo-) likelihood. If the graph is a tree, an algorithm based on message passing can then be used to
perform the maximum (pseudo-) likelihood estimation of the copula parameters, see Section 4.

The PBC model is a legitimate copula in the sense that it is the only possible model derived from (3) when a few natural
assumptions are made about the copula:

Proposition 2. Suppose that, in (3):

(i) For all e ∈ E ′, C̃e takes as arguments only two functions non identically equal to 1.
(ii) For all i = 1, . . . , d and e ∈ E ′, gei does not depend on e,

then, the only copula which can be constructed from (3) is the PBC model (2). In particular, necessarily gei(v) = v1/ni if e ∈ N(i)
and gei(v) = 1 otherwise.

Finally, from Sklar’s Theorem, the PBC copula (2) is associated with a distribution function F with continuous marginals
Fi, i = 1, . . . , d. By substituting (2) into (1), it is easily seen that F writes as a product of bivariate distribution functions:

F(x1, . . . , xd) =


{ij}∈E

Fij(xi, xj), (x1, . . . , xd) ∈ Rd, (5)

where Fij is a bivariate distribution function whose first marginal Fij,1 only depends on i and second marginal Fij,2 only
depends on j for all {ij} ∈ E. It is interesting to note that the converse is also true as stated in the following proposition.

Proposition 3. The distribution function corresponding to the PBC copula (2) writes as F in (5). Conversely, the copula
corresponding to any distribution function F in (5) writes as the PBC copula (2).
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Outside the copula framework, distribution functions which can write as (5) have been studied in the context of graphical
modeling in [14], where the authors refer to them as a Cumulative Distribution Networks (CDN). However, the dependence
properties were not investigated. Since the PBC copula is a copula associated with a CDN, the study of the dependence
properties in Section 3 bridges this gap.

3. Dependence properties and max-stability

The first paragraph is dedicated to the construction of extreme-value copulas using PBC models while the second
paragraph presents some dependence properties of the bivariate margins of PBC models.

3.1. Extreme-value copulas

The statistical analysis of extreme values should theoretically be carried out with the help of extreme-value copulas.
Recall that a copula C# is an extreme-value copula if there exists a copula C such that

C#(u1, . . . , ud) = lim
n↑∞

Cn(u1/n
1 , . . . , u1/n

d ), (6)

for all (u1, . . . , ud) ∈ [0, 1]d. In such a case, C is said to be in the maximum domain of attraction of C#. A copula C# is said to
be max-stable if for all integers n ≥ 1 and (u1, . . . , ud) ∈ [0, 1]d

Cn
#(u

1/n
1 , . . . , u1/n

d ) = C#(u1, . . . , ud).

Extreme-value copulas exactly correspond to max-stable copulas [11]. It can be seen that the domain of attraction
condition (6) is equivalent to

lim
t→0

1 − C(1 − tx1, . . . , 1 − txd)
t

= ℓ(x1, . . . , xd)

where ℓ is the tail dependence function given by ℓ(x1, . . . , xd) = − log C#(e−x1 , . . . , e−xd) for all (x1, . . . , xd) ∈ [0,∞)d.
It can be shown that the tail dependence function is convex and homogeneous of order one [11]. Extreme-value copulas
belonging to the PBC class (2) can easily be constructed thanks to the next result. Its proof is a direct consequence of [4].

Proposition 4. If, in the PBC copula (2), C̃ij is an extreme-value copula for all {ij} ∈ E, then C is also an extreme-value copula.
The associated tail dependence function is given by

ℓ(x1, . . . , xd) =


{ij}∈E

ℓ̃ij


x1/nii , x

1/nj
j


for all (x1, . . . , xd) ∈ [0,∞)d, and where ℓ̃ij is the stable tail dependence function of C̃ij.

It thus appears that the PBC model inherits the max-stability from the pairwise copulas used in its construction. The
associated tail dependence function has moreover a simple additive and yet flexible form. This is illustrated on the Gumbel
copula case, which has been shown to be the only max-stable Archimedean copula [10].

Example 1. Let C̃ij in (2) be a (max-stable) Gumbel copula with parameter θij ≥ 1, that is,

C̃ij(ui, uj) = exp

−

(− log ui)

θij + (− log uj)
θij
1/θij

.

Then, the associated PBC model is an extreme-value copula with tail dependence function

ℓ(x1, . . . , xd) =


{ij}∈E


x
θij/ni
i + x

θij/nj
j

1/θij
. (7)

As a comparison, the tail dependence function associated with a d-dimensional Gumbel copula with parameter θ ≥ 1 is

ℓ(x1, . . . , xd) =


d

i=1

xθi

1/θ

. (8)

It is clear that (7) offers much more flexibility than (8). The choice of E tunes the weights assigned to each variable through
the number of neighbors. Besides, the dependence parameter θij may be different for each pair {ij}. Other examples are
provided in the next paragraph.
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3.2. Bivariate margins properties

In this paragraph, the dependence properties of the bivariate margins of a PBC copula C defined by (2) are established.
To this end, for all (k, ℓ) ∈ {1, . . . , d}2, let Ckℓ be the copula associated with the random pair (Uk,Uℓ) and given by
Ckℓ(uk, uℓ) = C(1, . . . , 1, uk, 1, . . . , 1, uℓ, 1, . . . , 1). Our first result shows that Ckℓ is closely related to the bivariate copula
C̃kℓ involved in the construction (2).

Proposition 5. The bivariate marginal Ckℓ of the PBC copula (2) is given by

Ckℓ(uk, ul) =


u(nk−1)/nk
k u(nℓ−1)/nℓ

ℓ C̃kℓ(u
1/nk
k , u1/nℓ

ℓ ) if {kℓ} ∈ E,
ukuℓ otherwise,

(9)

for all (k, ℓ) ∈ {1, . . . , d}2.

It thus appears that randompairs (Uk,Uℓ)which are not connected by an edge i.e. {kℓ} ∉ E are independent. The dependence
between connected random variables is mainly driven by C̃kℓ through the equation

Ckℓ(uk, uℓ) = u1−κ
k u1−λ

ℓ C̃kℓ(uκk , u
λ
ℓ), (10)

whereκ = 1/nk andλ = 1/nℓ. Let us highlight that (10) is sometimes referred to as Khoudraji’s device; see [6], Proposition 2.
As an immediate consequence of Proposition 5, a PBC copula is not exchangeable in the general case. Recall that in the PBC
construction (2), the choice for the C̃kℓ is quite arbitrary. Thus, since the dependence structure of Ckℓ is determined by that of
C̃kℓ, one can get any desired dependence structure for the pairs of variables that are connected by an edge in the PBC model.
Some examples are provided below.

Example 2. Let C̃kℓ in (10) be a Marshall–Olkin copula MO(α, β)with parameters (α, β) ∈ [0, 1]2:

C̃kℓ(uk, uℓ) = min(u1−α
k uℓ, u

1−β
ℓ uk),

see for instance [24], p. 53. Then, Ckℓ is MO(ακ, βλ). If, moreover, α = β , then C̃kℓ is a Cuadras–Augé copula and Ckℓ is
MO(ακ, αλ). If α = β = 0, then both C̃kℓ and Ckℓ are the independence copula. If α = β = 1, then C̃kℓ is the Fréchet upper
bound copula and Ckℓ is MO(κ, λ).

The Marshall–Olkin class of copulas is thus stable with respect to the transformation (9). Besides, from Proposition 4, and
since the Marshall–Olkin copula is max-stable, it follows that all the PBC models associated with Example 2 are max-stable
copulas.

Let us now investigate the dependence properties associated with the bivariate margins of the PBC model. Recall that
the dependence between Uk and Uℓ is positive if, roughly speaking, Uk and Uℓ tend to be large or small together. Below are
recalled a few definitions of statistical concepts about positive dependence. The copula Ckℓ associated with (Uk,Uℓ) has the
TP2 (totally positive of order 2) property if and only if

Ckℓ(u1, u2)Ckℓ(v1, v2) ≥ Ckℓ(u1, v2)Ckℓ(v1, u2), for all u1 < v1 and u2 < v2.

Also, Ckℓ is said to be PQD (positive quadrant dependent) if Ckℓ(u, v) ≥ uv for all (u, v) ∈ [0, 1]2. The random variable Uℓ is
said to be LTD (left tail decreasing) in Uk if for all v ∈ [0, 1], the function u → P(Uℓ ≤ v|Uk ≤ u) is decreasing in u. See [24]
and [16] for further details about these concepts. Since the PBC copula (2) is a particular form of the Liebscher copula (3) (as
shown in Section 2), one can apply the results of [19] to obtain properties for the bivariate margins of the PBC copula.

Proposition 6. If in (9) C̃kℓ is TP2, LTD or PQD, then Ckℓ is also TP2, LTD or PQD respectively.

The dependence between Uk and Uℓ can be quantified through dependence measures such as Kendall’s tau or Spearman’s
rho respectively given by

τkℓ = 4


[0,1]2
Ckℓ(u, v) dCkℓ(u, v)− 1, (11)

ρkℓ = 12


[0,1]2
Ckℓ(u, v) du dv − 3. (12)

The dependence in the upper and lower tails can be respectively measured with

λ
(U)
kℓ = lim

u↑1

1 − 2u + Ckℓ(u, u)
1 − u

∈ [0, 1], λ
(L)
kℓ = lim

u↓0

Ckℓ(u, u)
u

∈ [0, 1]. (13)

Liebscher’s erratum [20] provides conditions on copulas C̃kℓ under which Kendall’s tau or Spearman’s rho is increased or
decreased by the transformation (9). Here,we give explicit bounds in terms of the number of neighbors for these dependence
coefficients. The behavior of (9) when the number of neighbors tends to infinity is also investigated.
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Table 1
Lower and upper bounds [lower, upper] for Spearman’s rho ρkℓ , Kendall’s tau τkℓ and
upper tail dependence coefficient λkℓ depending on the number of neighbors (nk, nℓ).

(nk, nℓ) Coefficient
ρkℓ τkℓ λkℓ

(1, 2) [−0.60, 0.60] [−0.50, 0.50] [0.00, 0.50]
(2, 2) [−0.30, 0.43] [−0.21, 0.33] [0.00, 0.50]
(1, 3) [−0.43, 0.43] [−0.33, 0.33] [0.00, 0.33]
(2, 3) [−0.19, 0.33] [−0.13, 0.25] [0.00, 0.33]
(3, 3) [−0.12, 0.27] [−0.08, 0.20] [0.00, 0.33]

Proposition 7. We have λ(L)kℓ = 0 and λ(U)kℓ ≤ min(1/nk, 1/nℓ). The lower and upper bounds for ρkℓ and τkℓ are respectively
given by

aρ(nk, nℓ) ≤ ρkℓ ≤ bρ(nk, nℓ),
aτ (nk, nℓ) ≤ τkℓ ≤ bτ (nk, nℓ),

with

aρ(nk, nℓ) =
6β(2nk − 1, 2nℓ − 1)nknℓ

(2nk + 2nℓ − 1)(nk + nℓ − 1)
−

3
(2nk − 1)(2nℓ − 1)

,

bρ(nk, nℓ) =
3

2nk + 2nℓ − 1
,

aτ (nk, nℓ) =
β(2nℓ − 1, 2nk − 1)

nk + nℓ − 1
−

2
(2nk − 1)(2nℓ − 1)

,

bτ (nk, nℓ) =
1

nk + nℓ − 1
,

where β denotes the Beta-function defined by β(x, y) =
 1
0 tx−1(1− t)y−1dt for x > 0 and y > 0. Furthermore, Ckℓ(u, v) → uv

asmax(nk, nℓ) → ∞, for all (u, v) ∈ [0, 1]2.

To illustrate Proposition 7, numerical values of the bounds are computed in Table 1 for different numbers of neighbors
(nk, nℓ).

The above results show that we are facing a tradeoff when linking the variables in the graph: on the one hand, the larger
the cardinal of E (that is, the more connected the graph, or the more the number of neighbors), the closer to independence
the bivariate margins belonging to E are. On the other hand, the smaller the cardinal of E, the more there are independent
bivariate margins. These findings suggest also that, unfortunately, while the PBC model may well be adequate to model
weakly dependent data, it might not be able to model strongly dependent data.

4. Simulation and estimation

The first subsection gives an algorithm that allows to easily simulate from a PBC copula. The second subsection deals
with inference for PBC copulas.

4.1. Simulation

One can use the probabilistic interpretation provided in [19] to simulate from a PBC. The generation procedure is given
below.

• For all {ij} ∈ E, generate (U (ij)i ,U (ij)j ) ∼ C̃ij.

• For all i = 1, . . . , d, compute Ui = maxk∈{1,...,d}:{ki}∈E


U (ki)i

ni
.

The resulting vector (U1, . . . ,Ud) has distribution (2).

4.2. Estimation

Here, we assume that the copulas C̃ij involved in the construction (2) of the PBC copula C depend on parameters θij. The
parameter vector is denoted by θ = (θij){ij}∈E . The sample of i.i.d. multivariate observations fromwhich θ is to be estimated
is (X (m)1 , . . . , X (m)d ) for m = 1, . . . , n, with (X (1)1 , . . . , X (1)d ) ∼ F , where F is the cumulative distribution function associated
with C . The margins of F are denoted by F1, . . . , Fd.
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In order to model data with a PBC model, one has to assume that there exists a graphical structure underpinning the
variables of interest. Some pairs of variables are linked with edges, some are not. In this section, the graph underpinning C
is supposed to be known. In other words, we suppose that the set of edges linking the variables of interest is given. Needless
to say, this is not the case in practice. While choosing the most appropriate graphical structure is still an open problem in
this context, some hints are given in Section 6.

The first estimation procedure considered is a version of the pairwise maximum-likelihood method [21]. This approach
consists of maximizing the sum of the pseudo-likelihoods corresponding to all the pairs of variables:

argmax
θ

n
m=1


{kℓ}

log ckℓ
Fk(x(m)k ),Fℓ(x(m)ℓ ); θkℓ


, (14)

where ckℓ is the bivariate density associated with Ckℓ and given by

ckℓ(uk, uℓ; θkℓ) =
∂2Ckℓ(uk, uℓ; θkℓ)

∂uk∂uℓ
=

∂2

C̃kl(u

1/nk
k , u1/nℓ

ℓ )u1−1/nk
k u1−1/nℓ

ℓ


∂uk∂uℓ

,

see Proposition 5. The pseudo-likelihood term refers to the plugging in (14) of an estimatorFk of the unknown margin
distribution Fk. Note that this estimator can be either parametric as in [16], Section 10 or nonparametric as in [7]. In the PBC
context, the pairwise approach reduces to maximizing |E| univariate functions independently. Thus, this method has the
advantage to be easily implementable. Moreover, it allows to fit different parametric families for different pairs.

However, an estimator based on such a pairwise strategy is not as efficient as an estimator based on the maximization
of the full joint maximum (pseudo-) likelihood [21]. It is therefore natural to consider the full optimization problem:

argmax
θ

n
m=1

log c
F1(x(m)1 ), . . . ,Fd(x(m)d ); θ


,

where c is the density associated with C and given by

c(u1, . . . , ud; θ) =
∂2C(u1, . . . , ud; θ)

∂u1 . . . ∂ud
=

∂2

 
{ij}∈E

C̃ij


u1/ni
i , u

1/nj
j


∂u1 · · · ∂ud

. (15)

Let us note that, when Fk is a parametric estimator of Fk, this method is referred to as Inference Function for Margins
(IFM, [16], Section 10). When Fk is a nonparametric estimator, this amounts to the pseudo-likelihood method [7]. The
asymptotic properties in each case are discussed in the aforementioned references. Here, however, the difficulty rather lies
in the fact that (15) is hard to compute by standard differentiation procedures because of the product form of the PBC copula.
Nonetheless, when the underlying graph is a tree, a recent message-passing algorithm [15] can be adapted to calculate the
derivatives (15) in an efficient way. We have provided an implementation of this algorithm in the context of PBC copulas in
the R package PBC [25]. The main ideas of this algorithm are briefly described in Appendix B. Once the density is computed
thanks to the algorithm, one can feed any optimization routine to maximize the likelihood. An example using optim in R
(www.r-project.org) is provided in the PBC package.

5. Applications to simulated and real datasets

This section is driven by two goals. First, in Section 5.1, we compare the gain in efficiency when the maximization of the
full joint likelihood is preferred to the pairwise likelihood for estimating the parameters of PBC copulas. Second, Section 5.2
shows howPBC copulas can be applied to a real dataset and illustrates their key properties compared to other copulamodels.

The considered families for the bivariate copulas C̃ij in (2) are the following: the Ali–Mikhail–Haq (AMH), Farlie–Gumbel–
Morgenstern (FGM), Frank, Gumbel, and Joe families. See [24] or [16] for details about these families. The corresponding PBC
copula models (2) are therefore referred to as PBC AMH, PBC FGM, PBC Frank, PBC Gumbel and PBC Joe respectively. The
methods used to simulate and infer the copulas can be found in Section 4.

5.1. A simulation experiment to compare pairwise likelihood and full joint likelihood estimation in PBC copulas

In Section 4.2, two methods were presented to estimate the parameters of a PBC copula model: the (pseudo-) pairwise
and (pseudo-) full likelihood methods. While the full likelihood approach is more efficient asymptotically than the pairwise
strategy, the efficiency gain needs to be quantified, and, moreover, may not be the same for different choices of parametric
families. In the following, a simulation experiment is undertaken to address these issues.

We generated 500 datasets of dimension d = 9 and size n = 100 according to a PBC copula whose tree graph is
depicted in Fig. 2. Since the data are generated exactly according to the copulas, the margins need not to be estimated,
and we thus focus on the comparison of the true pairwise and true full likelihood methods. The amount of time required to

http://www.r-project.org
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Fig. 2. Tree graph associated with the simulated PBC copulas.

Table 2
Variance ratio (VR) and mean absolute errors (MAEs) for each of
the tested PBC models. The MAEs were averaged over the dataset
replications.

Copula VR MAEρ MAEτ

PBC AMH 1.01 0.06 0.04
PBC FGM 1.01 0.06 0.04
PBC Frank 0.77 0.04 0.03
PBC Gumbel 0.56 0.00 0.00
PBC Joe 0.63 0.01 0.00

maximize the true full likelihood for five dataset replications was 36, 21, 18, 21 and 21 s for PBC AMH, PBC FGM, PBC Frank,
PBC Gumbel and PBC Joe respectively with a 8 GiB memory and 3.20 GHz processor computer. The d − 1 = 8 coordinates
of the parameter vectors were chosen to be regularly spaced within the intervals [−0.9, 0.9], [−0.9, 0.9], [−9, 11], [2, 20]
and [1, 20] respectively.

The following criteria were calculated in order to assess the results of the experiment. The variance ratio (VR) is defined
as

VR =

d−1
e=1

Var θ̂ FULLe

d−1
e=1

Var θ̂ PWe 
,

where θ̂ FULLe , θ̂ PWe is the eth coordinate of θ estimated bymaximization of the full likelihood, pairwise likelihood, respectively,
and where Var is the empirical variance computed on the 500 replications. For each dataset replication, the mean absolute
errors associated with estimated Spearman’s rho ρ (MAEρ) and Kendall’s tau τ (MAEτ ) are defined as

MAEρ =
1

d − 1

d−1
e=1

|ρ(θe)− ρ(θ̂ FULLe )|, MAEτ =
1

d − 1

d−1
e=1

|τ(θe)− τ(θ̂ FULLe )|.

The MAEs were averaged over the 500 replications to get a single value per model.
The results are reported in Table 2. It appears that for PBC AMH and PBC FGM, the precision was not improved by

maximizing the full joint likelihood relative to the pairwise approach: the variance ratios for thosemodels are close to 1. For
the Frank, Gumbel and Joe families, however, the variance decreases by at least 23% in average. These families, in contrast to
the AMH and FGM families, are comprehensive, meaning that they include the lower and upper bounds for copulas. Hence,
interestingly enough, we observed a gain of efficiency for the most flexible families, and, moreover, this gain has at least a
value of 23%. The MAEs are quite low for all the models, indicating that the maximization of the full joint likelihood with
the message-passing algorithm of Appendix B performs well.
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(a) (S, A). (b) (S, L). (c) (A, L).

Fig. 3. Pairwise scatterplots for the hydrological dataset.

5.2. Application to an hydrological dataset

In this section, PBC copula models are applied to an hydrological dataset consisting of d = 3 stations and n = 445
observations, (X (m)1 , X (m)2 , X (m)3 ), m = 1, . . . , n, of flow rate monthly maxima. The sites are located on three French rivers
at the following places: La Celle-en-Morvan on the Selle river (S), Rigny-sur-Arroux on the Arroux river (A), and Isclades-et-
Rieutord on the Loire river (L). The dependence in the data was confirmed by a statistical test of independence [9], which
gave a p-value of 5·10−4. It is implemented in the functionindepTest of theR packagecopula [12].More surprisingly, the
test of max-stability proposed in [17] yields a p-value of 5 ·10−4 suggesting that extreme-value copulas can be ill-adapted to
this situation. This test was performed with the function evTestC of the R package copula. For the sake of completeness,
we also carried out a test of exchangeability [18,8] for the three pairs (S, A), (S, L) and (A, L): we found p-values of 0.27,
0.68 and 0.23 respectively. The tests were performed with the function exchTest of the R package copula and suggest
exchangeability for all pairs.

Fig. 3 displays the pairwise scatterplots of the data after their transformation to uniform margins. It clearly appears
that the monthly rates from the Selle and Arroux rivers are strongly positively correlated. To confirm this, quantitative
dependence measures, namely empirical Spearman’s rho and Kendall’s tau coefficients have been computed for all pairs
and shown in Table 3 (first line). It follows that the two graph structures that would be reasonable for our PBC models
reduce to S–A–L and A–S–L. The third possible one being discarded as it would imply independence between the S and A
variables.

The three rivers are embedded in the sense that Selle flows into Arroux which flows into Loire. Thus, the graph S–A–L
may be easier to interpret but the results are shown for both graphs. The same models as in Section 5.1 were tested, that is,
PBC AMH, PBC FGM, PBC Frank, PBC Gumbel, and PBC Joe. The Gumbel copula was also considered, since it is standard
in hydrology, see e.g. [28] for an analysis of dependence between rainfall intensity, duration, and depth. Two elliptical
copulas were fitted as well: the Gaussian and Student copulas (see, e.g. [22]). For PBC models, the Gumbel and Student
copulas, the estimation of the parameters was performed by maximization of the full pseudo-likelihood, as explained in
Section 4. The codes that implement these estimation procedures are available in the R packages copula [12] and PBC [25].
In order to assess the fit of the models, empirical Spearman’s rho and Kendall’s tau coefficients were compared to their
estimated counterparts under the differentmodels. The results are presented in Table 3. As regards these central dependence
measures, Gaussian and Student copulas perform clearly better in terms of Spearman’s rho and Kendall’s tau coefficients,
while the PBCmodels have difficulty to capture such high correlations especially for theAMHand FGM familieswhich are not
comprehensive,meaning that they do not allowmuchdependence (see, e.g., [24]). The standardGumbel copula that depends
on a single parameter cannot model different pairs with different distributions. In particular, the estimated dependence
coefficients of the different pairs are equal to each other. The PBC copulas with comprehensive families, i.e. PBC Frank,
PBC Gumbel, and PBC Joe, present a better fit. Regarding the choice of the graph structure, we observe that the estimated
values were rather consistent from one structure to another except of course for the ones that are zero by construction.

We then assessed the tail behavior of the different copulas. Table 4 shows the estimated upper tail dependence
coefficients of all the tested models. Under the assumption of the Gaussian copula, tail dependence is null for every pair of
variables, meaning that high levels of flow rates tend to be independent. This is to be put in contrast to the Student, Gumbel,
PBC Gumbel or PBC Joe copulas: under the assumption of these, now high levels of certain flow rates tend to be dependent.
Since potential dangerous events happen with the co-occurrence of extreme flow rates, properly modeling tail dependence
is of critical importance. For comparison, the empirical upper tail coefficients for all pairs were computed by inspecting the
empirical version of the function u → λ(U)(u) (13) for high values of u, as in [2]. These obtained empirical values are partly
in accordance with the PBC Gumbel and PBC Joe models, i.e. the estimations are close for pairs SA and AL in the S–A–L graph
and for pairs SA and SL in the A–S–L graph. The Gaussian copula cannot provide satisfying values due to tail independence
while the Student copula seems to capture only the stronger tail dependence (pair SA). As for the Gumbel copula, it suffers
again from treating all pairs symmetrically. In this context of tail dependence, the PBC Joe and Gumbel models seem to
be more appropriate than the other tested copulas keeping in mind that the choice of the graph structure may impose
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Table 3
Empirical pairwise dependence coefficients and their estimations under the tested copulas. The symbols
ρ and τ stand for Spearman’s rho and Kendall’s tau respectively. For instance, ρS,A is Spearman’s rho
coefficient between the variables S and A. The PBC models are estimated using two graph structures.

ρS,A ρA,L ρS,L τS,A τA,L τS,L

Empirical estimates 0.95 0.48 0.45 0.80 0.33 0.31
Gumbel 0.55 0.55 0.55 0.39 0.39 0.39
Gaussian 0.93 0.49 0.45 0.76 0.34 0.31
Student 0.93 0.49 0.45 0.78 0.34 0.31

S–A–L graph

PBC AMH 0.25 0.24 0 0.17 0.16 0
PBC FGM 0.20 0.20 0 0.13 0.13 0
PBC Frank 0.56 0.35 0 0.38 0.24 0
PBC Gumbel 0.51 0.32 0 0.37 0.22 0
PBC Joe 0.49 0.26 0 0.35 0.17 0

A–S–L graph

PBC AMH 0.25 0 0.24 0.17 0 0.16
PBC FGM 0.20 0 0.20 0.13 0 0.13
PBC Frank 0.52 0 0.31 0.37 0 0.21
PBC Gumbel 0.51 0 0.24 0.36 0 0.16
PBC Joe 0.50 0 0.13 0.35 0 0.08

Table 4
Pairwise empirical and estimated upper tail dependence coefficients
for the tested copulas.

λ̂
(U)
S,A λ̂

(U)
A,L λ̂

(U)
S,L

Empirical estimates 0.43 0.20 0.20
Gumbel 0.48 0.48 0.48
Gaussian 0 0 0
Student 0.45 0.02 0.02

S–A–L graph

PBC AMH 0.01 0.01 0
PBC FGM 0.01 0.01 0
PBC Frank 0.06 0.03 0
PBC Gumbel 0.45 0.29 0
PBC Joe 0.47 0.30 0

A–S–L graph

PBC AMH 0.01 0 0.01
PBC FGM 0.01 0 0.01
PBC Frank 0.05 0 0.02
PBC Gumbel 0.45 0 0.17
PBC Joe 0.47 0 0.22

undesired independence. Finally, although compared to more standard elliptic copulas, the central modeling capability of
PBC models may be limited by theoretical bounds as shown in Table 1, they may still be useful to model tail dependence
more accurately. Their further advantage is that one can select the most appropriate family of bivariate copulas to allow
for more possibilities to model the dependence structure. If estimation is to be performed pair-wise, one may even think of
choosing different parametric families for the three pairs of variables.

6. Discussion

In this paper, we have constructed a class of multivariate copulas, called PBC copulas, based on a product of arbitrary
bivariate copulas. Therefore, this novel class benefits from the many bivariate families existing in the literature. A natural
graph structure helps to visualize the dependencies between the variables and to design an efficient inference algorithm.
Full joint multivariate inference can be performed, and shown to perform well, with a message-passing algorithm. An R
package was developed to promote the use of PBC copulas.

However, PBC copulamodels still suffer fromweaknesses: themore there are edges in the graph, themore the bounds on
the dependence coefficients are restrictive. The above point suggests that, perhaps, the use of PBC copulas in practice should
stick to weakly dependent data or combined with other models with complementary properties for instance by considering
mixture of distributions.

To perform the estimation procedures given in Section 4, the knowledge of the graphical structure underpinning the
data has to be assumed. In practice, however, one has to choose which pairs of variables should be linked. A simple method
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would consist of considering all possible graphical structures and either combine them or select the best ones based on the
resulting (pseudo-) likelihoods. Obviously, this approach is unfeasible in practice for high dimensions. Thus, an alternative
would be to link themost dependent variables under the constraint that the degree of the graph is below a certain threshold.
If one wants to maximize the full (pseudo-) likelihood, the constraint would be that the resulting graph is a tree. In this
case, one can run a minimum spanning tree algorithm [26] (implemented in the R package igraph, see the function
minimum.spanning.tree) where the weights associated with the edges would decrease as Spearman’s rhos (or any
other dependence coefficient) increase. This strategy embeds the construction of a tree based on the geographic proximity
between the variables at play (theweightswould be related to the geographical distances between the sites). Finally, another
possible approach would be to rely on application specific expert knowledge.
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Appendix A. Proofs

Proof of Proposition 1. In the copula (3), put E ′
= E, and, for v ∈ (0, 1],

gei(v) =


v1/ni if e ∈ N(i),
1 otherwise.

It can be checked that (4) is true and that (3) leads to (2). Therefore, (2) is a well-defined copula.

Proof of Proposition 2. Let us now prove that (2) is the only copula arising from (3). Condition (i) implies that if e ∉ N(i),
then gei = 1, i = 1, . . . , d. Hence, the constraint over the functions reduces to


e∈N(i) gei(v) = v, v ∈ [0, 1]. In view of

condition (ii), one has gei = gi for e ∈ N(i), hence (gi(v))ni = v. Therefore

gei(v) =


v1/ni if e ∈ N(i),
1 otherwise.

To conclude, it suffices to rewrite the product in (3) as
e∈E

C̃e(1, . . . , 1, u
1/ni
i , 1, . . . , 1, u

1/nj
j , 1, . . . , 1) =


{ij}∈E

C̃ij(u
1/ni
i , u

1/nj
j )

which corresponds to (2).

Proof of Proposition 3. Let us first prove that (5) is the distribution function associated with the copula (2). From (1) we
have

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) =


{ij}∈E

C̃ij(Fi(xi)1/ni , Fj(xj)1/nj)

=:


{ij}∈E

Φij(xi, xj).

The first margin of Φij is given by Φij,1(x) = Φij(x,∞) = Fi(xi)1/ni which depends only on i. A similar result holds for the
secondmarginΦij,2. Conversely, let us prove that (2) is the copula associatedwith (5). LetΦij,k, k = 1, 2 be the kth univariate
marginal ofΦij, {ij} ∈ E. The copula associated with F is given by

CF (u1, . . . , ud) = F

F−1
1 (u1), . . . , F−1

d (ud)


=


{ij}∈E

Φij

F−1
i (ui), F−1

j (uj)

.

For all {ij} ∈ E, let C̃ij be the copula associated withΦij. It follows that

Φij(xi, xj) = C̃ij

Φij,1(xi),Φij,2(xj)


so thatΦij


F−1
i (ui), F−1

j (uj)


= C̃ij

Φij,1 ◦ F−1

i (ui),Φij,2 ◦ F−1
j (uj)


and

CF (u1, . . . , ud) =


{ij}∈E

C̃ij

Φij,1 ◦ F−1

i (ui),Φij,2 ◦ F−1
j (uj)


. (16)



374 G. Mazo et al. / Journal of Multivariate Analysis 140 (2015) 363–376

Moreover, since C̃F is a copula, one has for all k = 1, . . . , d:

uk = CF (1, . . . , 1, uk, 1, . . . , 1)

=


j>k:{kj}∈E

C̃kj

Φkj,1 ◦ F−1

k (uk), 1
 
j<k:{jk}∈E

C̃jk

1,Φjk,2 ◦ F−1

k (uk)


=


j:{kj}∈E

Φkj,1 ◦ F−1
k (uk).

Now by assumption Φkj,1 = Φjk,2 = Φk only depends on k and therefore u1/nk
k = Φk ◦ F−1

k (uk) which implies Φk(z) =

Fk(z)1/nk for all z ∈ R and k = 1, . . . , d. The result is obtained by pluggingΦk into (16).

Proof of Proposition 5. Let C be a PBC copula. For all (k, ℓ) ∈ {1, . . . , d}2, the copula associated with the random pair
(Uk,Uℓ) is defined by

Ckℓ(uk, uℓ) = C(1, . . . , 1, uk, 1, . . . , 1, uℓ, 1, . . . , 1).

Two cases arise: If {kl} ∈ E, then

Ckℓ(uk, uℓ) =

 
e∈N(k)\{kℓ}

C̃e(u
1/nk
k , 1)

 
e∈N(ℓ)\{kℓ}

C̃e(u
1/nℓ
ℓ , 1)


C̃kℓ(u

1/nk
k , u1/nℓ

l )

= u(nk−1)/nk
k u(nℓ−1)/nl

ℓ C̃kℓ(u
1/nk
k , u1/nℓ

ℓ )

otherwise

Ckl(uk, uℓ) =

 
e∈N(k)

C̃e(u
1/nk
k , 1)

 
e∈N(ℓ)

C̃e(u
1/nℓ
ℓ , 1)


= ukuℓ.

Proof of Proposition 7. The Fréchet–Hoeffding bounds for copulas (see e.g. [24], p. 11) applied to C̃kℓ in (9) yield

Wkℓ(uk, uℓ) ≤ Ckℓ(uk, uℓ) ≤ Mkℓ(uk, uℓ), (17)

where

Wkℓ(uk, uℓ) := u1−1/nk
k u1−1/nℓ

ℓ max(u1/nk
k + u1/nℓ

l − 1, 0),

Mkℓ(uk, uℓ) := u1−1/nk
k u1−1/nℓ

ℓ min(u1/nk
k , u1/nℓ

l ).

Clearly, Mkℓ(u, u)/u → 0 as u ↓ 0. It is easily seen that Wkℓ(u, u)/u → 0 as u ↓ 0 which implies Ckℓ(u, u)/u → 0
and thus λ(L)kℓ = 0. It is straightforward that (1 − 2u + Mkℓ(u, u))/(1 − u) → 1/max(nk, nℓ) as u ↑ 1 which entails
λ
(U)
kℓ ≤ min(1/nk, 1/nℓ). To compute the lower and upper bounds for ρkℓ and τkℓ, it suffices to substitute Wkℓ and Mkℓ

into (12) and (11). Lengthy but elementary computations lead to the results. Finally, letting nk or nℓ going to infinity in (17)
yields that Ckℓ tends to independence.

Appendix B. Main principle of the message-passing algorithm

Let us denote the parameter vector as θ = (θij){ij}∈E . Recall that the graph is assumed to be a tree, that is, there is no
cycles in the graph (then |E| = d − 1). Let V = {1, . . . , d} and u = (u1, . . . , ud) a vector in [0, 1]d. For a subset A ⊂ V , the
notation ∂uAC(u; θ) stands for the derivative of C with respect to all the variables in A. For instance the density writes

∂dC(u; θ)
∂u1 . . . ∂ud

= ∂uV C(u; θ) = c(u; θ),

and the gradient with respect to the parameter vector is
∂c(u; θ)
θij


{ij∈E}

.

To keep the notation simple, the dependence on the parameter vector θ is dropped in the remaining of this section. The
purpose here is not to give the algorithm, but rather to provide an intuitive idea of it. Let us write

C(u1, . . . , ud) =


{ij}∈E

C̃ij(u
1/ni
i , u

1/nj
j ) =:


{ij}∈E

Φij(ui, uj)
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Fig. 4. Examples of subtrees.
Source: This figure is partly drawn from [14].

and let an arbitrary variable index i (the root) be given. Let τ is denote the subtree rooted at the variable indexed by i and
containing the edge indexed by e (see Fig. 4). The idea is to note that, since the graph is a tree, the copula C can be decomposed
over the subtrees rooted at i:

C(u) =


e∈E

Φe(u) =:


e∈N(i)

Tτ ie(u), u = (u1, . . . , ud),

where Tτ ie(u) corresponds to the product of all edges located in the subtree τ ie. Since the Tτ ie(u)’s do not share any variables
(except the root), the derivative and the product operations commute, more precisely,

∂uV C(u) = ∂ui,uV\i

 
e∈N(i)

Tτ ie(u)


= ∂ui

 
e∈N(i)

∂u
τ ie\i

Tτ ie(u)



= ∂ui

 
e∈N(i)

µe→i(u)


. (18)

The quantity µe→i(u) := ∂u
τ ie\i

Tτ ie(u) is called a message from the edge indexed by e to the variable indexed by i. Now
consider Tτ ie(u) and let j be the neighbor variable index of e. One can go deeper into the tree, that is, we have

Tτ ie(u) = Φe(ui, uj)Tτ ej (u)

where τ ej is the subtree rooted at the edge indexed by e and containing the variable indexed by j (see Fig. 4). Hence,

∂u
τ ie\i

Tτ ie(u) = ∂uj


φe(ui, uj)∂uτej \j

Tτ ej (u)


= ∂uj

φe(ui, uj)µj→e(u)


.

A second type of message has been defined:µj→e(u) := ∂uτej \j
Tτ ej (u) is called a message from the variable index j to the edge

index e. Again,

Tτ ej (u) =


e′∈N(j)\e

T
τ
j
e′
(u),

hence,

∂uτej \j
Tτ ej (u) =


e′∈N(j)\e

∂u
τ
j
e′

\j
T
τ
j
e′
(u) =


e′∈N(j)\e

µe′→j(u),

where the message µe′→j(u) has been already defined in (18). To summarize, the calculation of µe→i(u) requires the
calculation of µj→e(u), which, in turn, requires the calculation of µe′→j(u), where e = {ij} and e′ is an edge index attached
to j. The algorithm presented above allows to compute recursively all the messages from the leaves to the root. Once all
the messages have been computed, the density is given by the derivative with respect to the root of the product of all the
messages (18).
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