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ABSTRACT

In this paper we address the problem of detecting and locating
speakers using audiovisual data. We propose to address this
problem in the framework of data clustering. We propose a
novel cross-modal clustering method based on finite mixture
models and which explores the idea of non-uniform weighting
of observations. Weighted-data clustering techniques have al-
ready been proposed, but not in a generative setting as pre-
sented here. We introduce a weighted-data mixture model
and we devise the associated EM procedure which we justify
from a theoretical point of view. The clustering algorithm is
applied to the problem of detecting and localizing a speaker
over time using both visual and auditory observations gath-
ered with a single camera and two microphones. Audiovisual
fusion is enforced by introducing a cross-modal weighting
scheme. We test the robustness of the method with simulated
data and we show experiments in two challenging scenarios:
disambiguate between an active and a non-active speaker, and
associate a voice with a person.

Index Terms— Mixture models, audiovisual fusion, mul-
timodal signal processing, cross-modal clustering.

1. INTRODUCTION

The problem of detecting and localizing an active speaker
arises in many applications, e.g, human-computer interaction,
human-robot interaction, diarization, etc. A robust solution to
this problem is likely to provide rich spatiotemporal informa-
tion that can be exploited in complex situations, e.g., multi-
party dialog between a robot and a group of people. In this pa-
per we emphasize the role of audiovisual fusion in human-to-
human, human-to-computer, and human-to-robot interactions
and we show that multimodal data processing compensates
for the weaknesses of visual-only or audio-only data analysis.

In this context, we focus in the development of a general-
purpose robust instantaneous active speaker localization al-
gorithm based the fusion of audio and video data. In other
words we would like to retrieve the active speakers in a group
of people engaged in a natural social interplay, by means

of auditory and visual information. More importantly, we
present a methodology in which these pieces of information
are weighted accordingly to their relevance. Our most reveal-
ing contribution to the field is that the proper use of these
weights can notably increase the performance of speaker
localization task.

Among the different methods that perform speaker local-
ization, only a few are performing the fusion of both audio
and video modalities. [?] presents a method to locate sound
source in the image, based on quantifying the synchrony be-
tween the auditory and the visual modalities. This work in-
spired a series of information-theory based papers. [?] pro-
poses a statistical framework to measure the amount of mutual
information between a region of interest on the image and the
audio track. [?,?,?] follow a similar approach to determine the
active speaker among a few candidate faces. The main advan-
tage of these approaches is the versatility, since they are not
constrained to a particular kind of objects. However, they re-
quire high-resolution images acquired with speaker-dedicated
cameras. Therefore, their use is restricted mostly to static sce-
narios when the number of speakers is constant and known in
advance.

Recently, a series of papers [?, ?, ?] dealing with the in-
stantaneous localization of speakers has been published. The
common point of these studies is that they cast the speaker lo-
calization problem into a multimodal clustering task. In that
sense we inspired from them. More precisely, [?, ?] use two
Gaussian Mixture Models (GMM) one per modality. The pa-
rameters of the two GMM are constrained via a subset of tying
parameters. The resulting EM algorithm has a computation-
ally expensive M step, involving non-linear optimization sub-
routines, due to the parameters’ constraints. In [?] a single
GMM is used to cluster multimodal data. The main contri-
bution is that the mixture parameters are estimated relaying
more on visual than on auditory data.

None of the methods above addresses the problem of
audio-visual fusion with weighted data. Indeed, most of them
are able to trust one of the two modalities, but none is able
to give a different weight to the observations coming from
one modality. Even if weighted-data clustering has been



addressed in the recent past [?, ?], up to the authors’ knowl-
edge this is the very first study on how to use weights on
multimodal data clustering.

The two main contributions of this paper are the fol-
lowing: 1) we propose a new clustering model based on fi-
nite mixture model named Weighted-Data Gaussian Mixture
Model (WD-GMM),that explores the idea of non-uniform
weighting of samples, 2) we develop a robust and instan-
taneously method for active speaker localizations by fusion
information from audio and visual data using the propose
mixture model.

The reminder of the paper is structured as follows. In
Section 2 we present the proposed mixture model formula-
tion, while the EM algorithm is presented in Section 3. Sec-
tion 4 describes how we apply the proposed mixture model for
speaker localization task. In Section 5 we illustrated experi-
mental result on synthetic data and real audio-visual record-
ing. Section 6 ends the paper by presenting some remark and
suggestion for further work.

2. WEIGHTED-DATA GMM

In this section we formally define the proposed mixture
model. Let x be a random vector following a normal distri-
bution parameterized by θ = {µ,Σ} (mean and covariance),
i.e., p(x|θ) = N (x; θ). Let w > 0 be an indicator of the
relevance of the observed sample x. We refer to w as the
weight of x. Intuitively, higher the weight, more important
the observation. In maximum likelihood formulations one can
enforce this importance by observing x w times. Regarding
the likelihood, this is equivalent to raise p(x|θ) to the power
w. However, N (x;µ,Σ)w is not a probability distribution
because it does not integrate to one. It is straightforward to
show that (N (x;µ,Σ))w ∝ N

(
x;µ, 1

wΣ
)
. Subsequently,

we write:

p̂(x|θ, w) = N
(
x;µ,

1

w
Σ

)
. (1)

This equation can be used to write a K-component GMM:

p̃(x|Θ, w) =

K∑
k=1

πkN
(
x;µk,

1

w
Σk

)
, (2)

where Θ = {π1, . . . , πK , θ1, . . . , θK} are the mixture param-
eters, with

∑K
k=1 πk = 1, and θk = {µk,Σk}. We will refer

to (2) as the weighted-data Gaussian mixture model (WD-
GMM).

The difference between the standard GMM and WD-
GMM is the data weight w. This raises the question on how
to define w. We first remark that w plays the role of a preci-
sion. From a statistical point of view it is natural to choose w
as a random variable with a gamma distribution prior. Indeed,
the gamma distribution is the conjugate prior of the precision
matrix. The use of a conjugate prior ensures that the posterior

distribution will also be a gamma distribution. This is con-
venient since in maximum likelihood with hidden variables
the posterior distribution is often needed. Hence we write
w ∼ G (α, γ) to express that w follows the gamma distribu-
tion with parameters α > 0 (shape) and γ > 0 (inverse scale
or rate). The probability density function is given by

G (w;α, γ) =
γα

Γ (α)
wα−1 exp (−wγ) , (3)

where Γ(α) =
∫∞
0
tα−1e−tdt is the gamma function.

3. MAXIMUM LIKELIHOOD ESTIMATION

We now formulate the maximum likelihood problem and an
associated EM algorithm to estimate the model parameters.
Let X = {xi}ni=1 be the set of i.i.d. observations drawn
from a K-component WD-GMM (2). Let W = {wi}ni=1

be the set of associated weights, i.e., wi is associated with
xi and follows a gamma distribution with parameters αi, γi.
We denote with φi = {αi, γi} the parameters of the prior
distribution on wi, and with Φ = ∪ni=1φi. In addition to
W , we consider the set Z = {zi}ni=1 of observation-to-
component assignment latent variables. As in standard GMM,
zi = [zi1, . . . , ziK ] ∈ {0, 1}K with

∑K
k=1 zik = 1, and

zik = 1 if and only if xi was generated by the kth compo-
nent.

Summarizing, we are given a set of observations X , and
a set of corresponding weight priors Φ. Both the weights W
and the observation-to-component assignments Z are hidden
variables. Finally, the model is parametrized by Θ, which en-
compasses the mixture proportions {πk}Kk=1 and the parame-
ters {θk}Kk=1 = {µk,Σk}Kk=1.

Maximum likelihood problems with hidden variables
are usually solved by the Expectation-Maximization (EM)
algorithm [?], which iteratively maximizes the expected
complete-data log-likelihood:

Q
(

Θ,Θ(r)
)

= Eq(Z,W ) {lnP (Z,W ,X|Θ,Φ)}, (4)

where q (·) = P
(
·|X,Φ,Θ(r)

)
denotes the posterior distri-

bution given the observations and the parameters at the rth

iteration, namely Θ(r). Indeed, the EM algorithm iterates be-
tween computing the posterior distribution q (Z,W ) using
the current parameter set Θ(r) (E-step) and use this poste-
rior to maximize Q over the model parameters, thus yielding
Θ(r+1) (M-step). One iteration of EM is detailed below.
E-step: We notice that the posterior distribution is separable
on i, thus we write q (Z,W ) =

∏n
i=1 q (zi, wi). We can

develop this further and write:

q (zi, wi)=P
(
wi|zi,xi, φi,Θ(r)

)
P
(
zi|xi, φi,Θ(r)

)
, (5)

where both quantities on the right-hand side have closed-form
expressions.



E-W step: Because we use the conjugate prior for wi, we
know beforehand that the posterior is a gamma distribution
too. Subsequently we write:

P
(
wi|zik = 1,xi, φi,Θ

(r)
)

= G(wi|α(r+1)
i , γ

(r+1)
ik ),

where α(r+1)
i and γ(r+1)

ik denote the parameters of the poste-
rior distribution and are given by the following expressions:

α
(r+1)
i = αi +

d

2
(6)

γ
(r+1)
ik = γi +

1

2

∥∥∥xi − µ(r)
k

∥∥∥
Σ

(r)
k

, (7)

collectively denoted by: φ(r+1)
i =

{
α
(r+1)
i ,

{
γ
(r+1)
ik

}K
k=1

}
.

E-Z step: The posterior distribution of zi, denoted by
η
(r+1)
ik = P

(
zik = 1|xi, φi,Θ(r)

)
, is computed by marginal-

ization:

η
(r+1)
ik =

∫
P
(
zik = 1, wi|xi, φi,Θ(r)

)
dwi

k∝
∫
P
(
xi|zik = 1, wi, φi,Θ

(r)
)
π
(r)
k P (wi|φi) dwi

k∝ π(r)
k PVII

(
xi;µ

(r)
k ,Σ

(r)
k , φi

)
,

where PVII denotes the Pearson type VII distribution:

PVII

(
xi;µ

(r)
k ,Σ

(r)
k , φi

)
=

Γ(αi + d/2)

Γ(αi)|Σk|1/2 (2πγi)
d/2

×

1 +

∥∥∥xi − µ(r)
k

∥∥∥
Σ

(r)
k

2γi

 .

−(αi+
d
2 )

M-step: The parameter updates are obtained by maximiz-
ing the expected complete-data log-likelihood (4). This
maximization yields closed-form expressions for all the
model parameters. While the expression for the mixture
proportions correspond to the standard GMM, i.e., π(r+1)

k =
1
n

∑n
i=1 η

(r+1)
ik , the updates for the means and covariances

are provided in (8), with the notation w(r+1)
ik =

α
(r+1)
i

γ
(r+1)
ik

.

4. SPEAKER LOCALIZATION AND DIARIZATION

In this Section we apply the WD-GMM to the problem of
active speaker localization using audio-visual fusion. More
precisely, we develop an instantaneous active speaker detec-
tor, localizer using auditory and visual data. Moreover, cross-
modal weights are used to systematically provide a relevance
measure for each observation point in a data driven fashion.
That is to say the auditory observation (Section 4.1) are used

to weight the visual observations (Section 4.2) and vise-versa,
as explained in Section 4.3. Determining the number of active
speakers is statistical solved in Section 4.4 and the prominent
speaker diarization in Section 4.5.

4.1. The Audio Modality

Extracting meaningful features from the auditory signals
acquired at the microphones is a difficult task for several
reasons. First, the two auditory channels encompass valu-
able information about the position and content of the sound
sources, which is combined in a complex and environment-
dependent fashion. Second, both signals are contaminated
by noise, coming from the microphones, and reverberations,
which can highly perturb the signal. Third, the information
is sparsely distributed in the auditory signal, both in time
and frequency. On one side, auditory features will only be
meaningful when the sound sources are active. On the other
side, common sounds such as speech, are characterized by a
sparse spectrum.

In order to provide to the EM algorithm reliable auditory
features, we chose the sound source localization method pro-
posed in [?] for its performance and robustness. The method
uses spectral binaural cues to learn the effect of the environ-
ment on the acoustic signals and therefore it is able to ac-
curately find the sound source position. More precisely, the
method requires a training phase with white noise in which
the position of the sound source is known during the extrac-
tion of the spectral binaural cues (Interaural Phase and Level
Differences). These position-cue pairs are used to learn a
probabilistic mapping from the source space to the spectral
domain. Moreover, the probabilistic framework provides the
inversion mapping, thus a sound source localization mapping
from spectral binaural cues. Therefore, the algorithm is able
to decouple the content of the sound source from its position.
In addition, the probabilistic model is specifically designed
to cope with the microphone noise. One may think that the
use of white noise in the training phase limits the applicabil-
ity of the algorithm. However, one prominent feature of the
probabilistic model is the explicit modeling of missing data
situations. That is to say, that the localization mapping does
not need a spectral cue with meaningful information in all
frequency bands. Instead, the mapping makes use of those
frequency bands in which the source is emitting. For all these
reasons, we find that the method proposed in [?] is extremely
well adapted to the scenario of our current research.

In practice, we train the method with a loudspeaker emit-
ting white noise and carrying an easy-to-detect target. This
target provides the image location associated to the extracted
binaural cues. Once the localization mapping is learnt, we
use it to extract potential sound source locations that will be
denoted byA = {aj}na

j=1.



µ
(r+1)
k =

∑n
i=1 w

(r+1)
ik η

(r+1)
ik xi∑n

i=1 ηikw
(r+1)
ik

, Σ
(r+1)
k =

∑n
i=1 η

(r+1)
ik w

(r+1)
ik

(
xi − µ(r+1)

k

)(
xi − µ(r+1)

k

)>
∑n
i=1 η

(r+1)
ik

. (8)

4.2. The Visual Modality

Together with the signals acquired at the microphones, we
also use the image flows captured by a color camera. Visual
information is less sparse than auditory information. As long
as the speakers are in the field of view and they are not oc-
cluded, the light reflected on their surface will be captured by
the camera sensors.

As in the previous section, we would like to provide to
the EM algorithm features that robustly localize the people in
the field of view. One may immediately think about detection
the speakers’ face. However, this has shown to be a limitation
in many previous works [?, ?, ?], in which non-frontal detec-
tion was not possible. Instead, we first detect human upper
body using [?]. This detector provides an approximate loca-
tion of the head. In order to refine this localization, we run the
landmark face detector presented [?]. One of the prominent
features of this method is that it provides position of the lip
landmarks. Therefore, if a face is found, the head position is
replaced by the average position of the lip landmarks. In this
way we build a general-purpose visual person localizer that is
robust to light changes and to pose thanks to [?, ?] and that
always provides a localization, refined in the case of frontal
detection. From now on, these localizations will be denoted
by V = {vl}nv

l=1, here after referred as visual observations.

4.3. Cross-modal Weighting

As discussed in Section 3, we need to provide the prior pa-
rameters Φ of the weights W associated to the audio-visual
observations X = A ∪ V . From now on we write xi = ai
for i = 1, . . . , na and xi = vi−na

for i = na + 1, . . . , n =
na+nv . In other words, the first na are auditory observations
and the remaining nv are the visual observations.

In this context the following natural question arises: how
can we systematically provide values for Φ in a data-driven
fashion and that will help the EM algorithm group the obser-
vations? Intuitively, we would like auditory observations that
are close to visual observations to have higher relevance that
those auditory observation lying far away from all visual ob-
servations. The same intuition hold for visual observations
that are close/far from auditory observations. The rationale
behind this choice is that one auditory observation far away
from all visual observations is probably an outlier. However,
when an auditory observation is close to many visual obser-
vations, there is a bigger chance that it corresponds to an un-
derlying audio-visual cluster (a speaker). Therefore, the latter
kind observations should have larger weight than the former
kind of observations. In order to make this intuition real we

compute the following quantity for each observation xi:

w
(0)
i =

∑
s∈Si

exp

(
−D(xi,xs)

σ

)
,

where D is a distance function. In the previous formula,
Si = {1, . . . , na} if i > na and S = {na + 1, . . . , nv} if
i ≤ na. That is to say that we use the visual observations
to compute the weight for the aj’s and the auditory observa-
tions to compute the weight for the vl’s. The parameters of
the prior gamma distribution are set to αi = γiw

(0)
i + 1 and

γi = γ. In this way, the mode of the prior distribution for
wi is w(0)

i . γ is a parameter to be set experimentally, and we
observed that values in the range 0.5 to 10 did not have a no-
ticeable effect on the results. We have chosen γ = 0.5 since
it sets the prior variance of wi to a big value. In this way, the
EM algorithm is less constrained by the initialization.

4.4. Determining the Number of Speakers

One of the limitations of the EM algorithm is that, by itself,
it is unable to choose the best model fitting the set of obser-
vations X . In other words, the proposed EM runs for a given
number of components K. However, in our particular appli-
cation, we do not know the number of speakers beforehand.
In order to overcome this issue, we use the Bayesian Infor-
mation Criterion (BIC). BIC is a quantity that should be com-
puted after with the maximum likelihood parameters. Most
importantly BIC penalizes the models based on their dimen-
sionality. This higher the number of free parameters of the
model, the larger the penalization. This is meant to avoid
over-fitting, in the particular case of GMM-like models, it has
desirable statistical properties, see [?]. BIC has the following
expression:

BIC(X,ΘK) = ln p̃(X|ΘK ,Φ)− 6K ln(n)

2
. (9)

The model maximizing BIC will be chosen.

4.5. Post-Processing

The EM algorithm is the right methodology to solve for the
ML problem formulated above. Together with the cross-
modal weighting and the BIC, they set up a robust method to
coherently group auditory and visual observations. However,
the present probabilistic framework is application-blind. That
is to say that the model best fitting the auditory and visual
observations does not necessarily correspond to the best rep-
resentation of the ongoing social interplay. In our particular



case, this translates into getting spurious groups of observa-
tions that do not correspond to a speaker in the scene. More
precisely, we may have groups of auditory observations that
do not contain any visual observations and groups of only
visual observations. In the first case, the cluster should be
discarded, since the probability of a systematic fail of the
upper-body detector is very low. In the second case, we could
keep the cluster and mark it as a potentially silent speaker.

We are mostly interested in clusters that contain both au-
ditory and visual observations. With this aim, we classify all
the observations into clusters using MAP. Clusters contain-
ing both video observations and a sufficient number of audio
observations are marked as active speakers. By sufficient we
mean no less than na+nv

K̂
, where K̂ is the number of clus-

ter chosen by BIC. We found this value high enough to dis-
card clusters containing auditory outliers and small enough to
guarantee the good sensibility of the system.

5. EXPERIMENTAL RESULTS

In this section, our proposed model is first tested on clustering
a synthetic dataset, then applied to a real audio-visual data
sequence acquired using a robotic setup.

5.1. Synthetic Data

We verify on a toy example that our proposed model and the
EM algorithm behaves as expected. The experiment have
been carried out as follows. First we generate a toy dataset
from a GMM having 3 component, a number of samples from
uniform distribution (UD) are added as noise. We compare
the robustness to fit among different models: standard GMM
(Std GMM), Std GMM plus a uniform component (Std GMM
+U) and WD-GMM. One way in which the presence of atyp-
ical observations in the data has been handled when fitting
GMM has been to include an additional component having a
UD, i.e (Std GMM +U).

An importance aspect of the proposed model is the weight
for observations. For the toy dataset we proceed as follows.
We take into consideration the rational assumption that data
points that are in a dense area should have a higher weight.
Then, we generate the weight wi as sum of the inverse expo-
nential pairwise euclidean distance from a point to all other
points as in (4.3) and initialize the gamma distribution pa-
rameter as αi = γiwi + 1 and we fix the value for γi. It is
known that the EM algorithm depend on initial parameters.
Thus, the same initial parameters is given too all models. We
initialize with a result from K-means.

The clustering result obtained are shown in Figure 1. The
result obtained using WD-GMM (Fig. 1b) compares well
with the true grouping (Fig.1a). The result obtained from
Std GMM (Fig.1c) fails to adequately model the data. Ob-
viously, the one of the component is attempting to model the
background noise. In the other hand, the Std GMM +U (Fig.

1d) works well since it is the same model used to generate
the data in the first instance. However, this model, unlike the
WD-GMM model, cannot be expected to work as well in situ-
ations when the noise is not uniform. We argue that weighting
data in GMM can substantially improve performance, espe-
cially when a weighting scheme is derived in a way that give
lower weight value to outliers.
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Fig. 1. Result of Clustering on a toy dataset using different
models.
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Fig. 2. The speaking-turn scenario. One persons count while
the person on the left make false lip movement. 1st row shows
observation from audio and video in green and blue color re-
spective. 2nd row, shows the localized active speaker using
our method
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Fig. 3. The speaking-turn scenario. Two persons engage in a
normal conversation take speech turns

5.2. Results with Real Audio-Visual Data

Audio-visual data is acquired on a motorized human dummy
head - called Popeye. Popeye resides in a normal room and
the scene is recorded via two microphone in Popeye ear’s.
Popeye also has two eyes (stereo camera). However, in our
experiments we only used one eye. While using stereo can
provide depth information and capture a larger part of the
scene, this is left for future work.

Two sets of experiments are conducted. In the first ex-
periments a person counts in front of the camera, the result
is shown in Figure 2. In the second experiments, two per-
sons engage in a normal conversation take speech turns, the



results is illustrated in Figure 3. From Figures 2 and 3, in the
first row panel, we can see two things. First, some of the au-
dio observations are scattered around the true source location
i.e mouth. Second, there are some noisy observations due
to voice of the active speaker is too weak or the audio seg-
ment corrupted by reverberation and background noise which
result incorrect localization. The figures in the second row
highlights the location of active speakers by our method.

6. CONCLUSION

In this paper, we presented a mixture model that weight sam-
ples differently and derived an EM algorithm that is theoret-
ically well justified. The sample weighting scheme provides
flexible tool to include external information for robust model
parameters learning. However, the weight associate with each
sample should be given to the model and it should be devel-
oped for each specific task at hand. We demonstrate the va-
lidity and usefulness of the model in simulated data modeling
task on a toy dataset. The experiments conducted demon-
strate the robustness of proposed method in fitting data in the
presence of outliers. We demonstrate the capability of the
model on active speaker localization task and validate that
complementing audio source localization with visual infor-
mation can substantially improve performance compared to
the audio modality alone. Future research direction could be
integrating audio-video tracking system on top of our result.


