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Abstract. We propose a fast algorithm to estimate brain tissue con-
centrations from conventional T1-weighted images based on a Bayesian
maximum a posteriori formulation that extends the “mixel” model de-
veloped in the 90’s. A key observation is the necessity to incorporate
additional prior constraints to the “mixel” model for the estimation of
plausible concentration maps. Experiments on the ADNI standardized
dataset show that global and local brain atrophy measures from the pro-
posed algorithm yield enhanced diagnosis testing value than with several
widely used soft tissue labeling methods.

1 Introduction

Image-guided diagnosis of brain disease calls for accurate morphometry algo-
rithms, e.g., in order to detect focal atrophy patterns relating to early-stage
progression of particular forms of dementia. To date, widely used brain mor-
phometry packages rest upon discrete Markov random field (MRF) image seg-
mentation models [1, 2] that ignore, or do not fully account for partial voluming,
leading to potentially inaccurate estimation of tissue volumes. Although several
partial volume (PV) estimation methods have been proposed in the literature
from the early 90’s [3–8], none of them seems to be in common use.

One difficulty with PV estimation from a single real-valued image is the
necessity to incorporate strong prior knowledge. As already observed in [3], for
a number K of tissues, a maximum likelihood approach leads to solving for
each voxel one equation with K−1 unknown concentrations, which has multiple
solutions when K > 2. This is easily understood by considering an example of
T1-weighted brain MR image where the mean intensity values of cerebrospinal
fluid (CSF), gray matter (GM) and white matter (WM) are, say, 50, 150, and
250, respectively. Any voxel in the brain with intensity 150 could contain either
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100% GM, or 50% CSF and 50% WM, or any concentrations of CSF, GM and
WM that match an average intensity of 150. A possibility to disambiguate the
problem is to use multichannel MR images [3, 9], which have the effect to increase
the number of constraints on the unknown concentrations but are only available
from specific clinical protocols.

There exist soft labeling methods that compute tissue weights which are
sometimes incorrectly interpreted as concentrations. For instance, the varia-
tional expectation-maximization (VEM) algorithm for discrete MRF models [1,
10] computes posterior membership probabilities under assuming a single tissue
per voxel. Tissue weights output by the fuzzy C-mean [11, 12] or random walker
[13] algorithms have no clear relation to PV.

Some authors have proposed to estimate PV in the conventional discrete
segmentation framework by including labels that represent mixed tissue classes
modeled by intensity distributions that may reflect PV effects physically [14],
or be computationally more convenient Gaussian distributions [15, 2]. Such ap-
proaches have the potential to pinpoint voxels affected by strong PV, but are
expected to underestimate PV overall. Another strategy that stays within the
framework of discrete MRF models is to perform tissue classification at super-
resolution, hence completing a more ambitious task than estimating voxelwise
tissue concentrations. This was tackled in [7] using a Monte Carlo variant of the
VEM algorithm, which appears to require heavy computation and memory load.

2 A regularized tissue concentration model

2.1 Bayesian formulation

We propose to revisit methods that rely on continuous MRFs and formulate tis-
sue concentration estimation as a Bayesian maximum a posteriori (MAP) prob-
lem following [3, 4, 6, 8]. Let Y denote an input MR image previously submitted
to various artifact corrections and skull stripping. We assume the following image
appearance model within the intra-cranial mask:

yi = µ>qi + εi, εi ∼ N(0, σ), (1)

where yi denotes intensity at voxel with index i, qi is the associated tissue con-
centration vector, µ is the 3-dimensional vector of tissue means corresponding to
CSF, GM and WM, respectively, and σ is the noise standard deviation. The as-
sumption of Gaussian noise with constant σ across tissues is justified under large
SNR for amplitude images, and more generally for phase array sum-of-squares
images, as a first-order approximation to the noncentral chi distributed noise
derived from imaging physics [16, 17]. Note that, in discrete labeling models, it
is common to assume tissue-dependent variances to account for both acquisition
noise and PV effects, however PV effects are modeled deterministically here.

Unknown in (1) are the concentration map Q = (q1,q2, . . .) and the global
parameters (µ, σ). A maximum likelihood estimation approach would lead to



minimize w.r.t. Q, µ and σ:

−2 logP (Y |Q,µ, σ) = n log 2πσ2 +
1

σ2

∑
i

(yi − µ>qi)
2, (2)

where n is the total number of voxels. As mentioned in the introduction, this is an
ill-posed problem. Consider for instance a voxel where the intensity yi is within
the extremal values of µ; we then have an infinity of qi’s for which yi = µ>qi,
hence minimizing (yi − µ>qi)

2. Moreover, it can be seen that by choosing Q
in this fashion, the likelihood becomes infinite for σ = 0 and µ with extremal
values µ1 = −∞ and µ3 = +∞. Therefore, maximum likelihood estimators of
Q, µ and σ are both non-unique and physically implausible.

In order to regularize the problem, we add a prior under the form P (Q,µ, σ) =
P (Q)P (µ, σ) that expresses three types of knowledge: 1) voxels with mild PV are
more frequent than with strong PV; 2) tissue concentration maps are spatially
smooth; and 3) mean tissue intensities are bounded. The first two constraints
are achieved by:

P (Q) ∝ e−
1
2

∑
i q

>
i Vαqi− β2

∑
i,j∈Ni

‖qi−qj‖2 , with Vα =

 0 α1 α2

α1 0 α3

α2 α3 0

 , (3)

where Vα is a symmetric hollow matrix parametrized by a fixed vector α � 0,
β > 0 is another fixed parameter and Ni stands for the set of neighbors of voxel i
in the intra-cranial mask according to a 6-topology in this work. In the limit
where minα → ∞, each term q>i Vαqi becomes infinite unless qi concentrates
on a single tissue, therefore the prior imposes a hard labeling constraint. The
further term weighted by β is a classical interaction potential also used in [3, 4,
8] to favor smooth concentration maps.

As for the global parameters, we choose a prior that prevents an implausibly
large gap between mean tissue intensities,

P (µ, σ) ∝ e−γ
n

2σ2
‖µ−m1‖2 , (4)

where γ > 0 and m are additional real-valued parameters. In our implemen-
tation, γ is fixed similarly to α and β. Combining the likelihood (2) with the
priors (3) and (4), we see that the MAP problem boils down to minimizing the
following cost function:

C(Q,µ, σ,m) = n log 2πσ2 +
1

σ2

∑
i

(yi − µ>qi)
2 +

∑
i

q>i Vαqi

+β
∑
i,j∈Nj

‖qi − qj‖2 + γ
n

2σ2
‖µ−m1‖2. (5)

2.2 MAP tracking algorithm

It is natural to minimize (5) iteratively by alternating minimization along Q,
(µ, σ) and m, yielding three steps:



Step 1. Finding the optimal concentration map Q at fixed (µ, σ) and m amounts
to a quadratic optimization problem subject to linear constraints since Q is
restricted to the multidimensional simplex, i.e., ∀i, qi � 0 and q>i 1 = 1. This is
effectively done by looping over voxels in arbitrary order and solving for each qi
with all other concentrations held fixed, yielding the following system:(

1

σ2
µµ> + Vα + 2βniI

)
qi −

yi
σ2

µ− 2β
∑
j

qj + λ1 + ν = 0,

where ni = #Ni ≤ 6 is the number of grid neighbors of voxel i, I is the 3 × 3
identity matrix, and (λ,ν) are Karush-Kuhn-Tucker multipliers satisfying ν � 0
and ν � qi = 0 that are determined using an active set algorithm [18].

Step 2. Compute the optimal (µ, σ) at fixed Q and m, yielding:

µ̂ =
(
nγI+

∑
i

qiq
>
i

)−1(
nγm+

∑
i

yiqi

)
, σ̂2 = γ‖µ̂−m1‖2+

1

n

∑
i

(yi−µ̂>qi)2.

Step 3. Compute the optimal m at fixed Q and (µ, σ): m̂ = µ>1/3.
The algorithm is initialized with uniform concentrations, i.e. ∀i, qi = 1/3, µ

as the three main histogram modes detected using scale-space analysis [19], and
a tiny deviation σ = 10−5 to ensure that the likelihood term predominates in
early iterations. Each iteration requires about 5 seconds using C/Python code for
a typical brain MR image on a standard single processor, which could probably
be cut down by further code optimization for Step 1.

The algorithm involves fixed parameters α, β and γ that were tuned using
a BrainWeb simulated T1 image [20] so as to minimize the Hellinger distance
w.r.t. the fuzzy tissue volumes provided by BrainWeb, yielding:

α = (10.5, 29486, 7)>, β = 1.2, γ = 0.005.

Note that because α2 turned out very large, the algorithm optimized in this
manner practically proscribes tissue mixing involving both CSF and WM. This
helps PV estimation in most brain areas but also creates a systematic artefactual
“GM rim” around the ventricles, as seen in Figure 1, which could be avoided
using spatially varying priors.

2.3 Comparison with other methods

Our MAP formulation (5) generalizes some previously proposed PV estimation
algorithms. The case α = 0 and γ = 0 was studied in [3, 4, 8]. The algorithm
proposed in [6] corresponds to choosing a uniform α = (α, α, α)> and setting β =
1
2α and γ = 0. We observed from visual inspection that these special cases tend
to massively overestimate PV on both BrainWeb and real data. Moreover, the γ
parameter plays an essential role as it enables estimating intensity parameters
µ and σ along with tissue concentrations, preventing convergence towards an



absurd solution (µ1 = −∞, µ3 = +∞ and σ = 0), an issue that was overlooked
in the above cited references.

Another related method, hereafter referred to as the Shattuck/Bach (SB)
method [14, 15], relies on labeling voxels according to, e.g., 5 classes that repre-
sent pure CSF, GM and WM as well as mixed CSF/GM and GM/WM. This is
done in [15] using a VEM algorithm that outputs membership posterior proba-
bility maps that are then converted into tissue concentrations using linear frac-
tional content estimation based on adjacent pure tissue intensity means. Figure 1
illustrates the quantization effect produced by this approach compared to the
proposed algorithm.

Fig. 1. Gray matter maps estimated from different methods for real data. From left to
right, fuzzy C-mean, 3-class VEM, SB method, proposed MAP algorithm.

3 Experiments

We evaluated several tissue labeling methods on a standardized analysis set [21]
from the Alzheimer’s Disease (AD) Neuroimaging Initiative (ADNI, adni.loni.
ucla.edu) consisting of T1-weighted MR scans with approximately 1 mm3 voxel
size, from different 1.5T and 3T acquisition systems. The set comprises 818 sub-
jects, including 229 diagnosed as normal (NL), 401 as mild cognitively impaired
(MCI), and 188 as AD. For each subject, we used by default the 1.5T screening
scan, or the 3T baseline scan when available (as is the case for 151 subjects),
corrected for gradient distortion, B1 inhomogeneity and bias field, as provided
by ADNI. All images were further skull-stripped using diffeomorphic registration
[22] with an in-house brain MR template, and a crude hippocampus segmenta-
tion was performed similarly using a hippocampus mask drawn on the template
by a neurologist.

For each ADNI case, we estimated both the global brain tissue ratio (BTR)
and the normalized hippocampus volume (NHV) using tissue concentration or
pseudo-concentration maps output by four different algorithms: the proposed PV
estimation algorithm, the fuzzy C-mean algorithm [11, 12], the VEM algorithm
using a conventional 3-class Gaussian mixture model [1, 10], and the SB method
using a 5-class model [15], see Section 2.3. The BTR was defined as BTR =



Marker Comparison MAP method SB method 3-class VEM Fuzzy C-mean
LR+ LR− LR+ LR− LR+ LR− LR+ LR−

BTR
AD vs NL 2.177 0.278 2.052 0.282 1.994 0.301 1.994 0.351
MCI vs NL 1.661 0.394 1.593 0.407 1.494 0.385 1.548 0.419
AD vs MCI 1.479 0.671 1.468 0.679 1.431 0.675 1.463 0.668

NHV
AD vs NL 3.365 0.165 3.147 0.169 2.865 0.170 3.022 0.160
MCI vs NL 2.008 0.301 1.911 0.309 1.723 0.347 1.891 0.315
AD vs MCI 1.803 0.611 1.746 0.621 1.565 0.664 1.733 0.628

Table 1. Cross-validated positive and negative likelihood ratios for linear classifiers
using respectively age+BTR (top rows) and age+NHV (bottom rows) as features. The
largest LR+ and smallest LR- are shown in bold for each comparison.

(volGM + volWM)/volTIV, where volGM and volWM are the global GM and WM
volumes, respectively, and volTIV = volCSF + volGM + volWM is the total intra-
cranial volume. The NHV was defined as NHV = (vol∗GM+vol∗WM)/volTIV, where
vol∗GM and vol∗WM were the estimated GM and WM volumes within the crude
hippocampus mask.

Both the 3-class and SB methods involve a Markov/Potts ’beta’ regulariza-
tion parameter that was optimized using the same BrainWeb matching criterion
as for the proposed PV algorithm (see Section 2.2), respectively yielding β = 0.2
and β = 0.4 (note that the MAP algorithm was the one achieving the small-
est minimal Hellinger distance w.r.t. the BrainWeb fuzzy maps). All algorithms
were initialized by the same tissue means found by histogram mode detection
[19] and tiny within-class standard deviations 10−5, and run until variations on
tissue maps were as small as for the MAP algorithm after 25 iterations. For the
SB method, initial CSF/GM and GM/WM means were computed by averaging
adjacent histogram modes.

Two-dimensional linear classifiers using respectively age+BTR and age+NHV
as features were implemented for each soft labeling method and cross-validated
using a standard leave-one-out procedure in three distinct classification scenar-
ios: AD vs NL, MCI vs NL, and AD vs MCI. Table 1 reports obtained pos-
itive and negative likelihood ratios, LR+ = sensitivity/(1 − specificity) and
LR− = (1− sensitivity)/specificity. These values represent post-test disease
odds corresponding to even pre-test odds, respectively given a positive or neg-
ative test. The proposed PV estimation algorithm is seen to achieve the largest
LR+ and nearly smallest LR− in all cases, suggesting its potential to improve
diagnostic testing value over conventional atrophy detection methods. McNe-
mar tests for classifier comparison [23] were however short of significance in
most cases, indicating that the improvement is mild on the simple classification
strategies considered here.

4 Conclusion

This work contributes to demonstrate the feasibility of PV estimation from con-
ventional T1-weighted images without resorting to additional image acquisitions.



We have extended the “mixel” model originally proposed by Choi et al [3] and
further developed in [4, 8, 6] so as to alleviate two important drawbacks. First,
previous “mixel” models do not enable simultaneous updating of tissue concen-
tration maps and global intensity parameters. Second, they tend to overestimate
PV effects as they do not include a tissue homogeneity prior, or use too weak a
prior [6].

Our disease classification experiments indicate that the proposed PV esti-
mation algorithm enables more accurate detection of AD and MCI from sim-
ple volume biomarkers than conventional brain morphometry methods, thereby
confirming the benefit of PV modeling for image-guided diagnosis. While the
improvement is mild for the single-biomarker classifiers tested in this work, we
anticipate that stronger effects could be seen in multi-dimensional classification
using highly localized biomarkers (e.g. voxelwise concentrations), where accurate
PV estimation would seem important to detect subtle atrophy patterns.

Extensions of the presented method using atlas-based priors may be needed
to correct for systematic errors at the CSF/WM interface, as shown in Figure 1,
as well as to tackle estimation of abnormal WM, which is frequent in elderly
subjects and is characterized by a drop in WM intensity that makes it appear
like GM. The use of atlas-based priors in image-guided diagnosis is however an
open research topic as recent work suggests that conventional atlas-based tissue
classification methods may lead to reduced population discrimination [24].
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