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1. The problem and his modelization

e New probabilistic framework for supervised texture recognition in images.

e Statistical parametric model which takes into account both the spatial dependencies between obser-
vations and the non homogeneity of textures.
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2. The corresponding distributions

o Vi € S, observation z; € IRP, hidden texture y; € |1, L|, auxiliary variable z; € [1, K].
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Indepenagnt Noise

e Y and Z|y are markovians, so that (Y, Z) is markovian

o (X,Z|y) is an HMF-IN

¢ (X,Y,Z)is a TMF-IN (Triplet Markov Field with Independent Noise) [5]
¢ BUT (X,7Y) is not necessarily an HMF-IN

3. Learning Step

e We dispose of learning data labelled with the correponding texture y.
e We estimate parameters { Byy} and {6;;.} of the HMF-IN (X, Z|Y =y).

e For Hidden Markov Fields, due to the dependence structure, the exact Expectation-Maximisation
(EM) algorithm |2] is untractable.

e We use the Mean Field (MF) approximation [3] to derive a factorized model:
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Pa(zly) ~ HP(zi|y, Zj,J € N;), 1z constant field
1=1

[terative algorithm MF-EM (4] which, at each iteration, repeats the two steps:
(i) create the new constant field z = (2;);e5,

(ii) apply the EM algorithm for the factorized model to get new estimators of parameters { By}
and {Hlk}

4. Recognizing Step

e We dispose of estimators él ;. of the LXK distributions fy and estimators Bll’ of the L x L symmetric
correlation matrices.

e Spatial parameter § of the MRF Y remains to be unknown.

e Goal: to classity each unlabelled data from a new image in one of the L textures.

e We run the MF-EM algorithm over the HMF-IN (X, (Y, Z)) with fixed parameters 0. and By to
get new estimator § of (.

e Final classification is then obtained by applying the Most Probable Marginals (MPM) [1] rule ac-
cording which the site ¢ is classified in texture [; so that:
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l; =arg max P(Y;=1x)= > P(Y;=17; =k|x).
le[1,L] k=1

5. Experimental results

e /=7 different textures.

e Learning base: 7 x 10 = 70 single texture images.

Brick  Carpet  Chair Floor 1 Floor 2 Marble Wood

[

FIGURE 1: Sample of the learning base (7 textures).

e Recognition base: 70 single texture images and 68 multi-texture images.

e Observations are high-dimensional image descriptors (of dimension p = 128) irregulary located.

FIGURE 2: Original image, extracted descriptors and Delaunay neighborhood graph.

e Distributions fy, .l € [1,L],k € [1, K| (L =7, K = 10) are supposed to be Gaussian, with diagonal
covariance matrix ($%49) or parametrized (£"47) [5] in order to cope with the dependencies between
the 128 variables of a data.

e Independent Mixture model or Triplet Markov Field modelisation.

Model Covariance | Brick | Carpet | Chair | Floor 1| Floor 2| Marble Wood
Ind. Mixture| X% 177.58| 31.60 | 58.26| 28.26 = 58.79 | 33.87 | 58.56
Ind. Mixture| XM 181 18| 56.94 | 62.48| 35.64 | 67.43 | 37.05 | 65.02
Triplet MF | 2909 196,59 80.70 |83.60| 82.69 | 83.90 | 46.05 | 95.18
Triplet MF | 2hdim 199331 98.61 [99.28 | 97.36 | 99.57 | 56.24 | 99.28

FIGURE 3: Percent of data of each texture correctly classified.
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FIGURE 4: Classification of an image composed of 3 different textures (carpet, chair and floor 2)

with, from top to bottom : independent mixture and ydiag, independent mixture and yhdim.
Triplet Markov Field and 249 Triplet Markov Field and Rdim

Conclusion

e We have proposed a modelization designed for supervised classification of texture images based on
Triplet Markov Field.

e Learning and classification steps are performed applying an EM-like algorithm with mean field ap-
proximation.

e Results obtained on real texture images are very satisfying.
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