TRIPLET MARKOV FIELD DESIGNED FOR SUPERVISED CLASSIFICATION OF TEXTURE IMAGES. Juliette BLANCHET, Florence Forbes and Cordelia SCHMID

http://mistis.inrialpes.fr/people/blanchet juliette.blanchet@inrialpes.fr

1. The problem and his modelization

• New probabilistic framework for supervised texture recognition in images.

• Statistical parametric model which takes into account both the spatial dependencies between observations and the non homogeneity of textures.

Observation \mathbf{X} Hidden class (homogen) \mathbf{Y}

Observation \mathbf{X} Hidden texture (unhomogen) \mathbf{Y}

 $(\mathbf{X}, (\mathbf{Y}, \mathbf{Z}))$ HMF-IN [recognizing step]

and $(\mathbf{X}, \mathbf{Z} | \mathbf{y})$ HMF-IN [learning step]

5. Experimental results

• L=7 different textures.

• Learning base: $7 \times 10 = 70$ single texture images.

FIGURE 1: Sample of the learning base (7 textures).

+ Auxiliary variable \mathbf{Z} (~ subclasses)

 (\mathbf{X}, \mathbf{Y}) HMF-IN (Hidden Markov Field Independent Noise)

2. The corresponding distributions

• $\forall i \in S$, observation $x_i \in \mathbb{R}^p$, hidden texture $y_i \in [1, L]$, auxiliary variable $z_i \in [1, K]$.

$$P(\mathbf{Y} = \mathbf{y}) = \frac{1}{W} \exp(\begin{array}{c} \beta \sum_{i \sim j} 1_{y_i = y_j} \end{array})$$

a texture is a block
$$P(\mathbf{Z} = \mathbf{z} | \mathbf{Y} = \mathbf{y}) = \frac{1}{W(\mathbf{y})} \exp(\sum_{i \sim j} \underbrace{B_{y_i y_j}(z_i, z_j)}_{\text{correlation term}})$$

$$P(\mathbf{x} | \mathbf{y}, \mathbf{z}) = \prod_{i \in S} P(x_i | y_i, z_i) = \prod_{\substack{i \in S \\ i \in S \\ \text{Independent Noise}}} f_{\theta_{y_i z_i}}(x_i)$$

• \mathbf{Y} and $\mathbf{Z}|\mathbf{y}$ are markovians, so that (\mathbf{Y}, \mathbf{Z}) is markovian

• $(\mathbf{X}, \mathbf{Z} | \mathbf{y})$ is an HMF-IN

• $(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$ is a TMF-IN (Triplet Markov Field with Independent Noise) [5]

• Recognition base: 70 single texture images and 68 multi-texture images.

• Observations are high-dimensional image descriptors (of dimension p = 128) irregulary located.

• The neighborhood system is the Delaunay graph.

FIGURE 2: Original image, extracted descriptors and Delaunay neighborhood graph.

- Distributions $f_{\theta_{lk}}, l \in [1, L], k \in [1, K]$ (L = 7, K = 10) are supposed to be Gaussian, with diagonal covariance matrix (Σ^{diag}) or parametrized (Σ^{hdim}) [5] in order to cope with the dependencies between the 128 variables of a data.
- Independent Mixture model or Triplet Markov Field modelisation.

Model	Covariance	Brick	Carpet	Chair	Floor 1	Floor 2	Marble	Wood
Ind. Mixture	Σ^{diag}	77.58	31.60	58.26	28.26	58.79	33.87	58.56
Ind. Mixture	Σ^{hdim}	81.18	56.94	62.48	35.64	67.43	37.05	65.02
Triplet MF	Σ^{diag}	96.59	80.70	83.60	82.69	83.90	46.05	95.18
Triplet MF	\sum hdim	99.33	98.61	99.28	97.36	99.57	56.24	99.28

FIGURE 3: Percent of data of each texture correctly classified.

3. Learning Step

- We dispose of learning data labelled with the corresponding texture **y**.
- We estimate parameters $\{B_{ll'}\}$ and $\{\theta_{lk}\}$ of the HMF-IN $(\mathbf{X}, \mathbf{Z}|\mathbf{Y} = \mathbf{y})$.
- For Hidden Markov Fields, due to the dependence structure, the exact Expectation-Maximisation (EM) algorithm [2] is untractable.
- We use the Mean Field (MF) approximation [3] to derive a factorized model:

 $P_G(\mathbf{z}|\mathbf{y}) \simeq \prod^{n} P(z_i|\mathbf{y}, \tilde{z}_j, j \in N_i), \quad \tilde{\mathbf{z}} \text{ constant field}$

Iterative algorithm MF-EM [4] which, at each iteration, repeats the two steps: (i) create the new constant field $\tilde{\mathbf{z}} = (\tilde{z}_i)_{i \in S}$,

(ii) apply the EM algorithm for the factorized model to get new estimators of parameters $\{B_{ll'}\}$ and $\{\theta_{lk}\}$.

FIGURE 4: Classification of an image composed of 3 different textures (carpet, chair and floor 2) with, from top to bottom : independent mixture and Σ^{diag} , independent mixture and Σ^{hdim} , Triplet Markov Field and Σ^{diag} , Triplet Markov Field and Σ^{hdim} .

Conclusion

- We have proposed a modelization designed for supervised classification of texture images based on Triplet Markov Field.
- Learning and classification steps are performed applying an EM-like algorithm with mean field approximation.
- Results obtained on real texture images are very satisfying.

4. Recognizing Step

- We dispose of estimators $\hat{\theta}_{lk}$ of the $L \times K$ distributions $f_{\theta_{lk}}$ and estimators $\hat{B}_{ll'}$ of the $L \times L$ symmetric correlation matrices.
- Spatial parameter β of the MRF **Y** remains to be unknown.
- Goal: to classify each unlabelled data from a new image in one of the L textures.
- We run the MF-EM algorithm over the HMF-IN $(\mathbf{X}, (\mathbf{Y}, \mathbf{Z}))$ with fixed parameters $\hat{\theta}_{lk}$ and $\hat{B}_{ll'}$ to get new estimator β of β .

• Final classification is then obtained by applying the Most Probable Marginals (MPM) [1] rule according which the site *i* is classified in texture l_i so that:

 $\hat{l}_i = \arg \max_{l \in [1,L]} P(Y_i = l | \mathbf{x}) = \sum_{k=1}^K P(Y_i = l, Z_i = k | \mathbf{x}).$

Bibliography

- [1] J. BESAG, On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, B 48(3), pp. 259–302, 1986.
- [2] A. DEMPSTER, N. LAIRD AND D. RUBIN, Maximum Likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977.
- [3] D. CHANDLER, Introduction to modern statistical mechanics. Oxford University Press, 1987.
- [4] G. CELEUX, F. FORBES AND N. PEYRARD, EM procedures using mean field-like approximations for Markov model-based image segmentation. Pattern Recognition, 36(1) 131–144, 2003.
- [5] C. BOUVEYRON, S. GIRARD AND C. SCHMID, High Dimensional Discriminant Analysis. Int. Conf. on Applied Stochastic Models and Data Analysis, pp. 526-534, Brest, France, 2005.
- [6] D. BENBOUDJEMA AND W. PIECZYNSKI, Unsupervised image segmentation using triplet Markov Fields. Computer Vision and Image Understanding, pp. 476-498, 2005.