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ABSTRACT 
Harmony search (HS), mimicking the musician’s improvisation 
behavior, has demonstrated strong efficacy in optimization. To 
deal with the deficiencies in the original HS, a dynamic regional 
harmony search (DRHS) algorithm with opposition and local 
learning is proposed. DRHS utilizes opposition-based 
initialization, and performs independent harmony searches with 
respect to multiple groups created by periodically regrouping the 
harmony memory. An opposition-based harmony creation scheme 
is used in DRHS to update each group memory. Any prematurely 
converged group is restarted with its size being doubled to 
enhance exploration. Local search is periodically applied to 
exploit promising regions around top-ranked candidate solutions. 
DRHS consistently outperforms HS on 12 numerical test 
problems from the CEC2005 benchmark at both 10D and 30D. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – heuristic methods; G.1.6 [Numerical Analysis]: 
Optimization – global optimization 

General Terms 
Algorithms, Experimentation, Performance 

1. INTRODUCTION 
Harmony search (HS) [1], as an emerging metaheuristic algorithm, 
has succeeded in various applications. However, it suffers from 
some deficiencies. HS excessively relies on the harmony memory 
(HM) to exploit the solution space. The random selection operator 
can merely provide limited exploration beyond the HM. Therefore, 
the good performance of HS relies on a careful HM initialization 
that should extensively cover the solution space. On the other 
hand, a new harmony is always generated using the entire HM, 
which may degrade the efficacy of HS in solving multimodal 
problems. This is because too many harmonies scattering away 
from global optima may hamper the HM to evolve towards global 
optima. Moreover, the HM is prone to prematurely converging at 
undesirable local optima owing to the greedy replacement based 
HM updating scheme. Furthermore, a limited HM capacity may 
result in stagnation during the searching unless the random 
selection operator takes considerable efforts to resume the 
evolution. To address these issues, we propose a dynamic regional 
harmony search (DRHS) algorithm. 

2. HS 
HS [1] represents candidate solutions of an optimization problem 
by musical harmonies. The quality of candidate solutions 
corresponds to the euphoniousness of musical harmonies. By 
simulating how a group of musicians keep enriching their 
experiences to collaboratively seek for the most euphonious 
harmony in the improvising procedure, HS searches for global 
optima using three harmony improvisation operators (i.e., HM 
consideration operator, random selection operator and pitch 
adjustment operator) as well as the greedy replacement based HM 
updating scheme to iteratively evolve the HM that consists of 
promising candidate solutions. 

3. DRHS 
Major deficiencies in HS, as mentioned in Section 1, are listed 
below, followed by the strategies used in DRHS to address them. 

 The good performance of HS relies on the HM initialization. 
DRHS strategies: DRHS initializes one half of the HM randomly 
within the solution space with another half obtained using 
opposition-based learning [2] with respect to the solution space. 
This can make candidate solutions to better cover the entire 
solution space. 

 The new harmony is always generated using the entire HM. 
DRHS strategies: DRHS splits the HM into multiple groups and 
forces each group to independently exploit different sub-regions 
of the solution space. This can make promising sub-regions of the 
solution space to be efficiently exploited by certain groups. To 
prevent premature convergence, the HM is periodically and 
randomly regrouped. Moreover, an opposition-based restarting is 
invoked to reactive any converged group. Meanwhile, the size of 
any restarted group is doubled to enhance its exploration ability. 

 The HM is prone to prematurely converging. 
DRHS strategies: For each group, besides a new harmony 
generated by the original HS operators, DRHS also creates an 
opposite harmony by applying opposition-based learning to that 
new harmony with respect to the corresponding group. Among 
these two newly generated harmonies, the one with better quality 
is used to update the group memory. This opposition-based 
harmony creation as well as the group based memory updating 
can reduce the risk of premature convergence. 

 The limited HM capacity may lead to stagnation. 
DRHS strategies: The above periodical HM regrouping, group 
restarting with doubled size and opposition-based harmony 
creation schemes can reduce the risk of stagnation. 
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DRHS periodically applies local search on several top-ranked 
group best harmonies to exploit promising regions around them. 
Furthermore, DRHS reserves the final few numbers of function 
evaluations for local search to fully exploit the region around the 
best harmony in the HM.  DRHS is detailed in [3].  

4. EXPERIMENTS 
Performances of DRHS and HS are compared on 12 numerical 
test functions taken from the CEC2005 benchmark [4]:  
F1: Shifted Sphere Function; F2: Shifted Schwefel’s Problem 1.2; F3: Shifted 
Rotated High Conditioned Elliptic Function; F4: Shifted Schwefel’s Problem 
1.2 with Noise in Fitness; F5: Schwefel’s Problem 2.6 with Global Optimum on 
Bounds; F6: Shifted Rosenbrock’s Function; F7: Shifted Rotated Ackley’s 
Function with Global Optimal on Bounds; F8: Shifted Rastrigin’s Function; F9: 
Shifted Rotated Rastrigin’s Function; F10: Schwefel’s Problem 2.13; F11: 
Expended Extended Griewank’s plus Rosenbrock’s Function (F8F2); F12: 
Shifted Rotated Expended Scaffer’s F6. 

4.1 Experimental Setup 
Parameter settings of HS and DRHS are specified in [3]. For each 
test problem, each of DRHS and HS is executed 25 times starting 
from different random seeds while both algorithms share the same 
random seed for any individual run. Two stopping criteria are 
applied: (1) the maximum number of function evaluations 
(maxFEvals) is reached. Here, the maxFEvals is set to 104 times 
the problem dimension. (2) The difference of objective function 
values between the best solution found so far and the global 
optimal solution (i.e., error function value (EFV)) is smaller than 
10-8. In such a case, the EFV is negligible and set to zero.  

The optimization performance is measured using (1) the mean 
value and standard deviation of the best EFVs achieved when an 
algorithm terminates over 25 runs and (2) the success rate (SR) 
over 25 runs. Success means an algorithm achieves an EFV 
smaller than the pre-specified accuracy level. According to [4], 
the accuracy level is set to 10-6 for F1 to F5 and 10-2 for F6 to F12. 

4.2 Results 
Table 1 reports, with respect to each of 12 test problems at 10D 
and 30D, the performances of HS and DRHS in terms of the mean 
value and standard deviation (italic below the mean value) of the 
best EFVs over 25 runs as well as the SR under the pre-specified 
accuracy level over 25 runs. For each function, bold fonts show 
the largest SR (if not zero) and the optimal best EFVs (i.e., with 
the smallest mean value) as well as those best EFVs indiscernible 
from the optimal based on the Wilcoxon’s signed-rank test [5] at 
the significance level of 0.05. In comparison, DRHS consistently 
outperforms HS on all test problems at both 10D and 30D. 

Table 1.  Performance comparison of HS and DRHS 
10D 30D   

HS DRHS HS DRHS 
Best 
EFV 

3.039E-09 
5.737E-09 

0.000E+00 
0.000E+00 

2.997E-05 
4.643E-06 

0.000E+00
0.000E+00

 
F1 

SR (10-6) 1.00 1.00 0.00 1.00 
Best 
EFV 

1.701E+02 
1.092E+02 

7.419E-09 
1.577E-08 

1.409E+03 
6.133E+02 

5.626E-08
1.201E-07

 
F2 

SR (10-6) 0.00 0.92 0.00 0.16 
Best 
EFV 

1.008E+06 
7.527E+05 

4.329E+00 
1.178E+01 

7.513E+06 
3.227E+06 

2.014E+03
1.708E+03

 
F3 

SR (10-6) 0.00 0.00 0.00 0.00 

Best 
EFV 

9.370E+02
7.260E+02

9.453E+01 
9.328E+01 

9.981E+03 
2.996E+03 

1.277E+03
7.172E+02

 
F4

SR (10-6) 0.00 0.00 0.00 0.00 
Best 
EFV 

1.804E+03
1.185E+03

2.688E+02 
2.450E+02 

5.766E+03 
9.979E+02 

3.364E+03
6.620E+02

 
F5

SR (10-6) 0.00 0.00 0.00 0.00 
Best 
EFV 

1.384E+03
2.976E+03

4.784E-01 
1.322E+00 

6.180E+02 
2.476E+03 

4.377E+01
6.848E+01

 
F6

SR (10-2) 0.00 0.88 0.00 0.00 
Best 
EFV 

2.036E+01
6.917E-02 

2.000E+01 
8.164E-05 

2.094E+01 
5.513E-02 

2.000E+01
1.130E-06

 
F7

SR (10-2) 0.00 0.00 0.00 0.00 
Best 
EFV 

8.933E-07 
5.492E-07 

0.000E+00 
0.000E+00 

5.581E-03 
1.267E-03 

0.000E+00
0.000E+00

 
F8

SR (10-2) 1.00 1.00 1.00 1.00 
Best 
EFV 

1.230E+01
6.492E+00

3.423E+00 
9.561E-01 

5.125E+01 
3.932E+01 

2.436E+01
5.131E+00

 
F9

SR (10-2) 0.00 0.00 0.00 0.00 
Best 
EFV 

1.774E+02
4.350E+02

3.145E+00 
6.774E+00 

3.626E+03 
3.419E+03 

1.208E+03
2.065E+03

 
F10

SR (10-2) 0.00 0.04 0.00 0.00 
Best 
EFV 

4.319E-01 
1.330E-01 

4.082E-01 
1.338E-01 

1.962E+00 
2.796E-01 

1.516E+00
2.929E-01

 
F11

SR (10-2) 0.00 0.00 0.00 0.00 
Best 
EFV 

2.941E+00
4.499E-01 

2.412E+00 
5.805E-01 

1.300E+01 
3.029E-01 

1.255E+01
2.861E-01

 
F12

SR (10-2) 0.00 0.00 0.00 0.00 

5. CONCLUSIONS 
We present a DRHS algorithm with opposition and local learning 
to address the deficiencies in the original HS such as premature 
convergence and stagnation. Experiments on 12 numerical test 
problems taken from CEC2005 benchmark at both 10D and 30 
consistently demonstrate the superiority of DRHS over HS. 
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