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Triplet Markov Fields for the Classification
of Complex Structure Data

Juliette Blanchet and Florence Forbes

Abstract—We address the issue of classifying complex data. We focus on three main sources of complexity, namely, the high
dimensionality of the observed data, the dependencies between these observations, and the general nature of the noise model
underlying their distribution. We investigate the recent Triplet Markov Fields and propose new models in this class designed for such data
and in particular allowing very general noise models. In addition, our models can handle the inclusion of a learning step in a consistent way
so that they can be used in a supervised framework. One advantage of our models is that whatever the initial complexity of the noise
model, parameter estimation can be carried out using state-of-the-art Bayesian clustering techniques under the usual simplifying
assumptions. As generative models, they can be seen as an alternative, in the supervised case, to discriminative Conditional Random
Fields. Identifiability issues underlying the models in the nonsupervised case are discussed while the models performance is illustrated
on simulated and real data, exhibiting the mentioned various sources of complexity.

Index Terms—Triplet Markov model, supervised classification, conditional independence, complex noise models, high-dimensional

data, EM-like algorithms.

1 INTRODUCTION

STATISTICAL methods that were once restricted to specialist
statisticians such as multivariate discrimination and
classification are now widely used by individual scientists,
engineers, and social scientists, aided by statistical packages.
However, these techniques are still restricted by necessary
simplifying assumptions such as precise measurement and
independence between observations, and it long ago became
clear that in many areas, such assumptions can be both
influential and misleading. There are several generic sources
of complexity in data that require methods beyond the
commonly understood tools in mainstream statistical
packages. In this paper, we consider more specifically
classification problems in which observations have to be
grouped into a finite number of classes. We propose a unified
Markovian framework for classifying unlabeled observed
data into these classes. We focus on three sources of
complexity. We consider data exhibiting (complex) depen-
dence structures, having to do for example with spatial or
temporal association, family relationship, and so on. Markov
models or more generally hidden Markov models are used to
handle dependencies. Observations are associated to sites or
items at various locations. These locations can be irregularly
spaced. This goes beyond the regular lattice case traditionally
used in image analysis and requires some adaptation. A
second source of complexity is connected with the measure-
ment process such as having multiple measuring instruments
or computations generating high-dimensional data. There are
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not so many one-dimensional (1D) distributions for contin-
uous variables that generalize to multidimensional ones
except when considering the product of 1D independent
components. The multivariate Gaussian distribution is most
commonly used, but it suffers from significant limitations
when it comes to modeling real data sets. For very high-
dimensional data, the general covariance matrix model
involves the estimation of too many parameters, leading to
intractable computations or singularity issues. Solutions have
been proposed based on so-called parsimonious models [1], but
they are not specifically designed for high-dimensional data.
They do not take into account the fact that real data points are
often confined to a region of the space having lower effective
dimensionality so that the data actually live on a smaller
dimensional manifold embedded within the high-dimen-
sional space. Other approaches consider reducing the
dimensionality of the data as a preprocessing step possibly
using Principal Component Analysis or variable selection
methods. In a classification context, this may not be
satisfactory as relevant information may be lost that can help
separating the classes. For these reasons, we rather consider a
more recent approach developed for independent Gaussian
mixtures [2]. We extend this approach to our Markov models
and maintain this way their efficiency and tractability for
high-dimensional data. Both dependencies between sites and
dependencies between components of the multidimensional
observations are modeled, while the number of parameters to
be estimated remains tractable. Another limitation of
Gaussian distribution is that a single Gaussian distribution
is unable to capture nonunimodal structures. Therefore, the
main contribution of the paper is to address a third major
source of complexity related to the structure of the noise
model or the distribution linking the unknown labels to the
observations. The models we propose are able to deal with
very general noise models far beyond the modeling capabil-
ities of traditional hidden Markov models. In the hidden
Markov field (HMF) framework, a strong assumption of
conditional independence of the observed data is generally
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used for tractability. This assumption combined with the
Markovianity of the hidden field has the advantage to lead to
a distribution of the labels given the observations (the
posterior distribution), which is Markovian. This last property
is essential in all Markov model-based clustering algorithms.
However, conditional independence is too restrictive for a
large number of applications such as textured or nonsta-
tionary image segmentation. For this reason, various Markov
models have been proposed in the literature, including
Gaussian Markov fields [3] and, more recently, Pairwise
Markov models [4]. The latter are based on the observation that
the conditional independence assumption is sufficient but
not necessary for the Markovianity of the conditional
distribution to hold. A further generalization has then been
proposed in [5] through the Triplets Markov models with larger
modeling capabilities. In practice, the Triplet models illu-
strated in applications (see [5] and [6]) satisfy particular
assumptions. In this paper, we consider Triplet models
different from those in [5] and [6]. Our more general noise
models allow class and site dependent mixtures of distribu-
tions and, more specifically, mixtures of Gaussians, which
provide a richer class of density models than the single
Gaussians. In addition, our models were originally designed
for supervised classification issues in which training sets are
available and correspond to data for which data exemplars
have been grouped into classes. Nontrivial extensions are
required to include a learning step while preserving the
Markovian modeling of the dependencies. In this context, we
propose a class of Triplet Markov models that have the
advantage to account for very general noise models while still
allowing standard processing, as regards classification and
parameter estimation. We illustrate our models using an
Expectation Maximization framework and a mean-field-like
approximation procedure developed in [7] for the standard
HMF case. Any other choice (Iterative Conditional Estima-
tion, Stochastic gradient, etc.) would have been possible, but
it is not the purpose of this paper to provide a comparison of
all these techniques. We adapt the approach in [7] to the use of
our Triplet models, including a learning and test stages in the
supervised case. We consider the issue of selecting the best
model with regards to the observed data using a criterion
based on the Bayesian Information Criterion (BIC). Although
more general, it is important to note that our Triplet models
are simpler to deal with and have greater modeling
capabilities in a supervised case. In the nonsupervised case,
general noise models can lead to nonidentifiability issues. In
addition, it is important to specify the relationship between
the Triplet Models and the Conditional Random Fields (CRF)
[8], which have been widely and successfully used in
applications, including text processing, bioinformatics, and
computer vision. CRF’s are discriminative models in the sense
that they model directly the posterior or conditional
distribution of the labels given the observations, which is
the one needed in classification issues. Explicit models of the
joint distribution of the labels and observations or of the noise
distribution are not required. However, even in classification
contexts, approaches that model the joint distribution of the
labels and observations are considered. They are known as
generative models. Triplet Markov models belong to this class.
Such generative models are certainly more demanding in
terms of modeling, but they have the advantage to provide a
model of the observed data (the likelihood), allowing this way
better access to theoretical properties of the estimators and to
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approaches for outliers detection. In this work, we show that
Triplet Markov models can then be seen as an alternative to
CRFs with good modeling capabilities. As generative models,
they better model the structure of the data. They can be used
with standard Bayesian techniques and probabilistic cluster-
ing tools requiring no more algorithmic effort than CRFs.
They allow theoretically well-based studies and, in particu-
lar, model selection to guide the user to specific modeling
choices consistent with the observed data.

To outline the structure of the paper, the hidden Markov
model approach is recalled in Section 2, which presents basic
tools and points out some limitations when dealing with
complex data. Section 3 introduces our Triplet Markov Field
(TMF) model in the context of supervised segmentation. A
general scheme and procedure based on EM-like algorithms
for parameter estimation is proposed in Section 4. The
automatic selection of Triplet Markov models is addressed
in Section 5. As an illustration, the simulations of a simple
Triplet model are shown in Section 6. In the same section,
experiments on synthetic data are made to compare the
performance of our TMF model with the standard HMF
approach. In Section 7, we consider a texture recognition task
thatinvolves real complex data. Section 8 ends the paper with
elements for discussion and further work.

2 HipbpeEN MARKoOV MoDEL-BASED CLUSTERING

Hidden structure models and, more specifically, Gaussian
mixture models are among the most statistically mature
methods for clustering. A clustering or labeling problem is
specified in terms of a set of sites S and a set of labels £. A site
often represents an item, a point or a region in the euclidean
space such as an image pixel or an image feature. A set of sites
may be categorized in terms of their regularity. Sites on a
lattice are considered as spatially regular (for example, the
pixels of a 2D image). Sites that do not present spatial
regularity are considered as irregular. This is the usual case
when sites represent geographic locations or features
extracted from images at a more abstract level such as interest
points (see Section 7). It can also be that the sites correspond to
items (for example, genes) that are related to each other
through a distance or dissimilarity measure [9] or simply to a
collection of independent items. A label is an event that may
happen to a site. We will consider only the case where a label
assumes a discrete value in a set of L labels. In the following
developments, it is convenient to consider £ as the set of
L-dimensional indicator vectors £ = {ey, ..., er} where each
e; has all its components being 0 except the [th, whichis 1. The
labeling problem is to assign a label from a label set £ to each
of the sites. If there are n sites, the sety = {y1,...,y,} with
y; € Lforalli € Sis called a labeling of the sites in S'in terms
of the labels in £. Our approach of the labeling problem aims
at modeling dependencies or taking into account contextual
information. It is based on hidden Markov models.
We consider cases where the data naturally divide into
observed data x = {z1,...,2,} and unobserved or missing
membership data y = {y1,...,y,}, both considered as reali-
zations of random variables denoted, respectively, by X =
{X1,...,X,,}andY = {V1,...,Y,}. Each X, takesits valuesin
R? and each Y; takes its values in £. The goal is to estimate Y
from the observed X = x. When the Y;’s are independent, the
model reduce to a standard mixture model. When the Y;s
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are not independent, the interrelationship between sites
can be maintained by a so-called neighborhood system
usually defined through a graph. Two neighboring sites
correspond to two nodes of the graph linked by an edge. The
dependencies between the Y;s are then modeled by further
assuming that the joint distribution of Yj,...,Y, is a
discrete Markov Random Field (MRF) on this specific graph
defined by

P(y) =W exp(—H(y)), (1)

where W is a normalizing constant, and H is a function
assumed to be of the following form (we restrict to pairwise
interactions), H(y) =>3_,_;Vij(yi,y;), where the Vs are
functions referred to as pair potentials. We write i ~ j when
sites i and j are neighbors on the graph, so that the sum above
is only over neighboring sites. We consider pair potentials
Vij(yi, y;) that depend on y; and y; but also possibly oni and j.
Since the y;s can only take a finite number of values, for each
i and j, we can define a L x L matrix W;; = (W;;(k,1));.;.,<1
and write, without loss of generality, Vi;(yi, ;) = — Wi;(k, 1)
if y; = e, and y; = e;. Using the indicator vector notation
and denoting yf, the transpose of vector y;, it is equivalent to
write Vi;(yi,y;) = —y.W,y;. This latter notation has the
advantage to still make sense when the vectors are arbitrary
and not necessarily indicators. This will be useful when
describing the algorithms of the Appendix. If for all ¢ and j,
W;; = 8 x I, where (is a scalar, and I, is the L x L identity
matrix, the model parameters reduce to a single scalar
interaction parameter 3, and we get the Potts model
traditionally used for image segmentation [10]. Note that
this model is most of the time appropriate for classification
since, for positive f, it tends to favor neighbors that are in the
same class. In practice, these parameters can be tuned
according to expert or a priori knowledge, or they can be
estimated from the data. In the latter case, the part to be
estimated is usually assumed independent of the indices 4
and j, so that in what follows the Markov model parameters
will reduce to a single matrix W. Note that formulated as
such, the model is not identifiable in the sense that different
values of the parameters, namely, W and W + a1l (where 1l
denotes the L x L matrix with all its components being 1)
lead to the same probability distribution. This issue is
generally easily handled by imposing some additional
constraint such as W(k, [) = 0 for one of the components (k, 1).

When Y is assumed to be Markovian (1) with respect to a
neighboring system, (X, Z) is said to be a HMF. HMF models
have been widely used for a number of classification tasks.
Most applications are related to image analysis, but other
examples include population genetics, bioinformatics, etc.
Note that the Markovianity of Y is not strictly necessary (see,
for instance, [5]). In a segmentation or classification context, it
has the advantage to provide some insight and control on the
segmentation regularity through a meaningful and easy to
understand parametric model, but it also somewhat reduces
the modeling capabilities of the approach. In the following
developments, we will consider more general cases. In
labeling problems, most approaches then fall into two
categories. The first ones focus on finding the best y using a
Bayesian decision principle such as Maximum A Posteriori
(MAP) or Maximum Posterior Mode (MPM) rules. This
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explicitly involves the use of P(y|x) and uses the fact that the
conditional field denoted by Y|X = x is a Markov field. This
includes methods such as ICM [10] and Simulated Annealing
[11], which differ in the way they deal with the intractable
P(y|x) and use its Markovianity. The second type of
approach is related to a missing data point of view.
Originally, the focus is on estimating parameters when
some of the data are missing (the y;s here). The reference
algorithm in such cases is the Expectation-Maximization
(EM) algorithm [12]. In addition to providing estimates of
the parameters, the EM algorithm provides also a classifica-
tion y by offering the possibility to restore the missing data.
However, when applied to HMFs, the algorithm is not
tractable and requires approximations. This approach in-
cludes the Gibbsian EM in [13], the MCEM algorithm and a
generalization of it [14], the PPL-EM algorithm in [14], and
various Mean-Field-like approximations of EM [7]. Such
approximations are also all based on the Markovianity of
Y|X = x. This property appears as a critical requirement for
any further developments. When Y is Markovian, a simple
way to guarantee the Markovianity of Y|X = x is to further
assume that

P(xly) = [ ] P(aily:). (2)
i€S

Indeed, (1) and (2) imply that (X, Y) isan MRF, which implies
that Y|X = x is an MRF too. This standard and widely used
case is referred to, in [5], as the HMF-IN model for HMF with
Independent Noise. Equation (2) is a conditional indepen-
dence or noncorrelated noise condition. In addition, in such a
setting, the class dependent distribution P(.|y;) is usually a
standard distribution, typically a Gaussian distribution
N(.|0,,), where the y; subscript in 6,, indicates that the
distribution parameters depends on the specific value of y;.
More generally, HMF-IN parameters are denoted by ¥ =
(0,W) with ©® ={6y,...,0.}. In the 1D Gaussian case,
0y, = (y;,0,,), the mean and variance parameters. This
corresponds to P(x|y) proportional to

exp (—%Zaﬂxi - m?). (3)

ics

However, the Gaussian assumption is not satisfactory
whenever the goal is to partition data into nonhomogeneous
class for which the distribution of individuals in the class is
very unlikely to be Gaussian and more generally unimodal.
As an example, the last two assumptions (2) and (3) are too
simple to allow one to take into account such class
distributions, for which it may be critical to capture spatial
noise correlations. In particular, for texture modeling, an
alternative hypothesis is that textures are realizations of a
Gaussian MREF [3]. For illustration, in the 1D case, P(x|y) is
proportional to

exp (_ Z Qi Tilj — Z (ay,y, T? * ’Yy,-ri)> . Y

i~j ieS

Note the additional double terms o, x;x; when compar-
ing to (3). If the cardinality of S is n, the later corresponds
to a multidimensional Gaussian distribution with an
n-dimensional diagonal covariance matrix, while (4) corre-
sponds to a more general covariance matrix. When defined
by (4), the X;s are not conditionally independent given Y,
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but the trouble with (4) is that except in particular cases,
neither Y|X =x nor (X,Y) is Markovian. Note that if
(X,Y) is an MRF, then Y|X = x is an MRF too, but the
reverse is not necessarily true. Different strategies can then
arise. It appears that a lot of theoretical and computational
tools have been developed for a Bayesian treatment (MAP
or MPM) so that there are significant advantages both
theoretically and practically in adapting new models to
this framework. The TMF in [5] were designed for this
purpose. In what follows, we build new TMF models that
are appropriate for Bayesian supervised segmentation of
complex data. They can be seen as particular TMF. The
generally used strong assumption of conditional indepen-
dence of the observed data is relaxed. We consider a
generative framework, but some aspects of this work are
similar to the discriminative CRFs approach that models
the conditional distribution P(y|x) directly [8]. Such CRFs
are related to the Pairwise Markov random fields (PMF) in
[4]. PMFs consist in modeling the joint distribution P(x,y)
as an MRF, which implies that P(y|x) is an MRF too
without modeling explicitly the likelihood P(x|y) or
assuming that P(y) is Markovian. The TMF approach is
based on the introduction of a third field Z so that
(X,Y,Z) is Markovian and, therefore, P(z,y|x) is an MRF
as a consequence, while P(y|x) is not necessarily one,
generalizing this way the CRF approach. More details are
given in Section 3. We then show in Section 4 how we can
use algorithms developed for HMF-IN for inference in
these more general models.

3 DESIGNING TRIPLET MARKOV FIELDS FOR
SUPERVISED SEGMENTATION OF COMPLEX DATA

3.1 Supervised Segmentation

We first focus on data that exhibit some complexity due to the
general nature of the noise that does not necessarily satisfy
usual standard assumptions such as being Gaussian and
noncorrelated. Doing so, we propose models that can handle
nonunimodal or non-Gaussian class dependent distributions
and this also for high-dimensional data, as specified in
Section 3.2.

When starting from the standard HMF-IN models (Sec-
tion 2) to cluster data, a natural idea to extend the modeling
capabilities of this approach is to decompose each class, given
by the y;s, into subclasses, allowing more general class
dependent distributions. However, introducing such sub-
classes in a mathematically consistent way is not straightfor-
ward. Let us first assume that each of the L classes is
decomposed into K subclasses so that we can introduce
additional variables {Z;, ..., Z,}, indicating the subclasses
and then consider class and subclass dependent distributions
P(.ly;, z;) that depend on some parameters 6,,... The 0,5
belong to a set © = {0y, l=1...L,k=1...K}. In a super-
vised framework, we assume that learning data sets are
available and can be used to first estimate the component
parameters © = {0, l=1...L,k=1... K}. However, how
to include a learning step when dealing with Markovian
dependent data is not straightforward. In a learning stage,
typically, observations x are given together with their ground
truth y. This means that both x and y are known and that,
when considering maximum likelihood criterion, the model
parameters ¥ = (O, W) has to be estimated by maximizing
the joint distribution, P(x,y|¥) over W. It is easy to see that
estimating parameters © is done independently of the
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assumptions made on P(y). In particular, if (2) holds,
whatever the condition on P(y) (Markovianity, etc.), the
parameters will be estimated as if the sites ¢ were indepen-
dent. Relaxing assumption (2) is therefore essential when
considering a supervised framework. For textures, this has
been used in [15], but the approach based on independent
Gaussian mixtures and used for texture recognition cannot be
extended in a consistent way. If the class dependent
distributions are assumed to be standard mixture of
Gaussians, the model used in learning each class is an
independent mixture model and does not account for
dependencies between the sites. We could deal with learning
data as independent mixtures, but this will mean dealing
with two different models, one for the images in the learning
set and one for the images in the test set. As an alternative,
in the following, we consider less straightforward but
consistent extensions of HMF-IN. We propose to define
the distribution P(x|y) in a more general way. Equation (3)
defines the distribution of X|Y =y as a n-dimensional
Gaussian distribution with a diagonal covariance matrix
due to the conditional independence assumption. We
generalize (3) by introducing an additional field Z = (Z;),_¢
with Z; € K = {€],..., €} }, where the ¢} are K-dimensional
indicator vectors. For all y € £", we can write

P(xly) =) P(zly)P(xly.z) = Y Iy, fo,(x).

zek" zek"

The distribution of X|Y =y can be seen as a mixture of
K" distributions where the mixing proportions, denoted by
Iy, are the P(z|y)s, and the mixed distributions are denoted
by fo,,(x) = P(x|y,z). More specifically, we will consider
Gaussian P(x|y,z) with independence between the compo-
nents, that is,

fo,,(x) = [ [ fo,... () = [ [ Plailwi, ), (5)
ics ies

where {fy,,l € {1,...,L},ke€{l,...,K}} are d-dimensional
Gaussian distributions with parameters 6y, = (g, Xi). In
particular, it follows that for all i € S, P(xi|yi) = .. .«
P(z|y:) fo,., (x;), which is a mixture of K Gaussians, depend-
ing on y; and whose mixture coefficients P(z;|y;) also depend
on the site i. Equation (8) below shows that this latter
dependence is one of the key and main differences with
standard independent mixtures of Gaussians in which all
items are independently and identically distributed. To
comment further on this choice of Gaussian mixture compo-
nents, it provides some flexibility in that any arbitrary
probability distribution on TR? can be approximated by a
Gaussian mixture. See Section 6 for an illustration of this
flexibility in a simple image segmentation task.

As we do not assume a specific Markovian form for Y, in
order to consistently define the full model, that is, the joint
distribution of (X,Y,Z), we need to define P(z,y). We
choose a Markovian distribution

P(Z>Y) X exp (Z Wj(zivyia Zjv?/j))a (6)

inj

where the V;(z;,y;, zj,y;) are pair potentials. These poten-
tials could be written in terms of a KL x KL matrix W, as
specified in Section 2, but we rather write it as

Vii(2i, i 2, y5) = 2By, 2 + Y. Cy;, (7)
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where {IB;,[,!' € {1,..., L}} are symmetric matrices of size
K x K so that By = By, (there is thus L(L + 1)/2 different
matrices), and © is an additional symmetric matrix of size
L x L that does not depend on the z;s. This is simply looking
at KL x KL matrix W as an L x L matrix of K x K bloc
matrices. Note that the term in (7) involving € could have
been directly included in the term just before in (7). The
reason for such a parameterization is made clearer below. The
(k, k') term in matrix By can be interpreted as measuring the
compatibility between subclass k of class [ and subclass £’ of
class I'. The larger this term, the more likely are neighboring
sites to be in such subclasses. Similarly, the ({,!) term in ©
also has to do with the compatibility between classes { and ['.

It follows from (5) and (6) that variable (X,Y,Z) is
Markovian and consists then in a TMF, as defined in [5]. From
(5) and (6), it comes clearly that, as U = (Y, Z) is Markovian,
the pair (X,U) is a Gaussian HMF-IN with KL hidden
classes. EM-like algorithms (for example, [7]) or, more
generally, any other algorithms for inference in HMF-IN
can then be applied in particular to provide estimates of the
©,:8. However, defined as such, the model still suffers from
some identifiability issue due to the possibility of label
switching. The problem known as the label switching problem
ina Bayesian framework [16] is due to the fact that mixtures of
components belonging to the same parametric family are
invariant under the permutation of the component labels.
Intuitively, at the 65 level, there is some ambiguity when
trying to assign each component (subclass) to its class. In our
case, the aim is to estimate y from the observed x using the
posterior probability P(y|x). When considering the Triplet
(X,Y,Z) defined above, this probability is not directly
available but only through the marginalization (sum over
the zs) of P(y,z|x). In practice, to compute P(y|x) then
requires to sum over the right terms, that is, to know
the permutation of the estimates of the {;,l=1...L,
k=1...K}. Thisinterchanging of labels is generally handled
by the imposition of an appropriate constraint on the
parameters but none of the usual ones would be general
enough and make sense in our context. Other proposals can
be found in [17] in a clustering context. They are based on the
intuition that components in the same cluster ought to be
relatively close to each other, which is not true in general (for
example, texture model). Possibly relabeling techniques
using a likelihood or Loss function criterion, as proposed in
[18], could be considered, but this would require enumerat-
ing about (K L)! permutations at each iteration and would be
time consuming even for not so large values of K and L. The
TMEF defined above are then not adapted to an unsupervised
framework, at least when considering components fj, s from
the same parametric family, which is often the case when no
additional a priori knowledge is available. In a supervised
framework, this issue disappears, as soon as the {6;;,}s can be
learned in a way that allows to group them according to
values of k, {6j;;,l = 1...L}. The TMF above are appropriate
for learning. It follows from (6) that P(z|y) is Markovian, too

Ily, = P(zly) = %GXP (Z ZEIB?/%UJ'Z].> ) (®)

invj

where W(y) is a normalizing constant that depends on y.
Note that matrix © disappears in (8). This will result in
some variations between the learning and classification
steps of Section 4.
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Equation (5) means that the X;s are conditionally
independent given the Y;s and the Z;s. In the whole model
definition, it acts in a similar way as (2). The keypoint in
introducing Z this way is that given (5) and (8), X,Z|Y =y
is an HMF-IN. This property will be useful in the learning
stage, while the fact that the pair (X, U) with U = (Y,Z) is
an HMF-IN will be useful in the classification stage. More
specifically, combining (5) and (8), we have

P(x,zly) = P(x|y,z)P(zly)

9
= ﬁexp (Z ZEIBy,ij]' + Z log f()M (;z'7)) , 9)

i~g €S

which shows that P(x, z|y) does not generally factorize and
results then in a different model than the TMFs that [5, p. 483]
and [6] suggest to use in practical applications. The estimation
procedures suggested in [5] that use the factorization of
P(x,zly) cannot then be applied straightforwardly, but we
will propose one in the Appendix.

As mentioned before, the triplet model is described above
for Z; € KC, meaning implicitly that the number of subclasses
is K for each of the L classes. In practice, it is important to
handle the more general case of varying numbers of
subclasses. This requires to specify some modifications but
does not fundamentally change the procedure.

3.2 High-Dimensional Data

Using Gaussian distributions for the fj,s in (5) has the
advantage to admit a straightforward formulation of the
model for high-dimensional data. However, estimating full
covariances matrices is not always possible and advisable
beyond small dimensions. A common solution is to consider
diagonal covariance matrices, but this is assuming indepen-
dence between the observations components and is usually
not satisfying. As an alternative, we propose to use specific
parameterizations described in [2]. The authors propose new
Gaussian models of high-dimensional data for clustering
purposes based on the idea that high-dimensional data live
around subspaces with a dimension lower than the one of the
original subspace. Low-dimensional class-specific subspaces
are introduced in order to limit the number of parameters.
The covariance matrix ¥y, of each class is reparameterized in
its eigenspaces. Denoting by @y, the orthogonal matrix with
the eigenvectors of ¥ as columns, the class conditional
covariance matrix Dy is therefore defined in the eigenspace of
S, by Dy = Q4. X,Qu.- The matrix Dy, is a diagonal matrix
that contains the eigenvalues of 3. It is further assumed that
the diagonal of Dy, is made of dj;, (with dy, < d) first values,
a}k, cey af,i" ,and d — dy;, other values all fixed to some value by,
with, for all j=1,...,dy, aj, > by. Notation d denotes the
dimension of the original space, and dy, € {1,...,d — 1} is
unknown, but in practice, it is much smaller that d when d is
large. See [2] for additional details and further interpretation
of such decompositions. In the present work, we recast this
approach into the EM-based procedure described in the
Appendix. When dealing with high-dimensional data, this
reduces the number of parameters to be estimated signifi-
cantly and tends to avoid numerical problems with singular
matrices while allowing to go beyond the standard diagonal
covariance matrices and the usual independence assump-
tions between dimensions.
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4 THE SUPERVISED CLASSIFICATION SCHEME

More than an algorithm, we describe a general scheme to
deal with complex data as specified. With regards to
parameter estimation, we consider a soft clustering
approach and use an algorithm based on EM and mean-
field-like approximations [7], described in the Appendix.
We implemented it to illustrate the performance of the
models we propose, but other algorithms could be
considered. Its actual use in our supervised classification
framework requires two stages that are described in
Sections 4.1 and 4.2. The algorithm was originally devel-
oped for HMF-IN (Section 2), but we show below that it can
be used to deal with more general models such as those in
Section 3. For such models, starting from a description of a
supervised clustering issue in terms of L complex classes
corresponding to some nonstandard noise model, the
learning step can be decomposed into L simpler issues,
each involving an HMF-IN with K classes. The following
classification step can then be reduced to an inference
problem for a standard HMF-IN model with KL classes. It
follows that the computational complexity of the TMF
models may vary depending on the algorithm chosen for
inference but is equivalent to that of usual HMF-IN models.

4.1 Learning Step

We consider a supervised framework in which part of the
information is available through learning data. It is
assumed that for a number of individuals, we both observe
z; and its corresponding class y;. Using the triplet model
defined in Section 3, it remains that the z; are missing. It
follows that by considering variables X and Z|Y =y, we
can apply the algorithm described in the Appendix to the
HME-IN (X,Z|Y =y) (see (9)) to provide estimates of the
model parameters, which are the {IB;y,l,!' € {1,...,L}} and
the {0y, l=1,...L,k=1,..., K}. Asmentioned in Section 3,
estimating the later parameters is especially important to
solve identifiability issues when dealing with our triplets
Markov fields in the classification step. To estimate the 60y,
it is necessary that all L classes are sufficiently represented
in the learning data. In practice, the learning data are often
divided in a number of separate data sets (for example,
Section 7) so that the learning procedure actually consists of
a number of separate runs of the estimation algorithm.
Regarding the IBjys estimated in the learning stage, we do
not necessarily need to keep them for the classification step.
However, for complex data, it may be that learning also the
IByys or at least part of them is a better choice in terms of
modeling capabilities. We illustrate and explain such cases
in more details in Section 7. This Section also presents a case
where among the IBys, only the IB; can be learned due to
the specificity of the learning data. Typically, if the
underlying neighborhood structure is such that there exists
no neighbors in classes ! and !/, then IB;y cannot be
estimated since terms involving IB;» will not appear in the
model formulas. More generally, if the number of pairs in
classes I and ! is too small, the estimation of 1By, is likely not
to be good, and in this case, it would be better to ignore it.

When choosing to use in the subsequent classification
step, all or part of the IBys learned, considering separate
runs for the estimation of the IBjys may raise identifiability
issues. The model (8) used in each run is identifiable only
up to a constant, which may then vary from one run to
another. The issue appears when grouping all estimations
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in a single model for the classification stage since various
equivalent inferences under model (8) could lead to
nonequivalent inference under model (7). However, the
explicit introduction of matrix € in (7) and the fact that its
estimation is postponed to the classification step prevents
this issue. In addition, constraints in the form of © can be
easily imposed (for example, Potts-like constraint) to make
the estimated parameters unique in the classification stage.

4.2 Classification Step

At this stage, Y and Z are missing, and only the observations
X are available. Considering X and U = (Y, Z), (X, U) is an
HME-IN ((6) and (5)), and we can apply again the algorithm of
the Appendix. The parameters are the K x K dimensional
matrices {IBy, [,I' € {1,...,L}} and the {0y, =1... L, k=
1...K} as before with, in addition, the L x L dimensional
matrix €, that is, parameters {Cy, [,I' € {1,...,L}}.

The 6y are considered as fixed to the values computed in
the learning stage. For the IBys, different strategies arise
depending on the available learning data and the goal in
mind, in particular the type of interactions we want to account
for. In practice, we propose to use specified or learned values
for all IBjys. See Section 7 for an example. In most cases then,
regarding parameters, the classification step consists of
estimating €. Note that as mentioned in the previous
paragraph, the matrix € cannot be estimated in the learning
step since it disappears from (8), which is used in this latter
step. The classification step differs then in that € plays an
important role in modeling interaction. One possibility is to
specify © to be of the Potts form, that is, to consider
diagonal €, denoted by € = [5;] when the diagonal terms
are arbitrary or € = [3] when they are all equal to some
value 3. More complex knowledge on the classes could be
incorporated through other definitions of €, but this simple
case appears satisfying in anumber of applications. Although
Y is not Markovian, this acts as a regularizing term favoring
homogeneous regions of the same class. This is an important
feature of our classification step.

5 SELECTING TRIPLET MARKOV MODELS

Choosing the probabilistic model that best accounts for the
observed data is an important first step for the quality of
the subsequent estimation and classification stages. In
statistical problems, a commonly used selection criterion is
the BIC in [19]. The BIC is computed given the data x and a
model M with parameters W. It is defined by BIC(M) =
2log P(x | ™) — §logn, where ¥™ is the maximum like-
lihood estimate of ¥, ¥ = arg maxy P(x | ¥, M), § is the
number of free parameters in model M, and n is the
number of observations. The selected model is the one with
the maximum BIC. BIC allows the comparison of models
with differing parameterizations. In this study, we consider
the number of subclasses (cardinality of the Z;s state space,
possibly varying) as fixed to focus more specifically on the
Markov model and on the Gaussian models. For the
Markov model, as defined in (6) and (7), model selection is
performed in two steps. We first select the best models for
the matrices IB;ys. This can be done in the learning stage,
while finding the best model for matrix € can only be done
in the test stage. We will in general only consider specific
forms for © (Potts like). Regarding matrices IB;ys, omitting
the subscripts, we will consider the decomposition of each
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(d)

Fig. 1. Simulations of two parameter (b and ¢) TMF defined by (10) when L =2 and K = 2 with, respectively, b = —2, ¢ = 2 (first row) and b = 2,
¢ = —2 (second row): (a) realizations of (Y, Z), (b) realizations of Y, (c) realizations of X, and (d) realizations of a HMF-IN built by adding to images
in (b) some Gaussian noise with 0 mean and standard deviation equal to 0.3. Note that in the images, each of the four possible values of (y;, z;) has

been associated to a gray level for visualization.

of the K x K matrix into IB= A + I, where similar to
Section 4, A is a diagonal matrix denoted by A = [3] if all
diagonal terms are equal to a single value 3 and A = [5;] if
the diagonal terms are arbitrary. Conversely, for the second
matrix I', all diagonal terms are 0. We then compare four
possible models, namely, IB = [] (standard Potts model),
IB =[] (generalized Potts model with class-dependent
interaction parameters), IB =[]+, and IB=[5]+T
(unconstrained or full model). For multivariate Gaussian
subclass specific distributions, there exists a number of
different choices for the ¥js. See [1] for a description of the
examples of such forms and their meaning. The simplest
models are those for which the ¥j;s are diagonal matrices.
We then compare this choice to the parameterizations
described in Section 3.2 for high-dimensional data.
However, for HMFs and for TMFs as well, the exact
computation of BIC is not tractable due to the dependence
structure induced by the Markov modeling. When focusing
on the Gaussian parameters, a possibility is to compute BIC
for independent mixture models, forgetting any spatial
information, but this would not make sense when choosing
among various IB models. We then propose to use mean-
field-like approximations of BIC proposed in [20], which is
based on principles similar to that presented in the Appendix.
In what follows, this approximated BIC will be denoted by
BICyr. Examples of model selection results are shown in
Section 7. Before that, as part of our experiments on simulated
data, we mention and illustrate in the next section, a problem
of phase transition, which can occur for the underlying
Markov field (7) and can affect parameter estimation.

6 SIMULATED TMF AND ILLUSTRATION ON
SYNTHETIC DATA

The goal of this section is to provide a brief study to
illustrate the difference between our new TMF model and
the standard HMF-IN model and to emphasize the general
interest of the former model with respect to the latter.

Let us consider the Markov field (Y,Z) with pair
potentials parameterized by b,c € IR

Vii(zi,yi 2, yj) = b2 4y + cyiyj, (10)

which is (7) with By = 0 (the L x L zero matrix) if | # I/,
By = blg (where Ix denotes the K x K identity matrix),
and C = cI;.

Figs. 1la and 1b show realizations of (Y,Z) and the
corresponding realizations of Y for K =L =2 and for
varying values of the two parameters. Note that each of the
four possible values of (y;, z;) is associated to a gray level.
Fig. 1c shows simulated data X using Triplet Markov models
when the Gaussian distributions in (5) are 1D with standard
deviation equal to 0.3. For comparison, Fig. 1d shows the
realizations of the Gaussian HMF-IN models obtained using
the images in Fig. 1b and adding some Gaussian noise with
0 mean and standard deviation equal to 0.3.

We then compare the performance of our TMF model with
that of the HMF-IN model on synthetic images obtained as
follows: Starting from the two-class image of Fig. 2, we
consider several noise models. A first noisy image is
generated by considering that for the first class in Fig. 2,
continuous observations are obtained by simulating a mixture
of two Gaussians both with variance 0.25 and with mean,
respectively, 0 and 4. For the second class, observations are
obtained by simulating a mixture of two Gaussians both with
variance 0.25 and with mean, respectively, 0.5 and 4.5. The
corresponding noisy image is that in Fig. 2a. Similarly, a
second noisy image is generated by replacing for the
first class, the above mixture distribution by a Gamma
distribution with a scale parameter equal to 1 and
shape parameter equal to 2, while for the second class,
observations are generated by simulating realizations from an
Exponential distribution with parameter 1 and adding 1 to the
simulated values. It follows that observations in both classes
correspond to distributions with the same mean equal to 2.
The corresponding noisy image is that in Fig. 2c. Two other
noisy images are obtained easily from the previous two by
replacing each simulated observation by the mean of this later
value and that of its four nearest neighbor pixels. It follows
images such as shown, respectively, in Figs. 2b and 2d.

The segmentations results using, respectively, an HMF-IN
model and a TMF model are shown in the second and third
rows in Fig. 2. For both models, the number of classes L is set
to 2, while we use our BIC), criterion to select the value of
K for the TMF model. The corresponding selected values of
K are given in the last row in Fig. 2. The classification rates,
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()

TN g

TMF )
Classification rates 96.6% 91.7% 95.8% 88.4%
Selected K 2 4 4

Fig. 2. Synthetic image segmentations using an HMF-IN model (second row) and our TMF model (third row): the true two-class segmentation is the
image in the upper left corner, and four different noise models are considered. In (a), class distributions are mixtures of two Gaussians. In (c),
observations from class 1 are generated from a Gamma(1, 2) distribution, and observations from class 2 are obtained by adding 1 to the realizations
of an Exponential distribution with parameter 1. In (b) and (d), the noisy images are obtained by replacing each pixel value, respectively, in (a) and (c)
by its average with its four nearest neighbors. Classification rates are given below each segmentation results. In the TMF model case, the selected

K values using our BIC),p criterion is given in the last row.
T2 (ar et) T3 (Chair)

T1 (Brick)

L

Fig. 3. Samples of the texture classes used in the experiments.

that is, the percentages of well-classified pixels are given
below each segmented image.

It appears that our TMF model always gives better
classification rates (more than 11 percent higher). As
expected, the best rate is obtained when the noise is
simulated using mixtures of Gaussians (column (a)). This
case is the closest to our model assumptions. The
segmentation is also satisfying when other distributions
are considered showing that the TMF model is able to better
deal with more general class distributions than the HMF-IN
model, which assumes Gaussian class distributions. In
addition, the TMF model is better when dealing with
correlated noise, as shown in Figs. 2b and 2d, although it
appears that in these latter cases, the HMF-IN model gives
better results than in cases Figs. 2a and 2c. This is partly due
to the averaging over neighboring pixels, which reduces the
noise variance, as can be seen on images Figs. 2b and 2d.

7 APPLICATION TO TEXTURE RECOGNITION

Texture analysis plays an important role in many applica-
tions. Various feature extraction methods have been pro-
posed. Some approaches are based on local properties of the

T6 (Marble) T7 (Wood)

image (for example, Gaussian Markov Random Fields
(GMREF) [21], local binary pattern operator (LBP) [22], and
higher order local autocorrelation (HLAC) features [23]).
Other use frequency representations (for example, wavelet
transform [24] and Gabor features [25]). Our aim is not to
discuss the performance of the numerous existing ap-
proaches besides the abovementioned. In this section, we
focus on texture recognition as a good application for our
model. Texture recognition identifies the texture class for an
image location, whereas texture classification determines the
texture class of an entire image. The issue is a supervised
clustering issue involving complex data. The data set is made
of 140 single texture images and 63 multiple texture images.
Images have been gathered over a wide range of viewpoints
and scale changes. The data set contains L =7 different
textures illustrated in Fig. 3. For each of the seven textures, we
have 20 single texture images from which 10 are kept for the
learning set. The data set is then divided into a learning set
containing 70 single texture images and a test set containing
70 other single texture images and 63 multiple texture images.

As mentioned before, traditional Gaussian MRFs model-
ing 1D gray-level intensity images cannot easily handle such
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Fig. 4. (a) Multitexture image and its associated (b) Delaunay graph built
from the detected interest points.

viewpoint and scale varying images. More and more high-
level image analysis gobeyond the traditional regular grids of
pixels and 1D gray-level intensities. Our images are then
rather described by local affine-invariant descriptors and
their spatial relationships. A graph is associated to an image
with the nodes representing feature vectors describing image
regions and the edges joining spatially related regions (see
[26] and the references therein for preliminary work on such
data). For the feature extraction stage, we follow the texture
representation method described in [15]. It is based on an
interest point detector (Laplace detector) thatleads to a sparse
representation selecting the most perceptually salient regions
in an image and on a shape selection process that provides
affine invariance. Each detected region is then described by a
feature vector (descriptor). The descriptors we use are
128-dimensional SIFT descriptors [27]. A graph is then built
from the detected interest points by considering their
Delaunay graph. Other choices are possible [26], but
Delaunay graphs tend to provide more regular graphs,
where nodes all have a reasonable number of neighbors, with
the possibility to put a threshold on too long edges. An
illustration is given in Fig. 4 that shows a multitexture image
and the corresponding Delaunay graph.

We assume then that descriptors are random variables
with a specific probability distribution in each texture class.
For comparison, we consider three aspects in building
various models: 1) The first one is the nature of the class
dependent distributions, Gaussian or not. 2) The second one
is the nature of the interactions between descriptors, which
are considered as independent or not. 3) The third aspect is
related to the parameterization choice for each class distribu-
tion, which can be specific to high-dimensional data or not.

More specifically, we first consider two cases in the first
aspect. The simplest assumes that each class distribution is a
single Gaussian, while the second case consists in introducing
Gaussian subclasses for each class distribution. For simpli-
city, the number of subclasses to describe each class
distribution is set to K = 10 for each texture. Selecting K
using BIC is also possible, but we did not observe significantly
better recognition results. Note that the Mixtures of Gaus-
sians have been extensively used for density estimation so
that this case can be viewed as an attempt to account for
general class distributions (see Section 6 for an illustration).

Then, for each of these two cases, we consider in the
second aspect, two alternatives depending on the use or not
of the graph or, equivalently, of the interaction modeling
mentioned above. To forget dependencies between descrip-
tors corresponds to use a standard independent mixture
model. Among these models, we consider therefore two
families, the independent Gaussian mixture models that mix
L Gaussian components and mixture models built by mixing
L component distributions that are themselves mixtures of
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K Gaussians. The first family will be referred to as “Mixture,”
while the second will be referred to as “Mixture of Mixtures.”
As a second alternative, we consider approaches incorporat-
ing dependencies as given by the graph. More specifically,
we compare our proposed TMF model with the standard
HMF-IN model. This last model is a particular TMF with
Y =Z or, equivalently, K =1. It can also be seen as a
generalization of the independent Gaussian mixture model.

Eventually, regarding the third aspect, for the 128-
dimensional class (Mixtures and HMF-IN) or subclass
(Mixtures of Mixtures and TMF) dependent Gaussian
distributions, we consider two possibilities: diagonal covar-
iance matrices or specific parameterization of the covariance
matrices, as described in Section 3.2. When dealing with
high-dimensional data, this reduces the number of para-
meters to be estimated significantly and tends to avoid
numerical problems with singular matrices.

To focus more on our TMF approach, as regards the
Markov model, we consider that matrix © is fixed to a Potts
form, that is, to a diagonal [J] or []. Results are reported for
the latter choice, but the first one gives similar results. For
matrices By, the nature of the learning data set, including
only single texture images, does not allow to estimate the IB;ys
for | # I'. We therefore set them to 0, which is consistent with
the fact that we aim at recovering homogeneous regions of the
same texture. An alternative is to postpone their estimation in
the classification step, but in practice, test images do not
generally include samples of all textures so that most of the
B, could not be estimated due to a lack of relevant
information. For the IBys, we consider the possibilities
described in Section 5 and use a mean field approximation
of BIC to select the best model for each texture [ with
l=1,...,L. Again, the estimation of the IBys could be
postponed to the classification step, but this would mean
estimating simultaneously on each test images, L matrices of
size K x K (the bloc diagonal of a KL x KL dimensional
matrix). Considering the number of detected points in each
image (from few hundreds to few thousands), the estimation
could be reasonably carried out only for very simple models
such as diagonal models and would then greatly reduce the
model flexibility. As an alternative, learning each texture
separately involves less parameters and more data points,
allowing more complex models to be estimated accurately.
Tables 1 and 2 report BICj;r values for various models of By
in two cases corresponding to diagonal ;s (Table 1) and the
more general ¥j;s described in Section 3.2, referred to as High
Dim ¥ys. It appears that models with High Dim ¥s are
always better, in terms of BIC;r, whatever the IB; model. For
such Yy (Table 2), the selected IB; model depends on the
texture class. It appears that for the wood texture, the simplest
modelis selected, whereas the more general model is selected
only for the Floor 2 and Marble textures.

To illustrate and compare the various models perfor-
mance, Table 3 shows recognition results for individual
regions that is the fraction of all individual regions in the test
images that were correctly classified. These results are
obtained using only the single texture images. As mentioned,
results for eight models are reported. The “Mixture of
Mixtures” rows, for instance, refer to the method that
assumes an independent Gaussian mixture for each image
in the learning and classification steps. The two possible
choices for the covariance matrices are considered. The EM
algorithm is used for estimation and classification. The
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TABLE 1
IB; Model Selection for Each Texture Class when Covariance Matrices Are Assumed to Be Diagonal:
The Bold Numbers Indicate the Model Selected According to Our BIC),r Criterion

Diagonal ¥;’s | IB;; Model Brick Carpet Chair Floor 1 Floor 2 Marble ‘Wood
[5] 1739730 | 2403890 | 3141300 | 2556280 | 3147610 | 2967630 | 2092090
BICurF [Br] 1739840 | 2403970 | 3141440 | 2556410 | 3147900 | 2967770 | 2092030
[B1+T 1740010 | 2404450 | 3141930 | 2556630 | 3145570 | 2968290 | 1946380
[Br]+T 1740080 | 2404600 | 3142170 | 2556730 | 3145600 | 2968280 | 2092760
TABLE 2

1B, Model Selection for Each Texture Class when Covariance Matrices Are Parameterized to Account for High-Dimensional Data:
The Bold Numbers Indicate the Model Selected According to Our BIC),r Criterion

High Dim X;;’s | B;; Model Brick Carpet Chair Floor 1 Floor 2 Marble Wood
5] 1902700 | 2515860 | 3516630 | 2696700 | 3290280 | 3172210 | 2263160
BICur [Bx] 1882040 | 2524590 | 3529860 | 2697180 | 3286890 | 3172450 | 2260870
[B1+T 1905800 | 2518320 | 3521420 | 2692730 | 3292960 | 3177140 | 2260650
[Bk]+T 1876510 | 2518430 | 3495890 | 2691310 | 3293230 | 3178150 | 2262300
TABLE 3

Percentage of Individual Regions Correctly Classified for the Single Texture Images of the Test Set

[ Dependencie Model | Covariance Model || Brick | Carpet | Chair | Floor 1 [ Floor 2 [ Marble | Wood

Mixture Diagonal >, || 34.08 | 27.63 | 43.70 | 2741 | 33.80 | 2627 | 29.78
Mixture High Dim %y, || 4212 | 35.11 | 52.05 | 2937 | 4642 | 2844 | 31.06
HAMF-IN Diagonal 5, || 36.03 | 29.06 | 43.80 | 31.14 | 39.58 | 20.15 | 3248
AMF-IN High Dim %, || 4246 | 35.65 | 52.65 | 33.06 | 48.34 | 29.83 | 3491

Mixture of Mixtures | _ Diagonal S, || 77.58 | 31.60 | 58.26 | 28.26 | 58.79 | 33.87 | 58.56
Mixture of Mixtures | High Dim %, || 81.18 | 56.94 | 6248 | 3564 | 6743 | 37.05 | 65.02
TMF Diagonal 3, || 96.59 | 80.70 | 83.60 | 8260 | 83.90 | 46.05 | 95.18
TMF High Dim %, || 9933 | 9861 | 99.28 | 9736 | 9957 | 56.24 | 99.28

| TMI-BIC [ [9937 [ 98.71 | 99.30 | 98.16 | 99.62 | 56.77 | 99.52 |

Rows correspond to different models. The bold numbers indicate the higher percentages.

“TMF” rows refer to our method when the more general
model ([3;] + ) is used for all Bys with the two possible
cases for the covariance matrices. The “TMF-BIC” row then
refers to the case where the form of the covariance matrices,
and the IB; models are selected according to BIC (Tables 1 and
2). As expected, the results in Table 3 show that the rates for
the “Mixture” and “HMF-IN" cases are rather poor. They also
show that the rates improve significantly on the independent
“Mixture of Mixtures” rates (19 percent at the minimum)
when our TMF model, with the High Dim parameterization of
the Xys, is used. For this latter case, the rates are all very good
(98 percent and above) except for the Marble texture. For this
texture, the images available for learning are very hetero-
geneous in terms of lightning. On the same Marble image,
some parts can be very badly lit and appear as very dark,
while others appear as very light. This prevents a good
learning mainly due to the descriptor quality that cannot
properly handle such variations.

For multiple texture images, significant improvement is
also observed on all images. The rates increase about
53 percent in average between the “Mixture of Mixtures”
and diagonal ¥;;’s case and the TMF-BIC case. An illustration
is given in Fig. 5 with more details regarding the various
possible models.

Rates for our TMF-BIC approach are all above 90 percent.
It happens in very few images that using TMF with the
most complex IB; models, instead of selecting them with
BIC\yr, gives slightly better results (from 1 or 2 percent). In

the general case model, selection leads to a larger gain
(larger than 6 percent).

As mentioned before (Table 3), the Marble texture suffers
from lower recognition rates due to the nature of the learning
data set. The high variability of the Marble images in this set
makes learning a model for this texture very difficult. To
illustrate the behavior of our method in this case, global
recognition rates are still over 90 percent, but the errors
mainly come from points in the Marble texture being
misclassified. As regards the other methods, whose rates
are not reported here, we observe similar results. Classifica-
tion rates are greatly improved with our TMF-BIC method.

8 DiscussION

We considered particular cases of TMFs by designing them
to include a learning stage and to adapt to general noise
models or equivalently to general class dependent distribu-
tions. Starting from a traditional hidden data model for
which various estimation procedures exist, a subclass
variable Z is introduced in addition to the usual observed
and missing variables X and Y. The supervised problem is
recasted as an unsupervised problem, which allows tradi-
tional treatment. In particular, our approach allows model-
ing of Markovian dependencies on the sites and their effect
on the noise parameter estimation. In a way similar to [5],
introducing an extra Z allows to keep the same computa-
tional properties while increasing modeling capabilities.
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Fig. 5. Three-texture (Carpet, Chair, and Floor 2) image shown at the top-left corner: the first row shows the true classification, while each following
row corresponds to a different model. Columns show the interest points classified in each of the seven texture classes. The last column reports the

classification rate.

In practice, our choice of building class distributions
from mixtures of Gaussians was satisfying because of the
ability of such mixtures to capture adequately a large class
of probability distributions. However, other choices can be
developed using the same framework. More generally, it
would be interesting to investigate how we could adapt our
model to the use of generalized mixture models in which the
exact nature of each mixture component is not known but
can be estimated [28].

The supervised framework was dictated by the type of
applications in mind (for example, texture recognition). The
TMF model has shown its relevance in unsupervised frame-
works too [5], [6], but our particular TMFs differ from the
ones investigated in these papers in that some factorization
properties do not hold. What limits our present study is the
identifiability issue inherent to our model, and the way we
solve it by making a full benefit of the learning data.
Alternative ways to deal with the identifiability issue in
order to consider our TMF models in unsupervised cases
would be interesting to investigate. This includes ideas
related to the relabeling algorithm described in [29]. Our model
is not limited to regular graphs. An interesting question that
was not addressed in this paper involves the choice of the
neighborhood structure. This choice may depend on the
application. Indeed, for irregular lattices, the points relative
displacements do not follow a predictable pattern, and their
linkage are not always obvious from their geometry so thata
lot of possible spatial structures can be generated. With

regards to Markov models, the automatic neighborhood
selection has notbeen really addressed in the literature except
very recently in [30]. In our experiments, it appears that
graphs with similar numbers of neighbors for each sites give
more satisfying results. Directions of research for neighbor-
hood selection can be found in [30].

APPENDIX
PARAMETER ESTIMATION PROCEDURE

In this section, we describe the main features of the algorithm
used for estimation in the two stages described in Sections 4.1
and 4.2. The algorithm was originally developed for standard
HMFs referred to as HMF-IN (Section 2). To distinguish this
particular case from the more general TMF cases considered
above, we will denote by O = {Oy,...,0,} the observed
variables and by M = {M,..., M, } the missing variables
such that (O, M) isan HMF-IN, that is, M is a Markovian on a
discrete state space with G members {ey,...,eq}, and the
conditional independence assumption (2) is satisfied (with x
replaced by o and y replaced by m). As mentioned earlier, the
learning stage (Section 4.1) is somewhat recasted as an
unsupervised case so that the estimation procedures we
consider were originally developed for unsupervised seg-
mentation. We focus on soft clustering approaches and more
specifically on EM-based approaches. We consider recent
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procedures combining an EM approach with mean-field-like
approximations [7].

Briefly, these algorithms can be presented as follows: (see
[7]) they are based on the EM algorithm, which is an iterative
algorithm aiming at maximizing the log-likelihood (for the
observed variables o) of the model under consideration by
maximizing at each iteration the expectation of the complete
log-likelihood (for the observed and hidden variables O and
M) knowing the data and a current estimate of the model
parameters. When the model is an HMF with parameters ¥,
there are two difficulties in evaluating this expectation. Both
the normalizing constant W in (1) and the conditional
probabilities P(m; | o, ¥) and P(m;,m; | o, ¥) for j in the
neighborhood N(i) of i cannot be computed exactly.
Informally, the mean field approach consists in approximat-
ing the intractable probabilities by neglecting fluctuations
from the mean in the neighborhood of each site . More
generally, we talk about mean-field-like approximations
when the value for site ¢ does not depend on the value for
other sites that are all set to constants (not necessarily to the
means) independently of the value for site i. These constant
values denoted by my,...,m, are not arbitrary but satisfy
some appropriate consistency conditions (see [7]). Let my;
denote the set of variables {m;,j € N(i)} associated to the
set N (i) of neighbors of i. It follows that P(m; | o, ®¥) is
approximated by

P(m;lo,my ), ®) o f(o;|miO©)exp [ m} | W Z m;| |,
JEN(i)

where O is considered as a vector of parameters. The
normalizing constant is not specified, but its computation
is not an issue. Then, for all je€ N(i), P(m;,m;|o,¥)
is approximated by P(m; | o,my), ®) P(m; | 0,1y, ¥).
Both approximations are easy to compute. Using such
approximations leads to algorithms, which in their general
form consist in repeating two steps. At iteration ¢, we have
the following;:

e Step 1. Create from the data o and some current
parameter estimates W(?"! a configuration m@,
..m\?. Replace the Markov distribution P(m)

n

defined, as in (1), by the factorized distribution
[T POmilig, ).

It follows that the joint distribution P(o, m|¥) can
alsobe approximated by a factorized distribution, and
the two problems encountered when considering the
EM algorithm with the exact joint distribution
disappear. The following is therefore the second step:

e Step 2. Apply the EM algorithm for this factorized

model with starting values ¥V to get updated
estimates ¥(? of the parameters.

Note that, in practice, performing one EM iteration is
usually enough.

In particular, the mean field and simulated field algorithms
correspond to two different ways of performing Step 1. The
mean field algorithm consists in updating the m;(?s by
setting, forall i =1,....,n, ;9 to the mean of distribution
P(m; | o, m(g)(7), glh) ). Note thatas M, is an indicator vector,
the mean value 77,;? is a vector made of the respective
probabilities to be in each of the G classes. In the simulated field
algorithm, m;@ is simulated from P(m; | o,m(\(?( lIl(q’D).

N(i)
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The HMREF estimation provides us with estimations for the
means and covariance matrices of the ¢ Gaussian distribu-
tions, namely, p, and ¥, for g=1,...,G, but also for the
hidden field parameters, matrix W. It follows easily the
approximations of the P(M; = e 4|o, ¥)s required to classify
each site using the MPM or MAP principles.
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