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Summary

Objective: Markov random field (MRF) models have been traditionally applied to the
task of robust-to-noise image segmentation. Most approaches estimate MRF para-
meters on the whole image via a global expectation—maximization (EM) procedure.
The resulting estimated parameters are likely to be uncharacteristic of local image
features. Instead, we propose to distribute a set of local MRF models within a
multiagent framework.
Materials and methods: Local segmentation agents estimate local MRF models via
local EM procedures and cooperate to ensure a global consistency of local models. We
demonstrate different types of cooperations between agents that lead to additional
levels of regularization compared to the standard label regularization provided
by MRF. Embedding Markovian EM procedures into a multiagent paradigm shows
interesting properties that are illustrated on magnetic resonance (MR) brain scan
segmentation.
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1. Introduction

The Markov random field (MRF) probabilistic frame-
work is a powerful tool for image segmentation. It
introduces spatial dependencies between labels,
providing a labeling regularization and a robust-to-
noise segmentation. Spatial dependencies however
lead Markov model-based segmentation to an extre-
mely large amount of computation for the estimation
of the model parameters with a standard expecta-
tion—maximization (EM) algorithm. Variants of EM
have been proposed to make the MRF case tractable.
Classically,model parameterestimation is performed
over the whole image, and does not reflect local
image properties. We propose to agentify the global
MRF segmentationmodel by distributing a set of local
MRF models within a multiagent framework. The
image is partitioned in territories where situated
agentsestimate theparameters ofa localMRFmodel.
The global consistency of local models is ensured by
modifying the EM scheme to introduce cooperation
betweenneighboringagents. Localmodels estimated
with our distributed local EM (DILEM) then accurately
fit local image features. A priori knowledge can also
be integrated into this model via the external field of
MRF models, and can be used to introduce other
levels of agent cooperation.

We illustrate the agentified Markovian EM proce-
dure on magnetic resonance (MR) brain scan seg-
mentation. These images are difficult to segment
due to a number of artifacts, leading to low contrast
between tissues, high level of noise with strong field
images (3 T or higher) or intensity non-uniformity.
We distribute local non-overlapping agents to per-
form tissue segmentation. They estimate, via our
DILEM algorithm, the MRF parameters for white
matter (WM), grey matter (GM) and cephalo-spinal
fluid (CSF) classes. In addition, we perform subcor-
tical structure segmentation by distributing local
agents that focus on some interesting brain regions.
Structure segmentation is not reduced to a post-
processing step but cooperates with tissue segmen-
tation so that they mutually improve. With our
approach, a multilevel regularization is thus intro-
duced: regularization at the voxel level via MRF

modelization, at a territory level via the DILEM
algorithm, and at a regional level via the local
tissue—structure cooperations.

We detail how to design such a MRF agent-based
segmentation approach and report several experi-
ments that illustrate the working of our multiagent
framework. The evaluation of MR brain scan segmen-
tation was performed using both phantoms and real
3 T brain scans. We show that the agentified MRF
segmentation framework provides interesting prop-
erties for such complex image segmentation: (1) the
use of MRF makes the segmentation robust to noise,
(2) since intensity models are estimated locally it
does not require the explicit modelization of non-
uniformity as required by classical approaches [1,2]
and (3) the approach is time efficient compared to
classical MR brain scan segmentation tools. This MRF
agent-based approach extends our previous work
[3,4] and appears as a very promising new tool for
complex image segmentation.

This paper is organized as follows. In Section 2we
present the MRF segmentation framework and the
classical EM scheme for parameter estimation. We
then show in Section 3 how MRF processes are
turned into cooperating agent entities and how
parameters are estimated with our DILEM algo-
rithm. In Section 4 we apply our agentified MRF
segmentation to tissue and structure segmentation
on MR brain scan. Section 5 reports evaluation
results and presents several experiments to exhibit
some interesting properties of such an agentified
approach. Section 6 is devoted to discussion and
conclusion.

2. MRF agent-based segmentation

2.1. MRF framework

The Markovian segmentation framework [5] is com-
monly used in the field of segmentation. It intro-
duces spatial dependencies between voxels,
providing a robust-to-noise segmentation. We con-
sider a finite set of N sites S = {1, . . ., N}. A typical
example in image analysis is the regular two-dimen-
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Results: A cooperative tissue and subcortical structure segmentation approach is
designed with such a framework, where both models mutually improve. Several
experiments are reported and illustrate the working of Markovian EM agents. The
evaluation of MR brain scan segmentation was performed using both phantoms and
real 3 T brain scans. It showed a robustness to intensity non-uniformity and noise,
together with a low computational time.
Conclusion: Based on these experiments MRF agent-based approach appears to be a
very promising new tool for complex image segmentation.
# 2008 Published by Elsevier B.V.
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sional grid of pixels (picture elements) for two-
dimensional image segmentation or the regular
three-dimensional grid of voxels (volume elements)
for volume segmentation. S is related to a neighbor-
hood system where NðiÞ denotes the set of sites
neighboring i. Our aim is to assign each site i to
one of K classes considering the observed
features data yi at site i. In the case of greylevel
image segmentation yi 2 {R} is the observed grey-
level intensity at site i. Both observed intensities
and hidden labels are considered to be a random
field (a collection of random variables) denoted,
respectively by Y = {Y1, . . ., YN} and Z = {Z1, . . .,
ZN}; the bold notation being used to indicate a
collection of variables. Each random variable Zi
takes its value in {e1, . . ., eK} where ek is a K-
dimensional binary vector corresponding to class
k. Only the kth component of this vector is non-
zero and is set to 1. z = {z1, . . ., zN} is a configuration
of Z corresponding to a realization of the random
field. Hidden data Z are described by a discrete
Markov random field whose joint distribution
probability satisfies by definition of the following
properties:

8 z; PGðzijzSnfig; Þ ¼ pðzijz j; j2N ðiÞÞ (1)

8 z; PGðzÞ> 0; (2)

where zS\{i} denotes a realization of the field
restricted to S\{i} = {j 2 V, j 6¼ i}. Property (1) means
that the interactions between site i and the other
sites are reduced to interactions with its neighbors,
introducing spatial dependencies between voxels.
Property (2) is important for the Hammersley—Clif-
ford theorem to hold. This theorem states that the
joint probability distribution of a Markov field,
which depends on some parameters Fz, is a Gibbs
distribution given by

PGðzjFzÞ ¼ W�1Fz
expð�HðzjFzÞÞ;

whereWFz ¼
P

z0 expð�Hðz0jFzÞÞ is a normalization
constant. When assuming in addition that the obser-
vations Y are conditionally independent given Z and
depend on some parameters Fy we show using the
Bayes rule that the conditional field Z given Y = y is
also a Markov field with energy function given by

Hðzjy;FÞ ¼ HðzjFzÞ �
X
i2 S

log pðyijzi;FyÞ; (3)

with F = (Fy, Fz). This central energy in Markov
random field segmentation models is composed of
two terms:

� The first term of (3) is a regularization term that
accounts for spatial dependencies between vox-
els. They are several definition of H(zjFz) in the
literature of image segmentation. In this work we

will consider a Potts model with external field. In
the following definition t denotes the transpose
operator and for two vectors zi and vi, zti � vi
denotes the scalar product:

HðzjFzÞ ¼
X
i2 S

zti � vi �
b

2

X
j2NðiÞ

Vi jðzi; z jÞ

2
4

3
5: (4)

Vij(zi, zj) introduces spatial interactions between
voxels i and j. It tends to favor neighbors that are
in the same class when b is positive. It is classically
modeled by Vi jðzi; z jÞ ¼ zti � z j so as Vij(zi, zj) = 1
when zi and zj are in the same class. Other
approaches introduce voxel interactions
weighted by their distance. b is a parameter that
accounts for the strength of spatial interaction.
The parameters vi

0s are K-dimensional vectors
defining the so-called external field. In this case
Fz ¼ fv1; :::; vN;bg.

� The second term of (3) is the data-driven term
based on intensities. We generally consider a
Gaussian probability density function of observed
intensity yi for class zi. It follows that pðyijzi ¼
ek;FyÞ ¼ gmk;sk

ðyiÞwithFy = {mk, sk, k = 1, . . ., K}.

2.2. Global EM procedure for the
estimation of MRF parameters

Segmentation is performed according to the max-
imum a posteriori principle (MAP) by maximizing
over z the probability:

PGðzjy;FÞ ¼ W�1y;F expð�Hðzjy;FÞÞ: (5)

This requires the evaluation of an intractable
normalizing constant Wy,F and the estimation of
the unknown parameters F. A standard approach
is to use the iterative conditional modes (ICM) algo-
rithm [6] that alternates between parameter esti-
mation and segmentation but results in biased
estimates. We rather consider EM-based algorithms
and use variants proposed by [7].

Assuming F unknown, the aim is to get the max-
imum likelihood estimate of this parameter knowing
the observations y. The log-likelihood of the model is

LðFÞ ¼ log PGðyjFÞ ¼ log
X
z

PGðy; zjFÞ:

The EM algorithm [8] is an iterative algorithm
aiming atmaximizing this log-likelihood bymaximiz-
ing at iteration q,

QðFjFðqÞÞ ¼ IEFðqÞ ½log PGðy; ZjFÞjY ¼ y�;

the expectation of the complete log-likelihood
knowing the observation y and current estimate
F(q). The EM algorithm can therefore be described
as follows:
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(1) start from an initial guess F(0) for F,
(2) update the current estimate F(q) to Fðqþ1Þ

¼ argmaxF QðFjFðqÞÞ.

The updating part (2) can be divided in two steps.
The computation of Q(FjF(q)) corresponds to the E
(expectation) step and the maximization with
respect toF to the M (maximization) step. However,
the spatial dependencies of MRF models lead to an
extremely high combinatory complexity with a stan-
dard EM procedure. Celeux et al. [7] proposed
mean-field approximations to make the EM algo-
rithm tractable for the MRF case. The principle is
to approximate at each iteration the MRF model
with complex dependencies by a system of indepen-
dent variables. It is obtained by fixing the neighbor-
hood of each pixel to arbitrary constants. Celeux
et al. [7] proposed three algorithms referred to as
mean-field, modal-field and simulated-field algo-
rithms based on different mean-field approxima-
tions via the use of different constants.

With these approaches one unique and global EM
procedure estimates the MRF parameters describing
the whole image (see Fig. 1a), which does not reflect
local properties of the image. In the next section we
propose to agentify the EM procedure in order to
estimate local parameters through the volume.

3. Agentification of EM procedures

We propose to agentify the global MRF segmentation
model by distributing in the volume several local
MRF models in a multiagent (MA) paradigm. This
agentification modifies the standard EM procedure
(see Fig. 1a) and leads to the introduction of addi-
tional steps and agent interactions (see Fig. 1b).

We consider a decentralized and memory
shared MA framework based on the classical
Agent/Group/Behavior conceptual model inspired
from MadKit.1 In this model an agent is an auton-
omous and communicating entity which runs beha-
viors within groups. Each agent can handle
multiple behaviors but only one is active at a
time. Groups are defined as atomic sets of agent
aggregation and thus gather cooperating or com-
municating agents in the system. An agent can be
a member of n groups at the same time and groups
can freely overlap.

3.1. Hierarchical setup of the agents

We consider two kinds of agents: one global agent
which initializes the MRF agentified segmentation
and a set of local cooperating MRF segmentation
agents.

3.1.1. Global agent
At the system launch time, the global agent AG is
created and activated. This agent belongs to only
one group GALL AGENTS that gathers all agents of the
system and runs two consecutive behaviors:

� BGlbAgent Partitionning: This behavior is activated
first. It is responsible for partitioning the image
into C non-overlapping territories fT c; c ¼
1; . . . ;Cg and instantiating one local segmentation
agent Ac per territory. The global agent then
enters in idle mode and waits for the local agents
to finish their initialization before running the
BGlbAgent WakeUpAgents behavior.

84 B. Scherrer et al.

Figure 1 (a) Shows a synthetic view of a classical global EM estimation scheme. (b) Shows the agentified distributed
local EM (DILEM) scheme with cooperations and coordinations (bold arrows) to ensure a global consistency of local
models.

1 See the MadKit homepage: http://www.madkit.org (accessed:
6 August 2008).
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� BGlbAgent WakeUpAgents: This behavior is activated to
initiate the agentified segmentation when each
local segmentation agent Ac has finished its initi-
alization (see Section 3.2).

3.1.2. Local EM agents
Each agent Ac is a situated agent attached to its
territory T c. Its role is to estimate over T c the
parameters of a local MRF model via a local EM
procedure.

For each Ac the MRF modelMRF c is defined by
the energy (see Eqs. (3) and (4)):

Hcðzjy;FcÞ ¼

X
i2T T

c

zti �lc
i �

bc

2

X
j2N ðiÞ

Vijðzi;zjÞ� log pðyijzi;Fc
yÞ

2
4

3
5;

(6)

where the parameters Fc ¼ fFc
t;F

c
yg are local to

the territory T c. Each agent Ac owns three beha-
viors:

� BLocalAgent Init which initializes the EM algorithm by
computing initial intensity models via a fuzzy c-
mean (FCM) algorithm,

� BLocalAgent DILEMLoop which estimates the local MRF
model parameters in cooperation with neighbor-
ing agents and

� BLocalAgent Stabilized which activates the neighboring
agents (knowledge diffusion) and then waits to be
activated by its neighbors.

3.2. Interaction between agents

Several coordination and cooperation mechanisms
are proposed to realize interaction between agents.

3.2.1. Coordination between the global and
the local agents
When all local agents have finished their initializa-
tion the global agent runs its BGlbAgent WakeUpAgents

behavior (see Fig. 2). First it computes a simple
global intensity model without any Markov regular-
ization using the FCM algorithm. Then, it initiates
the agentified segmentation procedure by activat-
ing a first subset of local agents. We use the strategy
of activating only agents with initial local models
closest to the global model because they are likely
to start with a more reliable knowledge than others.
Other agents will be activated by coordination
mechanisms between local neighboring agents.

3.2.2. Cooperation between neighboring
agents
Because the estimation is local, some classes are
likely to be under-represented in some territories,
leading to poor model estimations with a classical
EM scheme. The agent Ac thus cooperates with its
neighbors to ensure a global consistency of the
local estimated model. We denote by GNðAcÞ the
group of agents neighboring Ac and provide details
about the BLocalAgent DILEMLoop and BLocalAgent Stabilized

behaviors (see Fig. 1b): we modify the classical EM
scheme by introducing model checking, model
correction and model interpolation as described
below:

� Model checking: For each class k the agent Ac

computes an intensity model averaging the inten-
sity models of its neighbors GNðAcÞ. This average
model is denoted by F̃c

y;k ¼ fm̃c
k; s̃

c
kg.

Then Ac compares its local intensity model
fmc

k; s
c
kg to fm̃c

k; s̃
c
kg using the Kullback—Leibler

Agentification of Markov model-based segmentation 85

Figure 2 Interactions between the global and local agents at the initialization of the agentified MRF segmentation.
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distance given by

KLðgm1;s1
; gm2;s2

Þ ¼

ðs2
1 � s2

2Þ
2 þ ðm1 � m2Þ2ðs2

1 þ s2
2Þ

4s2
1s

2
2

Thus, Dc
k ¼ KLðgmc

k
;sc
k
; g

m̃c
k
;s̃c
k
Þ provides a measure

of dissimilarity between the two intensity models
of class k.

� Model correction:We assume that for each class k
the local model of Ac is likely to be close to the
local mean model. We compute the corrected
mean cmc

k and variance bsc
k of class k from a linear

combination of intensity models fmc
k; s

c
kg and

fm̃c
k; s̃

c
kg:cmc

k ¼ ð1� kÞmc
k þ km̃c

kbsc
k ¼ ð1� kÞsc

k þ ks̃c
k;

with k 2 [0, 1]. We define two thresholds dkeep and
dreplace with dkeep � dreplace and propose the fol-
lowing strategy of model correction:
o IfDc

k � dkeep, the estimated local model of class
k is considered correct and we keep it: k = 0.

o If Dc
k> dreplace we replace the estimated model

by the local mean model of class k: k = 1.
o Else, if dkeep<Dc

k � dreplace, we partially correct
the estimatedmodel with a linear interpolation:

k ¼ Dc
k � dkeep

dreplace � dkeep

� Model interpolation: Model correction provides a
corrected intensity model, namely KGaussians, to
describe the local intensity distribution in T c.
Then we compute one intensity model per voxel
by using cubic splines interpolation between cor-
rected models of Ac and of GNðAcÞ. It follows that
Fc

y ¼ fmk;i; sk;i; k ¼ 1; . . . ;K; i2Vcg. This results
in a non-stationary field-like approach. There is
not a unique mixture of Gaussians describing the
intensity distribution over the territory T c but
one mixture of Gaussians per voxel. It has the
advantage to ensure smooth model variation
between neighboring territories. In the following,
since territories are not overlapping, we will
denote by Fiy = {mk,i, sk,i, k = 1, . . ., K} the para-
meters of the mixture of Gaussians for site i 2 S.

3.2.3. Coordination between neighboring
agents
When the agent Ac has finished its local model
estimation it enters in BLocalAgent Stabilized behavior
(see Fig. 3). This behavior first activates neighboring
agents GNðAcÞ so that they perform estimation in
turn and then put Ac in idle mode. Two cases are
possible after the activation of Ac0 2 GNðAcÞ by Ac:

� Ac0 had already completed its estimation before
and is in BLocalAgent Stabilized behavior. In this case
Ac0 performs model checking. When model
correction is required, the corresponding
BLocalAgent DILEMLoop behavior of Ac0 is restarted
to take into account the model modifications
(see Fig. 3). We define a maximum number
MAXAgentRestart to ensure the convergence of the
algorithm.

� Ac0 has only performed its initialization. In this
case it enters in BLocalAgent DILEMLoop to compute a
first estimate of the local MRF model.

3.2.4. Extended cooperation for overlapping
agents
Agents can also cooperate via the external field of
the MRF model. By considering the Potts model (see
Eq. (4)) we notice that when b = 0 (no spatial inter-
action between sites) it comes:

PGðzi ¼ ekjFzÞ ¼
expð�viðkÞÞPK
l¼1 expð�viðlÞÞ

;

so that vi can be related to a prioriweights account-
ing for the relative importance of the K classes at
site i. The introduction of these extra parameters in
the standard Potts model is seldom considered in
MRF approaches whereas it makes possible the inte-
gration of a priori knowledge for each site in the
segmentation procedure. Two overlapping agents
Ac and Ac0 can therefore cooperate by sharing data
via the external field: ifAc has a reliable knowledge
about the shared sites withAc0, it can introduce it as
a priori weights in the model of Ac0. We describe in
Section 4.2 an example of such a cooperation.

4. Markovian EM procedure applied to
MR brain scans

Our agent-based approach provides a two-level reg-
ularization during the segmentation: a regularization

86 B. Scherrer et al.

Figure 3 State diagram for the behaviors execution of a
local agent.
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at the label level via MRFmodels and a regularization
at the territory level via cooperations and coordina-
tions between agents. These mechanisms provide
robust local models that better fit to local image
features compared to a global model. Such an
approach is then particularly interesting in presence
of spatial intensity non-uniformity. It intrinsically
handles the variations of intensity inside classeswith-
out any specificmodelization. The only assumption is
that intensity non-uniformity varies smoothly over
the image. In addition local agentified segmentation
takes advantage of local complexity in the image:
easy to segment territories lead to a fast EM stabi-
lization, allowing the system to focus on more diffi-
cult territories. It is then especially adapted to MRF
segmentation known to be time consuming.

We assume that such properties are well suited to
the segmentation of specific images such as MR brain
scans. Indeed, MR brain scans are corrupted by a
number of artifacts such as noise and intensity non-
uniformity that make the segmentation a challen-
ging task. The intensity non-uniformity results in
spatial intensity variations within each tissue class.
It results mainly from MR imaging hardware imper-
fections, such as magnetic field non-uniformity or
receiver coil imperfections, and from biological
tissue properties. Even if it does not really affect
visual perception, the non-uniformity of image
intensity is a major obstacle to an accurate auto-
matic segmentation. In the MR brain scan segmen-
tation field, the data are three-dimensional data
referred as volumes composed of voxels (volume
element), and we generally consider:

� The tissue segmentation, that aims at classifying
voxels in K = 3 tissue classes: CSF, GM, and WM,
and

� The subcortical structure segmentation, subcor-
tical structures being regions of tissues (see
Fig. 5a) known to be involved in various brain
functions. Their segmentation is very interesting
for various neuroanatomical researches such as
brain development or disease progression studies.

We propose to use our local MRF agent-based
approach to build the local cooperative unified
segmentation (LOCUS) tool [9,10]. Global Markovian
modelization have been widely used for a robust-to-
noise segmentation of MR brain scans. Earlier
approaches used ICM to estimate MRF parameters
[11] that is known to result in biased estimates.
More recent approaches introduced variants of the
EM algorithms [12,13] for a more reliable estima-
tion. They estimate parameters through the entire
volume and then require the estimation of an expli-
cit ‘‘bias field’’ model [1] to account for the inten-

sity non-uniformity. These models are based on
underlying assumptions that are not always valid
and requires additional computational burden for
their estimation. For all segmentation techniques
tissue and structure segmentations are considered
as two successive tasks whereas they are clearly
linked: the knowledge of structure segmentation
provides valuable information about local intensity
distribution for a given tissue, and should be intro-
duced in the tissue segmentation model. In the
following sections we apply our agentified MRF seg-
mentation framework to propose a cooperative tis-
sue and structure segmentation approach.

4.1. Tissue segmentation agents

The agentified Markovian EM approach estimates
local parameters through the volume. This results
in a goodmodel adaptation to local image properties
and therefore does not require non-uniformity cor-
rection as seen on Fig. 4. We then apply the agen-
tified DILEM scheme exactly as shown in Section 3.
We denote by AT

G the global tissue segmentation
agent and by AT

c the local tissue segmentation
agents. The agent territory T T

c is a three-dimen-
sional subvolume of voxels. We denote by t ¼
ft1; . . . ; tNcg the hidden tissue classes at each voxel.
ti’s take their values in {e1, e2, e3}, respectively for
classes {eCSF, eGM, eWM}.

4.2. Structure segmentation agents

We propose to couple tissue and structure segmen-
tation so as they mutually improve.

4.2.1. Agent modelization
We define one structure agent AS

l per structure and
currently consider L = 9 subcortical structures: the
ventricular system, the two frontal horns, the two

Agentification of Markov model-based segmentation 87

Figure 4 The two histograms corresponding to two
different three-dimensional territories illustrate the
intensity variation for each tissue class due to intensity
non-uniformity. Local estimated models fit to local image
features: the vertical bar shows a greylevel intensity
labeled either as WM or GM according to the subvolume.
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caudate nucleus, the two thalamus, and the two
putamens. Each structure agent segments its terri-
tory T S

l with a MRF model of K = 2 classes referred
as structure and background. Denoting by s ¼
fsi; i2T S

l g the hidden classes, the energy function
of the MRF model of AS

l is given by

Hlðsjy;C lÞ ¼

X
i2T S

l

sti � al
i �

bl

2

X
j2N ðiÞ

Vijðsi; sjÞ � log pðyijsi;C l
yÞ

2
4

3
5;

(7)

with C l ¼ fC l
s;C

l
yg and si 2fe1; e2g ¼ feB; eSg for a

voxel of the background or a voxel belonging to
structure l.

4.2.2. Structure segmentation requires
introduction of a priori knowledge
Automatic structures segmentation cannot rely only
on radiometry information because intensity distri-
butions of grey nucleus are largely overlapping (see
Fig. 5b). A priori knowledge should be introduced.
Classical approaches rely on an a priori known atlas
describing anatomical structures. Atlas warping
methods are however time consuming and limited
due to inter-subject variability. A recent different
way to introduce a priori anatomical knowledge is to
describe brain anatomy with generic fuzzy spatial
relations [14,15]. We generally consider three kind

of spatial relations: distance, symmetry and orien-
tation relations. They are expressed as 3D fuzzy
maps to take into account the general nature of
the provided knowledge (see Fig. 6). We describe
each subcortical structure by a set of generic fuzzy
spatial relations provided by a brain anatomist.
Fusion operators between fuzzy sets then permits
to combine the knowledge provided by each spatial
relation and provides a fuzzy localization map (FLM)
of the structure in the volume.

The FLM fl of structure l is used in two ways: first
it dynamically provides the structure agent territory
T S

l containing the structure l by a simple threshold-
ing. Second we propose to integrate it as an a priori
anatomical knowledge in the MRF framework via the
external field denoted by fai; i2T S

l g (see Eq. (7)),
where al

i is a two-dimensional vector. We denote by
fli the value of fl at voxel i and propose to introduce
the prior fuzzy knowledge of the FLM as relative
prior weights for each voxel i, by setting:

al
i ¼ g

�logð1� fli Þ
�log fli

� �
; (8)

where g adjusts the influence of the external field.
When fli � 0, the voxel i is unlikely to belong to the
structure. If g was null, the segmentation would be
performed only from the intensity models. Else,
according to (8), al

ið1Þ<al
ið2Þ which favours in (7)

the class background. When fli � 1, the voxel i is
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Figure 5 Manual delineation of some subcortical structures (a) and corresponding intensity histograms (b). It illustrates
the inherent difficulty to automatically label these structures based only on greylevel radiometry.

Figure 6 Example of fuzzy maps of spatial relations for the left caudate nucleus: (a) express ‘‘approximatively at 5 mm
from the left frontal horn’’, (b) express ‘‘in a direction (�3p/4, p/2) in the Talairach system with respect to the left
frontal horn’’, and (c) is the fusion of the two maps.
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likely to belong to the structure. In that case
al
ið1Þ>al

ið2Þ and the class structure is favored.

4.2.3. Structure agent behaviors
Structure agents owns four behaviors:

� BStruct Initialization that initializes the structure
agent,

� BStruct ComputeFuzzyMap that computes or updates the
FLM from fuzzy spatial relations,

� BStruct EMLoop that computes MRF model para-
meters via an EM loop and

� BStruct Stabilized when the agent is in the idle state.

4.3. Cooperation and coordination
between agents

As we defined a neighborhood group GNðAcÞ for each
tissue agent we introduce the following groups:

� GT! SðAS
l
Þ of tissue agents cooperating with a struc-

ture agent AS
l , i.e. tissue agents overlapping AS

l ,
� GS!TðAT

c Þ
of structure agents cooperating with a

tissue agentAT
c , i.e. structure agents overlapping

AT
c and

� GS! SðAS
l
Þ of structure agents using AS

l as a refer-
ence in a spatial relation.

These groups allow to detail cooperation and
coordination mechanisms between agents.

4.3.1. Updating structure models via tissue
models
Each structure being composed of a single tissue
Tl 2 {eCSF, eGM, eWM}, we do not estimate intensity
model C l

y of class structure and class background.
We rather compute them from tissue intensity
models of GT! SðAS

l
Þ estimated by tissue agents,

by setting:

pðyijsi ¼ eS;C
l
yÞ ¼ pðyijti ¼ Tl;FiyÞ

pðyijsi ¼ eB;C
l
yÞ ¼ max

l2G
S!TðATc Þ

;Tl¼ek
pðyijti ¼ t;FiyÞ

8<
: ;

so that improvements in tissue intensity models
estimation will be dynamically taken into account
by structure agents.

4.3.2. Feedback of structure segmentation on
tissue segmentation
Conversely, results from structure agents are inte-
grated in the tissue segmentation model via the
external field lc

i ¼ ½lc
i ðeCSFÞ; lc

i ðeGMÞ; lc
i ðeWMÞ�; of tis-

sue agents. The tissue agent AT
c introduces in its

model the posteriori probabilities of overlapping
structure agents GS!TðAT

c Þ
as a priori weights for

each tissue class. More specifically we use for tissue
class ek the weight:

lc
i ðekÞ ¼ �log max

l2G
S!TðATc Þ

;Tl¼ek
pðsli ¼ eSjy;C lÞ

0
@

1
A;

so that the tissue class ekwill be favored when voxel
i belong to a structure composed of tissue ek. It
follows that structure segmentation is not reduced
to a second step but is combined with tissue seg-
mentation to improve its performance. It thus intro-
duces a regularization mechanism between the two
different knowledge.

4.3.3. Update fuzzy maps
When the segmentation of structure l is updated the
structuremodels of GS! SðAS

l Þ take it into account by
re-computing their spatial relations with respect to
l, making the knowledge gradually more accurate.

4.3.4. Activating tissue agents
Each time the convergence of a structure agent is
reached, it activates corresponding cooperative
tissue agents of GT! SðAS

l
Þ so that they take into

account the improved knowledge.

4.3.5. Activating structure agents
When the convergence of a tissue agent is reached,
it activates corresponding structure agents of
GS!TðAT

c Þ
only if tissue intensity models have suffi-

ciently changed. This threshold permits the algo-
rithm to converge.

Fig. 7 shows a global view of LOCUS approach for
cooperative tissue and structure segmentation for
MR brain scan, emphazing the three regularization
levels.

5. Evaluation

We implemented our approach in a simulated mul-
tiagent system where agents cooperate through a
shared space memory (see Fig. 8). Based on various
experiments we set the size of territories to
20 � 20 � 20 voxels, resulting from 300 to 500 dis-
tributed agents. We set the parameters dkeep = 0.3
and dreplace = 1.0 for model correction and
MAXtissue estimation restart ¼ 5 to ensure the conver-
gence of DILEM. The evaluation was performed using
both phantoms and real 3 T brain scans. We used the
normal BrainWeb phantoms database from the
McConnell Brain Imaging Center [16]. These phan-
toms are generated from a realistic brain anatomi-
cal model and a MRI simulator that simulates MR
acquisition physics, in which different values of non-
uniformity and noise can be added. Because these
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images are simulated we can quantitatively com-
pare our tissue segmentation to the underlying
tissue generative model to evaluate the segmenta-
tion performances. We performed this evaluation
using the Jaccard similarity metric which measures
the overlap between a segmentation result and the
gold standard. By denoting by TPk the number of
true positives for class k, FPk the number of false
positives and FNk the number of false negatives the
Jaccard similarity metric is given by

J k ¼
TP

TPþ FNþ FP

J k takes its value in [0, 1] where the value 1
represents the complete agreement. We first eval-
uated the tissue segmentation performances pro-
vided by tissue agents only. We quantitatively
compared our approach to two well known
approaches, FSL [13] and SPM5 [2] (see Fig. 9).
We ran FSL and SPM5 with default parameters simi-
larly to several evaluations proposed in the litera-
ture. For LOCUS we did not optimize the parameters
for the data used and kept these parameters both
for BrainWeb phantoms and real 3 T brain scans. It
shows comparable results and particularly more
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Figure 8 Tissue and structure agents communicate via a shared space in the MA framework.

Figure 7 Synthetic view of the agent-based approach with the different regularization levels.
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robustness to noise than SPM5, whereas the compu-
tational time was approximately 4 min with our
approach and, respectively 8 min and 14 min with
FSL and SPM5 on a 4Ghz Pentium, 1Go RAM. Fig. 10
shows visual evaluation on a very high bias field
brain scan. This image was acquired with a surface
coil which provides a high sensitivity in a small
region (here the occipital lobe). Such an acquisition
is useful for functional imaging but results in highly
non-uniform intensities. SPM5, which uses an a
priori atlas, failed in the segmentation probably
due to the difficulty to match the atlas with a sur-
face coil brain acquisition. FSL did not estimate a
correct bias field. Our local approach clearly
appears to be more robust to very high intensity

inhomogeneities. Fig. 11 shows results of coopera-
tive tissue and structure segmentation. Tissue seg-
mentation in the region of the putamens is clearly
improved (Fig. 11c) by the regularization provided
by structure segmentation agents. In addition to
these competitive performances, our platform
allows us to demonstrate some interesting proper-
ties of this local approach. We have developed a
specific user interface to track the execution of
each agent and to follow the segmentation process
(see Fig. 12). Fig. 13 evaluates the segmentation on
a high non-uniformity image for different size of
agent territory. It shows that large territory sizes
result in poor performance because the estimation
is perturbed by non-uniformity. Smaller territory
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Figure 9 Comparison of our approach to FSL and SPM5 for tissue segmentation on the BrainWeb phantoms with 40% of
non-uniformity and different noise values. Evaluation for class CSF (a), GM (b) and WM (c) classes.

Figure 10 Evaluation on a MR brain scan with very high intensity non-unformity (a). Tissue segmentation provided by
SPM5 (b), FSL (c) and our approach (d).

Figure 11 Cooperative tissue and structure segmentation: structure segmentation (a) with 3D rendering (b) shows good
results with computational time less than 15 min. Image (d) shows visual improvement in tissue segmentation compared
to the segmentation produced by tissue agents only (c) (see putamens).
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sizes allow to better model local intensity distribu-
tions but need to be large enough to correctly
estimate models. In practice, based on different
experiments, territory size from 15 � 15 � 15 vox-
els to 25 � 25 � 25 voxels gives good results. Fig. 14
shows the number of DILEM iterations for some
territories and illustrates the activity of four tissue
agents immersed in the system. Agent 1 (see
Fig. 14.c1) does not need model correction because
all classes are sufficiently represented in its terri-
tory. The segmentation is then performed based
only on local model estimation. Agent 2 (see
Fig. 14.c2) has only a few brain voxels in its territory
and then starts with unreliable knowledge. After

initialization it waits for the neighboring agents to
wake it up. Then only one model correction and a
few DILEM iterations number are needed to segment
its territory. It is likely that the local model is
completely replaced by the neighouring mean
model during the model correction. This model
appear to be consistent with the few voxels of its
territory and then DILEM converge very quickly.
Some model checkings are performed during the
BLocalAgent Stabilized behavior but do not activate the
agent again. Agent 3 (see Fig. 14.c3) requires model
corrections but requires a lot of DILEM iteration to
get an agreement with its neighborhood. The local
model and the mean model in neighborhood appear
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Figure 13 Influence of tissue agent territory size on the robustness to intensity non-uniformity, using the BrainWeb
phantom with 3% of noise and 100% of non-uniformity.

Figure 12 Graphical interface developed to follow the evolution of each agent during the segmentation.
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to be in competition to get the stabilization of the
segmentation. Agent 4 (see Fig. 14.c4) requires
model corrections as well. However, after a first
agreement with the mean model in neighborhood
ðBLocalAgent Stabilized behaviourÞ model checking
restarts the estimation three times to get a final
agreement. In Fig. 15(b) we computed for different
agent positions the proportion of agents that require
low or high DILEM iterations to reach the conver-

gence. This graphic was computed from an average
of eight BrainWeb segmentations for different
values of noise (3%, 5%, 7% and 9%) and inhomogene-
ities (20% and 40%). It shows that agents with a very
few DILEM iterations are localized in a peripheral
region of the brain. Agents with a large DILEM
iterations number are mainly localized between
40 and 80 mm, maybe because of the complexity
to segment the grey matter of the cortex in this low
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Figure 14 Our implementation allows to observe the activity of each agent. (b) Shows the number of DILEM loop for
each agent. (c1)—(c4) Show the execution chronograms for agents (1)—(4) pointed by (a) and the local histogram
computed on the agent territory. It illustrates different behaviors for agents immersed in the system.
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contrast region which contains a lot of partial
volume voxels.

6. Discussion and conclusion

Embedding local EM procedures in a multiagent
paradigm for the estimation of MRF parameters
provides different interesting properties for image
segmentation. First, local models accurately fit
local image features. Second, local EM execution
is adapted to local image complexity; more time is
devoted to difficult-to-segment regions, lowering
the global computational burden. Third, it allows
a multilevel regularization. Such an approach
requires the introduction of various cooperation
and coordination mechanisms to ensure the global
consistency of local models. Coordination is intro-
duced to (1) ensure the spatial knowledge diffusion
and (2) prevent agents from starting with poor
quality knowledge. Cooperation provides different
nature of regularization: regularization at a terri-
tory level with the DILEM algorithm to correct
under-represented classes and regularization at a
regional level to combine different kinds of knowl-
edge. This approach is particularly suitable for MR
brain scans segmentation. Accurate segmentation
of MR brain scan must take into account both noise
and intensity non-uniformity actifacts. The local
perturbation produced by noise is handled by MRF.
Intensity non-uniformity is a more global perturba-
tion. It requires spatial adaptation of the models
over the volume. Instead of estimating a spatial bias
field model [1,2] or using non-tractable non-station-
ary MRFs, our agent-based MRF approach compli-
ments the local MRF regularization level with a
global regularization level via the DILEM estimation
procedure. In addition, we consider two levels of
knowledge as regards to MR brain scans; tissue

knowledge at a local level, and subcortical brain
structure knowledge at a regional level. In general,
these two levels are processed independently
[14,15]. Rather, we consider that they are linked
andmust be used in a common setting. We show how
to introduce a priori anatomical knowledge
expressed by fuzzy spatial relations in the MRF
framework to segment several subcortical struc-
tures. We then show how to take advantage of
our agent-based Markovian framework to combine
MRF models of tissues and structures. Subcortical
structure segmentation then appears as an addi-
tional level of regularization; tissue and structure
models are mutually constrained in their conver-
gence, making them gradually more accurate and
optimal. To our knowledge, distributed EM algo-
rithms are seldom considered in the literature.
Nowak [17] proposed a distributed EM algorithm
for density estimation in sensor networks. Mensink
et al. [18] proposed Multi-Observation Newscast EM
for multi-camera tracking where every camera
learns from both its own observations and commu-
nication with other cameras. These approaches are
envisaged in a data fusion context: the algorithm is
distributed but only one model is considered. No
model correction between local models is per-
formed.

Our implementation provides an interesting
visualization tool which allows us to track specific
agents and explore local knowledge such as local
segmentation errors or local intensity models. The
results are comparable to other algorithms with
lower computational time. It appears to be robust
to the intensity non-uniformity without any bias
field assumption and estimation. Note that we cur-
rently consider a regular cubic partitioning for the
DILEM algorithm but other methods like adaptive or
spherical partitioning can be envisaged. This
approach is currently extended to deal with patho-
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Figure 15 (a) Shows for various agent positions the proportion of agents that require high or low number of DILEM
iterations to converge, computed from an average of eight BrainWeb segmentations. The position is defined by the
distance from the agent territory center to the brain center (see (b)).
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logical images encountered in the case of multiple
sclerosis or stroke diseases. Finally, MRF agent-
based computing appears as an interesting and
modular tool for complex image segmentation.
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