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Abstract. We address the issue of identifying and localizing individuals in a
scene that contains several people engaged in conversation. We use a human-like
configuration of sensors (binaural and binocular) to gather both auditory and vi-
sual observations. We show that the identification and localization problem can be
recast as the task of clustering the audio-visual observations into coherent groups.
We propose a probabilistic generative model that captures the relations between
audio and visual observations. This model maps the data to a representation of the
common 3D scene-space, via a pair of Gaussian mixture models. Inference is per-
formed by a version of the Expectation Maximization algorithm, which provides
cooperative estimates of both the activity and the 3D position of each speaker.
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1 Introduction

In most systems that handle multimedia data, audio and visual modalities are treated rel-
atively independently using modality specific sub-systems whose results are combined
afterwards at a higher level. The performance of such procedures in realistic situations
is limited. Confusion may arise from factors such as background acoustic and visual
noise, acoustic reverberation, visual occlusions. The different attempts that have been
made to increase robustness are based on the observation that improved localization and
recognition can be achieved by integrating acoustic and visual information. The reason
is that each modality may compensate for weaknesses of the other one, especially in
noisy conditions. This raises the question of how to efficiently combine the two modal-
ities in different natural conditions and according to the task at hand.

The first question to be addressed is where the fusion of the data should take place.
There are several possibilities. In contrast to the fusion of previous independent pro-
cessing of each modality [1], the integration could occur at the feature level. In this case
audio and video features are concatenated into a larger feature vector which is then used
to perform the task of interest. However, owing to the very different physical natures of
audio and visual stimuli, direct integration is not straightforward. There is no obvious
way to associate dense visual maps with sparse sound sources. The approach that we
propose lies between these two extremes. The input features are first transformed into



a common representation and the processing is then based on the combined features in
this representation. Within this strategy, we identify two major directions depending on
the type of synchrony being used. The first one focuses on spatial synchrony and implies
combining those signals that were observed at a given time, or through a short period of
time, and correspond to the same source (e.g. speaker). Generative probabilistic models
in [2] and [3] for single speaker tracking achieve this by introducing dependencies of
both auditory and visual observations on locations in the image plane. Although au-
thors in [2] suggested an enhancement of the model that would tackle the multi-speaker
case, it has not been implemented yet. Explicit dependency on the source location that
is used in generative models can be generalized using particle filters. Such approaches
were used for the task of single speaker tracking [4], [5], [6], [7] and multiple speaker
tracking [8], [9], [7]. In the latter case the parameter space grows exponentially as the
number of speakers increases, so efficient sampling procedures were suggested [9], [7]
to keep the problem tractable.

The second direction focuses on temporal synchrony. It efficiently generalizes the
previous approach by making no a priori assumption on audio-visual object location.
Signals from different modalities are grouped if their evolution is correlated through
time. The work in [10] shows how principles of information theory can be used to select
those features from different modalities that correspond to the same object. Although
the setup consists of a single camera and a single microphone and no special signal
processing is used, the model is capable of selecting the speaker among several persons
that were visible. Another example of this strategy is offered in [11]. Matching is per-
formed there based on audio and video onsets (times at which sound/motion begins).
This model is successfully tested even on the case with multiple sound sources. Most
of these approaches are however non-parametric and highly dependent on the choice of
appropriate features. Moreover they usually require learning or ad hoc tuning of quan-
tities such as window sizes, temporal resolution, etc. They appear relatively sensitive to
artifacts and may still benefit from more robust implementation.

The second question to be addressed is which features to select in order to best
account for the individual and combined modalities. Some methods rely on complex
audio-visual hardware such as an array of microphones that are calibrated mutually and
with respect to one or more cameras [6]. This yields an approximate spatial localiza-
tion of each audio source. A single microphone is simpler to set up, but it cannot, on
its own, provide audio spatial localization. However, none of these procedures really
consider the problem of speaker localization as a 3D problem although speakers move
and speak in a 3D environment and therefore generate observations that retain in their
nature the characteristics of this 3D environment. Typically, projecting on a 2D video
frame it is impossible to deal with occlusion of speakers located at the same 2D posi-
tion but at different depths. We propose to use a human-like sensor setup that consists in
binaural hearing and stereoscopic vision. The advantage of using two or more cameras
is twofold. First, one may use as many cameras as needed in order to make all parts of
a room observable. This increases the reliability of visual feature detection because it
helps to solve both the occlusion problem and the non fronto-parallel projection prob-
lem. Nevertheless, selecting the appropriate camera to be used in conjunction with a
moving target can be quite problematic. The majority of models maintain the image



location of a target by supposing that there are no occlusions or by considering them
as a special case [9]. Second, it is possible to extract depth information of the scene
using a pair of stereo cameras. So far there has been no attempt to use such a setup. As
soon as two microphones are used to detect audio events, certain characteristics, such as
interaural time difference (ITD) and interaural level difference (ILD) can be computed
as indicators of the 3D position of the source. This localization plays important role in
some algorithms, such as partitioned sampling [6] and is mostly considered as the core
fusion strategy component. An additional advantage of our setup is therefore to allow a
more symmetric integration in which the audio stream is not assumed to be dominant.

The originality of our proposal is to embed the problem in the physical 3D space,
which is not only natural but has more discriminative power in terms of speakers identi-
fication and localization. Typically, it is possible to discriminate between visually adja-
cent speakers, provided that we consider them in 3D space. We try to combine benefits
from both types of synchronies. Our approach makes use of spatial synchrony, but un-
like the majority of existing models, performing the binding in 3D space fully preserves
localization information so that the integration is reinforced. At the same time we do
not rely on high-level feature detectors such as structural templates [9], colour mod-
els [6] or face detectors, so that the model becomes more robust. Then our approach
resembles those based on temporal synchrony in the sense that we recast the problem
of how to best combine audio and visual data for speaker identification and localization
as the task of finding coherent groups of observations in data. The statistical method for
solving this problem is cluster analysis. The 3D positions are chosen as a common rep-
resentation to which both audio and video features are mapped, through two Gaussian
mixture models.

Our contribution is then to propose a unified framework in which we define a prob-
abilistic generative model that links audio and visual data by mapping them to a com-
mon 3D representation. Our approach has the following main features: 1) the number
of speakers can be determined in accordance with the observed data using statistically
well based model selection criteria; 2) a joint probabilistic model, specified through
mixture models which share common parameters, captures the relations between audio
and video observations; 3) 3D speaker localization within this framework is defined as a
maximum likelihood estimation problem in the presence of missing data, and is carried
out by adopting a version of the Expectation Maximization (EM) algorithm; 4) we show
that such a setting can adapt well to our model formulation and results into cooperative
estimation of both speaker 3D positions and speaker activity (speaking or not speaking)
using procedures for standard mixture models.

2 A Missing Data Model for Clustering Audio-Visual Data

Given a number of audio and visual observations, we address the problem of localizing
speakers in a 3D scene as well as determining their speaking state. We will first assume
that the number of speakers is known and fixed to N . Section 4 addresses the question
of how to estimate this number when it is unknown. We consider then a time interval
[t1, t2] during which the speakers are assumed to be static. Each speaker can then be
described by its 3D location s = (x, y, z)T in space. We then denote by S the set of the
N speakers’ locations, S = {s1, . . . , sn, . . . , sN}, which are the unknown parameters



to be determined.
Our setup consists of a stereo pair of cameras and a pair of microphones from which

we gather visual and auditory observations over [t1, t2]. Let f = {f1, . . . ,fm, . . . ,fM}
be the set of M visual observations. Each of them has binocular coordinates, namely
a 3D vector fm = (um, vm, dm)>, where u and v denote the 2D location in the Cy-
clopean image. This corresponds to a viewpoint halfway between the left and right
cameras, and is easily computed from the original image coordinates. The scalar d de-
notes the binocular disparity at (u, v)T . Hence, Cyclopean coordinates (u, v, d)T are
associated with each point s = (x, y, z)T in the visible scene. We define a function
F : IR3 → IR3 that describes this one-to-one relation:

F(s) = (u; v; d) =

(

x

z
;
y

z
;
B

z

)T

F−1(f) = (x; y; z) =

(
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d
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vB

d
;
B

d

)T

(1)

where B is the length of the inter-camera baseline.
Similarly, let g = {g1, . . . , gk, . . . , gK} be the set of K auditory observations, each

represented by an auditory disparity, namely the interaural time difference, or ITD. To
relate a location to an ITD value we define a function G : IR3 → IR:

G(s) =
1

c

(

‖s − sM1
‖ − ‖s − sM2

‖
)

(2)

Here c ≈ 330ms−1 is the speed of sound and sM1
and sM2

are microphone locations
in camera coordinates. We notice that isosurfaces defined by (2) are represented by one
sheet of a two sheet hyperboloid in 3D. So given an observation we can deduce the
surface that should contain the source.

We address the problem of speaker localization within an unsupervised clustering
framework. The rationale is that there should exist groups in the observed data that cor-
respond to the different audio-visual objects of the scene. We will consider mixtures
of Gaussians in which each component corresponds to a group or class. Each class is
associated to a speaker and the problem is recast as the assignment of each observa-
tion to one of the class as well as the estimation of each class center. The centers of
the classes are linked to the quantities of interest namely the speakers 3D localisations.
More specifically, the standard Gaussian mixture model has to be extended in order to
account for the presence of observations that are not related to any speakers. We intro-
duce an additional background (outlier) class modelled as a uniform distribution, which
increases robustness. The resulting classes are indexed as 1, . . . , N,N + 1, where the
last classis reserved for ouutliers. Also, due to their different nature, the same mixture
model cannot be used for both audio and visual data. We used two mixture models, in
two different observations spaces (our audio features are 1D while visual features are
3D) with the same number of components corresponding to the number of speakers
and an additional outlier class. The class centres of the respective mixtures are linked
through common but unknown speaker positions. In this framework, the observed data
are naturally augmented with as many unobserved or missing data. Each missing data
point is associated to an observed data point and represents the memberships of this ob-
served data point to one of the N + 1 groups. The complete data are then considered as
specific realizations of random variables. Capital letters are used for random variables



whereas small letters are used for their specific realizations. The additional assignment
variables, one for each individual observation, take their values in {1, . . . , N,N + 1}.
Let A = {A1, . . . , AM} denotes the set of assignment variables for visual observations
and A′ = {A′

1, . . . , A
′
K} the set of assignment variables for auditory observations. The

notation {Am = n}, for n ∈ {1, . . . , N,N + 1}, means that the mth observed visual
disparity fm corresponds to speaker n if n 6= N + 1 or to the outlier class otherwise.
Values of assignment variables for auditory observations have the same meaning.

Perceptual studies have shown that, in human speech perception, audio and video
data are treated as class conditional independent. We will further assume that the indi-
vidual audio and visual observations are also independent given assignment variables.
Under this hypothesis, the joint conditional likelihood can be written as:

P (f, g|A,A′) =
M
∏

m=1

P (fm|Am)
K
∏

k=1

P (gk|A
′
k) (3)

The different probability distributions to model the speakers on one side and the outliers
on the other side are the following. The likelihoods of visual/auditory observations,
given that they belong to a speaker, are Gaussian distributions whose means respectively
F(sn) and G(sn) depend on the corresponding speaker positions through functions F
and G defined in (2) and (1). The variances are respectively denoted by Σn and σ2

n,

P (fm|Am = n) = N
(

fm|F(sn),Σn

)

, (4)

P (gk|A
′
k = n) = N

(

gk|G(sn), σ2
n

)

. (5)

Similarly, we define the likelihoods for an visual/auditory observation to belong to an
outlier cluster as uniform distributions:

P (fm|Am = N + 1) =
1

V
and P (gk|A

′
k = N + 1) =

1

U
, (6)

where V and U represent the respective 3D and 1D observed data volumes (see Sect.4).
For simplicity, we then assume that the assignment variables are independent. More

complex choices would be interesting such as defining some Markov random field dis-
tribution to account for more structure between the classes. Following [12] the im-
plementation of such models can then be reduced to adaptive implementations of the
independent case making it natural to start with

P (A,A′) =

M
∏

m=1

P (Am)

K
∏

k=1

P (A′
k) . (7)

The prior probabilities are denoted by, for all n = 1, . . . , N +1, πn = P (Am = n) and
π′

n = P (A′
k = n). The posterior probabilities, denoted by αmn = P (Am = n|fm)

and α′
kn = P (A′

k = n|gk), can then be calculated, for all n = 1, . . . , N + 1, using
Bayes’ theorem. For n 6= N + 1, using (4) and (5) we obtain for each m = 1, . . . M

αmn =
|Σn|

−1/2 exp
(

− 1
2 ‖fm −F(sn)‖2

Σn

)

πn

N
∑

i=1

|Σi|−1/2 exp
(

− 1
2 ‖fm −F(si)‖

2
Σi

)

πi + (2π)3/2V −1πN+1

(8)



and for each k = 1, . . . K

α′
kn =

|σn|
−1 exp

(

− (gk − G(sn))
2
/
(

2σ2
n

)

)

π′
n

N
∑

i=1

|σi|−1 exp
(

− (gk − G(si))
2
/ (2σ2

i )
)

π′
i + (2π)1/2U−1π′

N+1

, (9)

where we adopted the notation ‖a− b‖2
Σ

= (a− b)T
Σ

−1(a− b) for the Mahalanobis

distance. For n = N +1, we find αm,N+1 = 1−
N
∑

n=1
αmn and α′

k,N+1 = 1−
N
∑

n=1
α′

kn.

3 Estimation Using the Expectation Maximization Algorithm

Given the probabilistic model defined above, we wish to determine the speakers that
generated the visual and auditory observations, that is to derive values of assignment
vectors A and A′, together with the speakers’ position vectors S. The speakers’ posi-
tions are part of our model unknown parameters. Let Θ denote the set of parameters
in our model, Θ = {s1, . . . , sN ,Σ1, . . . ,ΣN , σ1, . . . , σN , π1, . . . , πN , π′

1, . . . , π
′
N} .

Direct maximum likelihood estimation of mixture models is usually difficult, due to the
missing assignments. The Expectation Maximization (EM) algorithm [13] is a general
and now standard approach to maximization of the likelihood in missing data problems.
The algorithm iteratively maximizes the expected complete-data log-likelihood over
values of the unknown parameters, conditional on the observed data and the current
values of those parameters. In our clustering context, it provides unknown parameter
estimation but also values for missing data by providing membership probabilities to
each group. The algorithm consists of two steps. At iteration q, for current values Θ

(q)

of the parameters, the E step consists in computing the conditional expectation with
respect to variables A and A′,

Q(Θ,Θ(q)) =
∑

a,a′∈{1,N+1}M+K

log P (f, g,a,a′;Θ) P (a,a′|f, g,Θ(q)) (10)

The M step consists in updating Θ
(q) by maximizing (10) with respect to Θ, i.e. in

finding Θ
(q+1) as Θ

(q+1) = arg max
Θ

Q(Θ,Θ(q)). We now give detailed descriptions

of the steps, based on our assumptions.

E Step. We first rewrite the conditional expectation (10) taking into account decompo-
sitions (3) and (7) that arise from independency assumptions. This leads to Q(Θ,Θ(q)) =
QF (Θ,Θ(q)) + QG(Θ,Θ(q)) with

QF (Θ,Θ(q)) =
M
∑

m=1

N+1
∑

n=1

α(q)
mn log(P (fm|Am = n;Θ) πn)

and QG(Θ,Θ(q)) =
K

∑

k=1

N+1
∑

n=1

α
′(q)
kn log(P (gk|A

′
k = n;Θ) π′

n),



where α
(q)
mn and α

′(q)
kn are the expressions in (8) and (9) for Θ = Θ

(q) the current
parameter values. Substituting expressions for likelihoods (4) and (5) further leads to

QF (Θ,Θ(q)) = −
1

2

M
∑

m=1

N
∑

n=1

α(q)
mn

(

‖fm −F(sn)‖2
Σn

+ log
(

(2π)3|Σn|π
−2
n

)

)

−
1

2

M
∑

m=1

α
(q)
m,N+1 log

(

V 2π−2
N+1

)

(11)

and QG(Θ,Θ(q)) = −
1

2

K
∑

k=1

N
∑

n=1

α
′(q)
kn

(

(gk − G(sn))2

σ2
n

+ log(2πσ2
nπ′−2

n )

)

−
1

2

K
∑

k=1

α
′(q)
k,N+1 log(U2π′−2

N+1) . (12)

M Step. The goal is to maximize (10) with respect to the parameters Θ to find Θ
(q+1).

Optimal values for priors πn and π′
n are easily derived independently of the other

parameters by setting the corresponding derivatives to zero and using the constraints
N+1
∑

n=1
πn = 1 and

N+1
∑

n=1
π′

n = 1. The resulting expressions are

n = 1, . . . , N + 1, π(q+1)
n =

1

M

M
∑

m=1

α(q)
mn and π′

n
(q+1)

=
1

K

K
∑

k=1

α
′(q)
kn . (13)

The optimization with respect to the other parameters is less straightforward. Using
a coordinate system transformation, we substitute variables s1, . . . , sN with f̂1 =

F(s1), . . . , f̂N = F(sN ). For convenience we introduce the function h = G◦F−1 and

the parameter-set Θ̃ =
{

f̂1, . . . , f̂N ,Σ1, . . . ,ΣN , σ1, . . . , σN

}

. Setting the deriva-

tives with respect to the variance parameters to zero, we obtain the usual empirical
variances formulas. Taking the derivative with respect to f̂n gives

∂Q

∂f̂n

=
M
∑

m=1

αmn

(

fm − f̂n

)T

Σ
−1
n +

1

σ2
n

K
∑

k=1

α′
kn

(

gk − h(f̂n)
)

∇
T
n (14)

where the vector ∇n is the transposed product of Jacobians ∇n =
(

∂G
∂s

∂F−1

∂f

)T

f=
ˆfn

which can be easily computed from definitions (1) and (2). The resulting derivation in-
cludes a division by d and we note here that cases when d is close to zero correspond
to points on very distant objects (for fronto-parallel setup of cameras) from which no
3D structure can be recovered. So it is reasonable to set a threshold and disregard the
observations that contain small values of d.

Difficulties now arise from the fact that it is necessary to perform simultaneous op-
timization in two different observation spaces, auditory and visual. It involves solving a



system of equations that contain derivatives of QF and QG whose dependency on sn is
expressed through F and G and is non-linear. In fact, this system does not yield a closed
form solution and the traditional EM algorithm cannot be performed. However, setting
the gradient (14) to zero leads to an equation of special form, namely the fixed point
equation (FPE), where the location f̂n is expressed as a function of the variances and
itself. Solution of this equation together with the empirical variances give the optimal
parameter set. for this reason we tried the versions of the M-step that iterate through
FPE to obtain f̂n. But we observed that such solutions tend to make the EM algorithm
converge to local maxima of the likelihood.

An alternative way to seek for the optimal parameter values is to use a gradient
descent-based iteration, for example, the Newton-Raphson procedure. However, the
limiting value Θ̃

(q+1) is not necessarily a global optimizer. Provided that the value
of Q is improved on every iteration, the algorithm can be considered as an instance of
the Generalized EM (GEM) algorithm. The updated value Θ̃

(q+1) can be taken of the
form

Θ̃
(q+1) = Θ̃

(q) + γ(q)
Γ

(q)

[

∂Q(Θ,Θ(q))

∂Θ̃

]T

Θ=Θ(q)

(15)

where Γ
(q) is a linear operator that depends on Θ̃

(q) and γ(q) is a scalar sequence
of gains. For instance, for Newton-Raphson procedure one should use γ(q) ≡ 1 and

Γ
(q) = −

[

∂2Q

∂Θ̃2

]−1

Θ=Θ(q)
. The principle here is to choose Γ

(q) and γ(q) so that (15)

defines a GEM sequence. In what follows we would concentrate on the latter algorithm
as soon as it gives better results and potentially gives more flexibility.

Clustering. Besides providing parameter estimation, the EM algorithm can be used
to determine assignments of each observation to one of the N + 1 classes. Observa-
tion fm (resp. gk) is assigned to class ηm (resp. η′

k) if ηm = argmax
n=1,...N+1

αmn (resp.

η′
k = argmax

n=1,...N+1
α′

kn). We use this in particular to determine active speakers using the

auditory observations assignments η′
k’s. For every person we can derive the speaking

state by the number of associated observations. In our experiments we set the threshold
to 1, that is a speaker is considered to be active if there is at least one observation as-
signed to him. The case when all η′

k’s are equal to N + 1 would mean that there is no
active speaker.

4 Experimental Results

Within the task of multi-speaker localization there are three sub-tasks to be solved.
First, the number of speakers should be determined. Second, the speakers should be
localized and finally, those who are speaking should be selected. The proposed prob-
abilistic model has the advantage of providing a means to solve all three sub-tasks at
once. There is no need to develop separate models for every particular sub-task, and at
the same time we formulate our approach within the Bayesian framework which is rich
and flexible enough to suit the requirements.

To determine the number of speakers, we gather sufficient amount of audio observa-
tions and apply the Bayesian Information Criterion (BIC) [14]. This is a well-founded



Fig. 1. Equipment setup for data recording

approach to the problem of model selection, given the observations. The task of local-
ization in our framework is recast into the parameter estimation problem. This gives an
opportunity to efficiently use the EM algorithm to estimate the 3D positions. We note
here that our model is defined so as to perform well in the single speaker case as well as
in the multiple speakers case without any special reformulation. To obtain the speaking
state of a person we use the posterior probabilities of the assignment variables calcu-
lated at the E step of the algorithm.

We evaluated the ability of our algorithms to estimate the 3D locations of persons
and their speaking activity in a meeting situation. The audio-visual sequence that we
used is a part of the scenario set that was acquired by the experimental setup shown in
Fig.1. A mannequin with a pair of microphones built-in into its ears and a helmet with
a pair of stereoscopic cameras attached to the front, served as the acquisition device.
The reason for choosing this configuration was to record data from the perspective of
a person, i.e. to try to capture what a person would hear and see while being in a cer-
tain natural environment. Each of the recorded scenarios comprised two audio tracks
and two sequences of images, together with calibration information. The sequence of
interest in our case is a meeting scenario with 5 seated speakers (3 being visible). The
corresponding images, acquired by a pair of stereoscopic cameras are shown on Fig.2.
Two time intervals were chosen with one and two active speakers respectively. Their
length corresponds to three video frames and is approximately 120ms. Two sets of ob-
servations were obtained using the following techniques. A standard procedure was
used to identify "interest points" in the left and right images [15]. These features were
put into binocular correspondence by comparing the local image-structure at each of the
candidate points, as described in [16]. The cameras were calibrated [17] in order to de-
fine the (u, v, d)T to (x, y, z)T mapping (1). Auditory disparities were obtained through
the analysis of cross-correlogram of the filtered left and right microphone signals for
every frequency band [18]. In total there were 1203 visual and 9 auditory observations
in the first case and 1209 visual and 9 auditory observations in the second.

We report here on the results obtained by the versions of the algorithm based on a
gradient descent (GD) technique, with Γ being block diagonal. We used h

−∂2Q/∂f̂
2
n

i

−1

Θ=Θ(q)

as a block for f̂n, so that the descent direction is the same as in Newton-Raphson
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Histogram of

frequencies of computed

ITD values
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Video observations:

visible scene coordinate system
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onto the image plane
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by a transparent grey sphere

Position estimate of a speaker;

Fig. 2. Speaker localization results for the case of one speaker (top) using GD with constant gain,
and two speakers (bottom) using relaxed GD. The upper part of each of the images shows the
original stereoscopic image pair with detected features and the resulting clusters in the video
feature space. The representation of audio feature space as a histogram of ITDs, together with the
resulting clusters, is placed in the middle. The bottom part shows visual features and the resulting
estimates of spatial locations in the 3D scene coordinates. The active speakers are marked by
transparent grey spheres in 3D and white circles on the images.



method. In the examples that we present we adopted the same video variance matrix
Σ for all the clusters, thus there was one common block in Γ

(q) that performed linear

mapping of the form Γ
(q)
Σ

(·) =

(

N
∑

n=1

M
∑

m=1
α

(q)
mn

)−1

Σ
(q) (·)Σ(q). This direction change

corresponds to a step towards the empirical variance value. Analogous blocks (cells)
were introduced for audio variances, though, unlike the visual variances, individual pa-
rameters were used. The number of iterations within each M step for GD was chosen to
be 1, as further iterations did not yield significant improvements. The sequence of gains
was chosen to be γ(q) ≡ 1 in the third case (classical GD) and γ(q) = 0.5+1/(2(q+1))
(relaxed GD) in the fourth. By adjusting γ(q) one can improve certain properties of the
algorithm, such as convergence speed, accuracy of the solution as well as its dynamic
properties in the case of parameters changing through time.

Currently we use the Viola-Jones face detector [19] to initialize the EM algorithm
from visual disparities that lie within a face. But the results of application of BIC cri-
terion to the observations show that it is capable of determining correctly the number
of speakers. Hence we do not strongly rely on initial face detection. As we consider the
dynamic evolution of the algorithm, the current estimates would provide good initial-
izations for the next run of the algorithm.

The original data and the solutions obtained by GD with constant gain for the case
with one speaker and relaxed GD for case of two active speakers, are illustrated on
Fig.2. Visual features fm are depicted as dots on the image planes and also as mapped
voxels in 3D space (corresponding to locations F−1(fm), top view of the scene is
given). Their color indicates the class to which they are assigned (grey color is used for
the outlier class). The histogram of auditory disparities (1D space of ITDs) is given in
the middle. The resulting visual variances are represented by projections of the ellip-
soids onto the image planes. Auditory variances have a similar representation in 1D and
are depicted as transparent coloured regions around the means (non-transparent bars).
Outliers that are captured by the uniform distribution of the outlier class can be noticed
on the top histogram. The resulting estimates of spatial locations are shown as coloured
spheres in 3D, the speakers being marked by transparent grey spheres in 3D and white
circles on the images. The classical GD demonstrated better performance on the first
example (22 iterations were required to converge to the maximum of the likelihood)
while the relaxed GD was more successful in the second case (53 iterations) because
of its moderate behaviour around the optimal point. This feature of the relaxed GD
could prove to be useful in the case of strong noise as well. We would like to empha-
size the fact that despite the majority of visual observations being located on the central
speaker, the influence of the audio data helped to keep the location estimates distinct. At
the same time, owing to fine spatial separation of the visual data, the auditory variances
were adapted rather than the means. This shows the benefits of the combined generative
model with respect to separate modality-specific models. In particular, we have demon-
strated reliable 3D localization of the speaking and non-speaking persons present in the
scene.



5 Conclusion

We presented a unified framework that captures the relationships between audio and
visual observations, and makes full use of their combination to accurately estimate the
number of speakers, their locations and speaking states. Our approach is based on un-
supervised clustering and results in a very flexible model with further modelling capa-
bilities. In particular it appears to be a very promising way to address dynamic tracking
tasks.
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