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NEW TRENDS IN MARKOV MODELS AND RELATED LEARNING TO RESTORE DATA

Florence Forbes Wojciech Pieczynski

ABSTRACT
We present recent approaches that extend standard Markov
models and increase their modelling power. These capabili-
ties are illustrated in the cited published works and more re-
cently in the contributions to the Special Session on Markov
models of the IEEE International Workshop on Machine
Learning for Signal Processing, 2009. However, the review
is not exhaustive and major older works may be missing.

1. INTRODUCTION

Markov models combine local relations to build stochas-
tic models that exhibit great complexity. Such stochastic
models have found applications in areas as diverse as doc-
ument image analysis [77], remote sensing [18, 74], medi-
cal imaging [39, 49, 66, 76, 70], genetics [11, 44, 75], epi-
demiology [38], economics [6], etc. However, these pow-
erful and flexible techniques are still restricted by several
generic sources of complexity in data that require methods
beyond the commonly-understood tools. Often data exhibit
complex dependence structures, having to do for example
with repeated measurements on individual items, or spatial
or temporal association, and so on. Sections 2.1 to 2.3 pro-
vide directions toward the modelling of such dependencies.
Other sources of complexity are connected with the mea-
surement process, such as having multiple measuring instru-
ments or simulations generating high dimensional (Section
2.5) and heterogeneous data (Section 2.4) or such that data
are dropped out or missing (Section 2.6).
In Markov modelling and more generally in graphical mod-
elling, the logical structure of a joint probability distribution
is represented in the form of a network or graph depicting
the local relations among variables. The graph can have di-
rected (Bayesian networks, Section 2.9) or undirected (Mar-
kov random fields (MRF)) edges between the nodes, which
represent the individual variables. When parts of the vari-
ables are not observed or missing, we refer to these mod-
els as Hidden Markov Models (HMM). In standard models,
hidden variables are either continuous or discrete. However,
a number of important applications require more flexibility
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Team Mistis, Grenoble, France (e-mail: Florence.Forbes@inrialpes.fr)

W. Pieczynski is with Telecom Sud Paris, Dept CITI, CNRS UMR
5157, Evry, France (e-mail: wojciech.pieczynski@it-sudparis.eu)

to allow fuzzy or mixed states (Section 2.7).
Then, choosing the probabilistic model that best accounts
for the observations is an important first step for the quality
of the subsequent statistical inference and analysis. In sec-
tion 2.10, we mention a number of criteria for choosing the
most relevant models in a Markovian framework.

Regarding inference and learning of such models, spa-
tial dependencies and potential hidden variables may gen-
erate a large amount of computation. Typically for MRFs,
estimation algorithms correspond to an energy minimiza-
tion problem (possibly under non standard constraints as in
[72]) which is NP-hard and usually performed through ap-
proximation. Most approaches are based either on simula-
tion methods such as Markov Chain Monte Carlo (MCMC)
techniques (e.g. [65]) or on deterministic variational meth-
ods (e.g. [41]). While variational methods provide fast and
reasonable approximate estimates, simulation methods offer
more consideration of important theoretical issues such as
accuracy of the approximation and convergence of the algo-
rithms but at a much higher computational cost. As effective
algorithms which show good performance in practice, we
briefly discuss the well known Expectation-Maximization
(EM) algorithm and its variational variants (Section 3.1) and
the Iterative Conditional Estimation (ICE) method that uses
simulations (Section 3.3). We then mention graph cuts (Sec-
tion 3.2) and some recent hybrid approaches (Section 3.4)
attempting to combine the main features and advantages of
both simulation and deterministic methods.

2. RECENT TRENDS IN MARKOV MODELS
2.1. Pairwise and triplet Markov models

Let X and Y be respectively the hidden and observed pro-
cesses. In standard HMMs, the distributions p(x), p(x, y),
p(x|y) are Markovian, whereas p(y|x) is the distribution of
independent variables. In Pairwise Markov Models (PMM),
first introduced in the MRF context [61], the distributions
p(x, y), p(y|x) and p(x|y) are Markovian, whereas p(x) is
not necessarily Markovian. Thus p(y|x) is more sophisti-
cated in PMM and, as the Markovianity of p(x|y) allows us
to perform the same Bayesian processing, PMM are, in the-
ory, more interesting. They are also in practice; as shown
in [28], in the case of Markov chains the use of PMMs can
significantly improve the results obtained with HMMs. Let



us notice that any HMM can, in principle, be extended to
a PMM by transposing the Markovian structure of p(x) to
the Markovian structure of p(x, y). PMMs can be extended
to triplet Markov models (TMMs). Let us consider the case
of triplet Markov chains (TMCs), where there are three ran-
dom chains X = (X1, . . . , XN ), U = (U1, . . . , UN ) and
Y = (Y1, . . . , YN ), with Y observed and X,U hidden.
The chain X is the hidden signal one is looking for, and
the chain U can have various interpretations, resulting in
rich possibilities of modelling various problems [60]. The
main interest of a TMC lies in the generality of its definition:
only the triplet T = (X,U, Y ) is assumed to be Markovian,
and none of the six chains X,U, Y, (X,U), (X,Y ), (U, Y )
is necessarily Markovian. For discrete U and X , U can
model the non stationarity of the chain (X,Y ), the semi-
Markovianity ofX [4], or the evidential nature of the model
[60, 57]. For continuous U and X , the classical Kalman fil-
ter can be extended to such Gaussian TMC [1]. The contri-
bution [2] to the special session joins in this general prob-
lem. TMC can be extended to Triplet partially Markov chains
(TPMC), in which the long memory noise [30] can be taken
into account [46]. Let us also mention the triplet Markov
fields (TMF) recently applied in textured images segmenta-
tion [5, 10].

2.2. Conditional random fields

There exists a relationship between Triplet Models and Con-
ditional Random Fields (CRF) [45] which have been widely
and successfully used in a number of applications (eg. [43]).
CRFs are discriminative models in the sense that they model
directly the conditional distribution of the labels given the
observations. Explicit models of the joint distribution of
the labels and observations or of the noise distribution are
not required. In classification issues, the conditional distri-
bution is the one needed. However, even in classification
contexts, approaches that model the joint distribution are
considered. They are known as generative models. Triplet
Markov models belong to this class. Such generative mod-
els are certainly more demanding in term of modelling but
they have the advantage to provide a model of the observed
data (the likelihood) allowing this way better access to the-
oretical properties of the estimators.

2.3. Copulas and correlated non Gaussian noise

One of the limitations of the classical HMM (X,Y ) open to
criticism, is the simplicity of the ”noise” distribution p(y|x),
in which the components of y are almost systematically con-
sidered to be independent. PMC and TMC are two succes-
sive extensions of p(y|x). In PMC, p(y|x) is Markovian and
in TMC, p(y|x) is the marginal distribution - not necessar-
ily Markovian - of the Markovian distribution p(u, y|x). Let
us consider the PMC case and assume (X,Y ) to be station-
ary: its distribution is then defined by p(x1, y1, x2, y2) =

p(x1, x2)p(y1, y2|x1, x2). To define each p(y1, y2|x1, x2),
we can use copulas which allow one to define a joint distri-
bution from a pair formed by the marginal distributions and
a dependence structure [55]. Let h(y1, y2) be a probability
density on R2, H the associated cdf function, h1(y1) and
h2(y2) the marginal densities, andH1, H2 the cdf functions
associated with them. Then there exists a function C de-
fined on [0, 1]2, called a ”copula”, such that H(y1, y2) =
C(H1(y1), H2(y2)). Conversely, having H1, H2 and a cop-
ula C, one can use the equation above to define H . This
provides a very rich family of possible distributions for
p(y1, y2|x1, x2), each of which gives p(y|x) [14]. The same
can be said straigtforwardly for TMC replacingX by (X,U).

2.4. Theory of Evidence

The Dempster-Shafer ”theory of evidence” (DSTE [73]) of-
fers an interesting framework, which can be seen as an ex-
tension of the classical probability on finite space. It is es-
pecially interesting in the case of numerous sensors fusion,
when they are of different nature. The use of the DSTE
in the context of Markov models is quite recent and is un-
doubtedly very promising [35, 62]. A link with TMC [57]
and TMF [59] has also been been established. Finally, ”evi-
dential filters” based on evidential measures have been pro-
posed recently [29, 54]. Paper [63] deals with this issue.

2.5. Taking into account the curse of dimensionality

In HMMs, the multivariate Gaussian distribution is the most
commonly used but it suffers from significant limitations
when it comes to modelling real data sets. For very high
dimensional data, the general covariance matrix model in-
volves the estimation of too many parameters, leading to in-
tractable computations or singularity issues. Solutions have
been proposed based on so-called parsimonious models [20]
but they are not specifically designed for high dimensional
data. Other approaches consider reducing the dimensional-
ity of the data as a pre-processing step possibly using Prin-
cipal Component Analysis or variable selection methods. In
a clustering context, this may not be satisfactory as relevant
information may be lost that can help separating the classes.
For these reasons, a more recent approach have been de-
veloped for independent Gaussian mixtures [12]. This ap-
proach has been extended to hidden MRFs in [10] where
its efficiency and tractability has been illustrated on texture
classification.

2.6. Missing observations

In practice, missing observations are very common, due for
instance, to limitations of the measuring devices. The sim-
plest solution in this case is to remove, from the data set,
individuals for which observations are missing. This obvi-
ously results in weak analysis, in particular when a lot of



individuals are affected. A second very common approach
is to replace the missing observations by some imputed val-
ues (eg. zeros, means) so as to carry out then a complete
data analysis as usual. Although very popular, this tech-
nique tends to produce biased estimation. For independent
mixtures, more sophisticated methods have been proposed
(eg. [67] proposed to use the EM algorithm). More recently
[11] proposed a framework to deal with missing observa-
tions within a MRF modelling.

2.7. Fuzzy and ”mixed states” hidden Markov models

In general, the hidden chain X takes its values either from
a continuous, or from a finite set. In the first case one gen-
erally considers that its distribution has some density with
respect to the Lebesgue measure, which implies that the
probability of any single point is null. In some situations,
it is necessary to have simultaneously a ”continuous” part,
and a ”discrete” part in this distribution. Then the distribu-
tion of X is given by a density with respect to a sum of the
Lebesgue measure and a finite number of Dirac’s measures.
Such models were first introduced to model ”fuzzy” classes
and successfully used in the Markov fields context [49, 66,
68] and then in that of Markov chains [17, 18, 39, 47, 69].
More recently, it has been used in motion modelling and
detection [23, 24].

2.8. Filtering and smoothing in switching linear systems

Let us consider a TMC with finite U and continuous X and
Y . The problem of filtering in such a ”switching” model
consists of computing p(un|yn

1 ) and E[Xn|un, y
n
1 ], when

the problem of smoothing consists of computing p(un|yN
1 )

and E[Xn|un, y
N
1 ]. These quantities cannot be computed

with complexity polynomial in time in the classical mod-
els, in which the distribution of T = (X,U, Y ) - which is
a TMC - is given by a Markov distribution of (X,U) and
by the conditional distribution p(y|x, u). Thus different ap-
proximations, deterministic [22] or stochastic [3, 16, 64],
have to be used. More recently, it has been shown that con-
sidering a TMC T = (X,U, Y ) in which (U, Y ) is Marko-
vian makes both computations feasible with complexity lin-
ear in time ([58] and references therein). Such models can
be extended in numerous directions; in particular, copulas
could be used in the PMC (U, Y ).

2.9. Probabilistic Networks

Different Markov models (chains, fields) discussed above
are particular cases of Probabilistic Networks (PNs) [8, 37,
40, 9]. Thus different extensions specified above can be
studied in this more general framework with enormous pos-
sibilities of applications. The contribution [48] to the spe-
cial session uses hidden Markov trees (HMT) and thus joins
in this general problem. More generally, a link with mul-
tiresolution analysis can be made through Markov tree mod-

els. HMTs were originally proposed in [25] to detect changes
in binary trees associated to wavelet coefficients for sig-
nal processing applications. The work in [31] has built on
this by proposing a new upward-downward algorithm and
a restoration algorithm to recover the hidden tree in a glob-
ally optimal way. Another set of Markov models belonging
to the family of PNs is studied in [77].

2.10. Approximations for selecting models

When recasting the model choice as a probabilistic model
comparison issue, most selection criteria involve calculat-
ing integrated (over the model parameters) likelihoods for
a number of models. These integrated likelihoods are often
high dimensional and intractable. Various approximations
have been proposed. In particular the Bayesian Informa-
tion Criterion (BIC) approximation of [71] is based on the
Laplace method for integrals but many other approaches can
be found in the literature (see the references in [42]). In
the MRF context, most criteria are intractable. An approxi-
mated BIC based on the mean field approximation has been
proposed in [33]. Other criterions exist but have not been
applied to select Markov models (eg.DIC [19] and ICL [7]).

3. LEARNING IN MARKOV MODELS

Issues involving missing data are typical settings where ex-
act inference is not tractable. We recall below three classes
of algorithms commonly used in practice.

3.1. EM based method

The Expectation-Maximization (EM) algorithm is a general
and now standard approach to maximization of the likeli-
hood [27] in missing data problems. However, when focus-
ing on HMRF estimation, difficulties arise due to the depen-
dence structure in the model. An approach using mean field
principle has been proposed in [79] and further developed
in [21]. The mean field approach consists of using a simpler
tractable model such as the family of independent distribu-
tions. Distributions from this family can be obtained by fix-
ing the neighbors of each node to constant values. In [21],
three different schemes for adaptively fixing the neighbors
are proposed and compared.
The mean field approximation principle is among the varia-
tional methods [41] the simplest principle although not yet
fully understood in some aspects. See also [52] for a sum-
mary of existing works. We observe that in many practi-
cal applications, the mean field approximation already han-
dles a good part of the complexity of the data. There is a
trade-off then between finer approximations which may not
always lead to much better (classification or estimation) re-
sults and additional computational burden. Also, very few
results exist on the quality of the variational approximations
when they act as a surrogate in a larger inference problem.



In particular, as regards parameter estimation, results on
bounds on the likelihood may not be of great help. Mean
field methods can be related to message passing algorithms
which correspond to general schemes for fitting variational
approximations. Message passing algorithms include Mean
Field, Loopy Belief Propagation, Expectation Propagation,
Tree-reweighted message passing, Fractional Belief Prop-
agation, Power Expectation Propagation. A unifying view
and references for these different methods can be found in
[51]. It appears that the difference between mean field meth-
ods and belief propagation methods is not the amount of
structure they model but the measure of loss they minimize.
Neither method is inherently superior. To our knowledge,
there exists no experimental comparison of the various al-
gorithms performance on real-world networks and data.

3.2. Graph Cuts

Apart from variational methods, recent efficient techniques
such as Graph cuts [13] are built to provide Maximum A
Posteriori solutions. However, they do not seem to provide
the same flexibility as probabilistic techniques when param-
eter estimation is required. They are based on hard mem-
bership which allows the use of the graph cut optimization
methods that have proven highly effective for solving la-
beling problems in some cases. EM approaches are based
on soft membership adopting a more statistical point of view
with some emphasize on parameter estimation and in partic-
ular on the biais inherent to hard membership methods. The
shape of the likelihood function can be a major source of
difficulties. An illustration and an attempt to study its prop-
erties in a HMM training framework is proposed in [78].

3.3. ICE method

Let us consider two random processes (V, Y ) whose dis-
tribution depends on a parameter vector θ = (θ1, . . . , θm).
ICE is an iterative method, to estimate θ from Y , based on
the following principle. Let θ̂(v, y) be an estimator of θ
from complete data and let us assume that we can sample
realizations of V according to p(v|y). The ICE sequence is
obtained as follows:
(i) Initialize θ0;
(ii) Compute θq+1

i = E[θ̂i(V, Y )|Y = y, θq] for the com-
ponents θi for which this is possible explicitly;
(iii) Simulate vq

i , . . . , v
q
l according to p(v|y, θq) for the other

θi and set: θq+1
i = [θ̂i(v

q
1, y) + . . .+ θ̂i(v

q
l , y)]/l .

Thus ICE is applicable under two very weak hypothesis:
(H1): the existence of an estimator θ̂(v, y) from the com-
plete data, and (H2): the ability to simulate V according
to p(v|y). As (H2) is verified for Markov models consid-
ered in this paper, the problem reduces to (H1). The idea
behind ICE is very different from the idea leading to EM
and is based on the following. Assuming that θ̂(v, y) has
a good small quadratic error, one wishes to approximate it

by a function of the only observed variables y. The ”best”
- with regard to the same ”quadratic error” criterion - ap-
proximation is the conditional expectation. As this expec-
tation depends on the parameter, we arrive at the point (ii)
in the definition of ICE above. Concerning the convergence
of ICE, let us mention a recent theoretical result obtained
in the case of independent data [56]. As in the case of
EM, convergence can be obtained under some reasonable
hypothesis if the initial value θ0 is close enough to the real
value θ. ICE was successfully used in numerous problems
[5, 28, 46, 53, 59, 68], and the contribution [48] is also based
on ICE. Let us notice that EM and ICE can give, in partic-
ular parametrizations of exponential models, the same se-
quence [26]. Besides, ICE and EM have been compared in
the context of the classical HMCs and HMTs [53], and no
noticeable difference has been observed. In conclusion, we
may say that the performances of EM and ICE are compa-
rable in studies performed until now, whereas ICE is easier
to use.

3.4. Hybrid approaches

Variational methods have been shown to provide fast and
reasonable approximate estimates in many scenarios [41]
but frequently with little consideration of important theoret-
ical issues. Convergence results exist for the Variational EM
(VEM) algorithms [15] but their application is restricted to
specific settings. Variants to extend the application domain
of algorithms such as VEM have been proposed [79, 21]
but they did not succeed in preserving the convergence re-
sults. Simulation methods appear then as natural candidates
to make algorithms tractable for a wider class of problems
while providing tools to study their convergence. As an
example, the convergence of MCMC based algorithms has
been widely studied and a lot of tools are now available that
make various convergence results available or at least easy
to derive (eg. [34] for MCEM). Recently [32] showed that
combining both type of methods could greatly improve ac-
curacy and modelling flexibility in missing data settings. As
another attempt, in [36], a class of MCMC algorithms that
use variational approximations as initial proposal distribu-
tions is introduced for sigmoidal belief networks.
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