Estimation of the marginal expected shortfall using extreme expectiles

Abdelaati Daouia

Toulouse School of Economics, University of Toulouse Capitole

Based on joint work with:

Stéphane Girard (Inria Grenoble Rhône-Alpes),
Gilles Stupfler (University of Nottingham)

ERCIM’ 2016, Seville
Outline of presentation

1. The class of expectiles
2. Extremal expectiles
3. Estimation of high expectiles
4. Expectile-based MES
5. Extreme level selection
6. Application
Let \(Y \) be a random variable and \(\tau \) in \((0, 1)\).

- **The \(\tau \)th quantile of \(Y \) [Koenker and Bassett (1978)]**:
 \[
 q_\tau = \arg \min_\theta \mathbb{E} \{|\tau - I(Y \leq \theta)| \cdot |Y - \theta|\}
 \]

- **The \(\tau \)th expectile of \(Y \) [Newey and Powel (1987)]**:
 \[
 \xi_\tau = \arg \min_\theta \mathbb{E} \{|\tau - I(Y \leq \theta)| \cdot |Y - \theta|^2\}
 \]
 exists as soon as \(\mathbb{E}|Y| < \infty \).

- **Special case**:
 \[
 \tau = \frac{1}{2} \implies \begin{cases}
 q_{0.5} = \text{median}(Y) \\
 \xi_{0.5} = \mathbb{E}(Y)
 \end{cases}
 \]
In terms of interpretability

- q_τ determines the point below which $100\tau\%$ of the mass of Y lies:

$$
\mathbb{E}\{I(Y \leq q_\tau)\} = P(Y \leq q_\tau) = \tau
$$

- ξ_τ shares an interpretation similar to q_τ, replacing the number of observations by the distance:

$$
\frac{\mathbb{E}\{|Y - \xi_\tau| \cdot I(Y \leq \xi_\tau)\}}{\mathbb{E}\{|Y - \xi_\tau|\}} = \tau
$$

that is, the average distance from the data below ξ_τ to ξ_τ itself is $100\tau\%$...

- expectiles = quantiles for a transformation of F_Y [Jones (1994)]
- expectiles = quantiles in case of a weighted symmetric distribution [Abdous and Remillard (1995)]
- $\xi_\tau = q_{\tau'}$ for different levels τ and τ' [Yao and Tong (1996)]
Advantages of least asymmetrically weighted squares (LAWS) estimation:

- Computing expedience (though efficient linear programming algorithms are available for quantiles)

- Efficiency of the LAWS estimator:
 - Expectiles make more efficient use of the available data since they rely on the distance to observations
 - Quantiles only utilize the information on whether an observation is below or above the predictor!

- More valuable tail information:
 - Quantiles only depend on the frequency of tail realizations of \(Y \) and not on their values!
 - Expectiles depend on both the tail realizations and their probability [Kuan, Yeh and Hsu (2009)]

- Inference on expectiles is much easier than inference on quantiles: Calculation of the variance without going via the density of the distribution
(i) **Law invariance**: a distribution is uniquely defined by its class of expectiles

(ii) **Location and scale equivariance**: the τth expectile of the linear transformation $\tilde{Y} = a + bY$, where $a, b \in \mathbb{R}$, satisfies

$$
\xi_{\tilde{Y}, \tau} = \begin{cases}
 a + b \xi_{Y, \tau} & \text{if } b > 0 \\
 a + b \xi_{Y, 1-\tau} & \text{if } b \leq 0
\end{cases}
$$

(iii) **Coherency**: for any variables $Y, \tilde{Y} \in L^1$ and for all $\tau \geq \frac{1}{2}$,

- **Translation invariance**: $\xi_{Y+a, \tau} = \xi_{Y, \tau} + a$, for all $a \in \mathbb{R}$
- **Positive homogeneity**: $\xi_{bY, \tau} = b\xi_{Y, \tau}$, for all $b \geq 0$
- **Monotonicity**: if $Y \leq \tilde{Y}$ with probability 1, then $\xi_{Y, \tau} \leq \xi_{\tilde{Y}, \tau}$
- **Subadditivity**: $\xi_{Y+\tilde{Y}, \tau} \leq \xi_{Y, \tau} + \xi_{\tilde{Y}, \tau}$
Theoretical and numerical results, obtained recently, indicate that expectiles are perfectly reasonable alternatives to quantiles as risk measures:

- Kuan, Yeh and Hsu (2009) [Journal of Econometrics]
- Gneiting (2011) [JASA]
- Bellini (2012) [Statistics and Probability Letters]
- Bellini, Klar, Müller and Gianina (2014) [Insurance : Mathematics and Economics]
- Bellini and Di Bernardino (2015) [The European Journal of Finance]
- Ziegel (2016) [Mathematical Finance]
- Ehm, Gneiting, Jordan and Krüger (2016) [JRSS-B]

The estimation of expectiles did not, however, receive yet any attention from the perspective of extreme values!

Aim: We use tail expectiles to estimate an alternative measures to Marginal Expected Shortfall (MES)
Outline of presentation

1. The class of expectiles
2. Extremal expectiles
3. Estimation of high expectiles
4. Expectile-based MES
5. Extreme level selection
6. Application
Outline of presentation

1. The class of expectiles
2. Extremal expectiles
3. Estimation of high expectiles
4. Expectile-based MES
5. Extreme level selection
6. Application
Let Y be the financial position and F_Y be its cdf with $\overline{F}_Y = 1 - F_Y$:
- non-negative loss variable
- real-valued variable (the negative of financial returns)

In statistical finance and actuarial science, Pareto-type distributions describe quite well the tail structure of losses:

$$F_Y(y) = 1 - \ell(y) \cdot y^{-1/\gamma}$$

- $\ell(\lambda y)/\ell(y) \to 1$ as $y \to \infty$ for all $\lambda > 0$
- $\gamma \in (0, 1)$ tunes the tail heaviness of F_Y

Only Bellini, Klar, Müller and Gianina (2014), Mao, Ng and Hu (2015) and Mao and Yang (2015) have described what happens for large ξ_τ and how it is linked to extreme q_τ:

$$\frac{\overline{F}_Y(\xi_\tau)}{1 - \tau} = \frac{\overline{F}_Y(\xi_\tau)}{\overline{F}_Y(q_\tau)} \sim \gamma^{-1} - 1 \text{ as } \tau \to 1$$

- $\xi_\tau > q_\tau$ when $\gamma > \frac{1}{2}$,
- $\xi_\tau < q_\tau$ when $\gamma < \frac{1}{2}$, for all large τ
Assume that the \textbf{tail quantile function} U of Y, defined by

$$U(t) = \inf \left\{ y \in \mathbb{R} \left| \frac{1}{F_Y(y)} \geq t \right. \right\}, \quad \forall t > 1,$$

satisfies the second-order condition indexed by (γ, ρ, A), that is, there exist $\gamma > 0$, $\rho \leq 0$, and a function $A(\cdot)$ converging to 0 at infinity and having constant sign such that:

$$C_2(\gamma, \rho, A) \quad \text{for all } x > 0,$$

$$\lim_{t \to \infty} \frac{1}{A(t)} \left[\frac{U(tx)}{U(t)} - x^\gamma \right] = x^\gamma \frac{x^\rho - 1}{\rho}.$$

Here, $(x^\rho - 1)/\rho$ is to be understood as $\log x$ when $\rho = 0$.
The precise bias term in the asymptotic approximation of \((\xi_\tau/q_\tau)\):

Proposition

Assume that condition \(C_2(\gamma, \rho, A)\) holds, with \(0 < \gamma < 1\). If \(F_Y\) is strictly increasing, then

\[
\frac{\xi_\tau}{q_\tau} = (\gamma^{-1} - 1)^{-\gamma}(1 + r(\tau))
\]

with

\[
r(\tau) = \frac{\gamma(\gamma^{-1} - 1)^{-\gamma}E(Y)}{q_\tau}(1 + o(1))
\]

\[
+ \left(\frac{(\gamma^{-1} - 1)^{-\rho}}{1 - \rho - \gamma} + \frac{(\gamma^{-1} - 1)^{-\rho} - 1}{\rho} + o(1) \right) A((1 - \tau)^{-1})
\]

as \(\tau \uparrow 1\)

Other similar refinements can be found in Mao *et al.* (2015), Mao and Yang (2015) and Bellini and Di Bernardino (2015)
Outline of presentation

1. The class of expectiles
2. Extremal expectiles
3. Estimation of high expectiles
4. Expectile-based MES
5. Extreme level selection
6. Application
Conceptual results

- **Basic idea:**
 - We first estimate the intermediate expectiles of order $\tau_n \to 1$ such that $n(1 - \tau_n) \to \infty$;
 - We then extrapolate these estimates to the very extreme level τ'_n which approaches 1 at an arbitrarily fast rate in the sense that $n(1 - \tau'_n) \to c$, for some constant c.

- **Two estimation methods are considered:**
 - The first (indirect) is based on the use of the asymptotic connection between expectiles and quantiles;
 - The second relies directly on least asymmetrically weighted squares (LAWS) estimation.

- **Main results:** establish the asymptotic normality of the estimators
 - Intermediate expectiles ξ_{τ_n}: indirect + direct
 - Extreme expectiles $\xi_{\tau'_n}$: indirect + direct
(1) **Estimation based on intermediate quantiles:**

- Assume that the available data consists of an \(n \)-tuple \((Y_1, \ldots, Y_n)\) of independent copies of \(Y \)
- Denote by \(Y_{1,n} \leq \cdots \leq Y_{n,n} \) their ascending order statistics
- Consider the intermediate expectile level \(\tau_n \to 1 \) such that \(n(1 - \tau_n) \to \infty \), as \(n \to \infty \)
- The asymptotic connection above entails that
 \[
 \frac{\xi_{\tau_n}}{q_{\tau_n}} \sim (\gamma^{-1} - 1)^{-\gamma} \quad \text{as} \quad n \to \infty
 \]

- Define, for a suitable estimator \(\hat{\gamma} \) of \(\gamma \),
 \[
 \hat{\xi}_{\tau_n} := (\hat{\gamma}^{-1} - 1)^{-\hat{\gamma}} \cdot \hat{q}_{\tau_n}
 \]

 where
 \[
 \hat{q}_{\tau_n} := Y_{n - \lfloor n(1-\tau_n) \rfloor, n}
 \]

 with \(\lfloor \cdot \rfloor \) being the floor function.
(2) Asymmetric Least Squares (direct) estimation:

We consider estimating

$$\hat{\xi}_{\tau_n} = \arg\min_{u \in \mathbb{R}} \mathbb{E} [\eta_{\tau_n} (Y - u)]$$

by

$$\tilde{\xi}_{\tau_n} = \arg\min_{u \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} \eta_{\tau_n} (Y_i - u)$$

where $$\eta_{\tau}(y) = |\tau - \mathbb{I}\{y \leq 0\}|y^2$$ is the expectile check function.
Consider the intermediate expectile level $\tau_n \to 1$ such that
$n(1 - \tau_n) \to \infty$, as $n \to \infty$

Consider the **extreme** expectile level $\tau'_n \to 1$ such that
$n(1 - \tau'_n) \to c < \infty$, as $n \to \infty$

The model assumption of Pareto-type tails

$$F_Y(y) = 1 - \ell(y) \cdot y^{-1/\gamma}$$

suggests that

$$\frac{\xi_{\tau'_n}}{\xi_{\tau_n}} \approx \left(\frac{1 - \tau'_n}{1 - \tau_n} \right)^{-\gamma}, \quad n \to \infty$$

This approximation motivates the estimators

$$\tilde{\xi}_{\tau'_n}^* := \left(\frac{1 - \tau'_n}{1 - \tau_n} \right)^{-\hat{\gamma}} \tilde{\xi}_{\tau_n}$$

$$\hat{\xi}_{\tau'_n}^* := \left(\frac{1 - \tau'_n}{1 - \tau_n} \right)^{-\hat{\gamma}} \hat{\xi}_{\tau_n} \equiv (\hat{\gamma}^{-1} - 1)^{-\hat{\gamma}} \hat{q}_{\tau'_n}^*$$
Extreme expectile estimation (cont.)

\[
\hat{\xi}_{\tau_n}^* := \left(\frac{1 - \tau'}{1 - \tau_n} \right)^{-\gamma} \hat{\xi}_{\tau_n} \equiv (\hat{\gamma}^{-1} - 1)^{-\gamma} \hat{q}_{\tau_n}^*
\]

Theorem

Assume that \(F_Y\) is strictly increasing, that condition \(C_2(\gamma, \rho, A)\) holds with \(0 < \gamma < 1\) and \(\rho < 0\), and that \(\tau_n, \tau_n' \uparrow 1\) with \(n(1 - \tau_n) \to \infty\) and \(n(1 - \tau_n') \to c < \infty\). Assume further that

\[
\sqrt{n(1 - \tau_n)} \left(\hat{\gamma} - \gamma, \frac{\hat{q}_{\tau_n} - 1}{q_{\tau_n}} \right) \xrightarrow{d} (\Gamma, \Theta).
\]

If \(\sqrt{n(1 - \tau_n)q_{\tau_n}^{-1}} \to \lambda_1 \in \mathbb{R},\ \sqrt{n(1 - \tau_n)}A((1 - \tau_n)^{-1}) \to \lambda_2 \in \mathbb{R}\) and
\(\sqrt{n(1 - \tau_n)}/ \log((1 - \tau_n)/(1 - \tau_n')) \to \infty\), then

\[
\frac{\sqrt{n(1 - \tau_n)}}{\log((1 - \tau_n)/(1 - \tau_n'))} \left(\frac{\hat{\xi}_{\tau_n}' - 1}{\hat{\xi}_{\tau_n}'} \right) \xrightarrow{d} \Gamma.
\]
Extreme expectile estimation (cont.)

\[\tilde{\xi}_{\tau_n}^* := \left(\frac{1 - \tau_n'}{1 - \tau_n} \right)^{-\hat{\gamma}} \tilde{\xi}_{\tau_n} \]

Theorem

Assume that \(F_Y \) is strictly increasing, there is \(\delta > 0 \) such that \(\mathbb{E}|Y_-|^{2+\delta} < \infty \), condition \(C_2(\gamma, \rho, A) \) holds with \(0 < \gamma < 1/2 \) and \(\rho < 0 \), and that \(\tau_n, \tau_n' \uparrow 1 \) with \(n(1 - \tau_n) \to \infty \) and \(n(1 - \tau_n') \to c < \infty \). If in addition

\[
\sqrt{n(1 - \tau_n)(\hat{\gamma} - \gamma)} \xrightarrow{d} \Gamma
\]

and \(\sqrt{n(1 - \tau_n)q^{-1}_{\tau_n}} \to \lambda_1 \in \mathbb{R} \), \(\sqrt{n(1 - \tau_n)}A((1 - \tau_n)^{-1}) \to \lambda_2 \in \mathbb{R} \) and

\[
\sqrt{n(1 - \tau_n)}/\log[(1 - \tau_n)/(1 - \tau_n')] \to \infty, \text{ then}
\]

\[
\sqrt{n(1 - \tau_n)} \frac{\tilde{\xi}_{\tau_n}^* - 1}{\log[(1 - \tau_n)/(1 - \tau_n')]} \xrightarrow{d} \Gamma
\]
Outline of presentation

1. The class of expectiles
2. Extremal expectiles
3. Estimation of high expectiles
4. Expectile-based MES
5. Extreme level selection
6. Application
With the recent financial crisis and the rising interconnection between financial institutions, interest in the concept of systemic risk has grown;

Systemic risk: the propensity of a financial institution to be undercapitalized when the financial system as a whole is undercapitalized [Acharya et al. (2012), Brownlees and Engle (2012), Engle et al. (2015)];

Econometric approaches have been proposed to measure the systemic risk of financial institutions;

An important step in constructing a systemic risk measure for a financial institution is to measure the contribution of the institution to a systemic crisis;

Systemic crisis: a major stock market decline that happens once or twice a decade;

The total risk, measured by the expected capital shortfall in the financial system during a systemic crisis, can be decomposed into firm level contributions;

Firm level contributions can be measured by the Marginal expected shortfall = ?
Marginal expected shortfall

- X : the loss return on the equity of a financial firm
- Y : the loss return on the equity of the entire market
- Marginal expected shortfall :

$$\text{MES} = \mathbb{E}(X|Y > t)$$

where t is a high threshold reflecting a substantial market decline

- MES at probability level $(1 - \tau)$:

$$Q_{\text{MES}}(\tau) = \mathbb{E}\{X|Y > q_{Y,\tau}\}$$

- The estimation of $Q_{\text{MES}}(\tau)$
 - in Acharya et al. (2012) : relies on daily data from only 1 year and assumes a specific linear relationship between X and Y;
 - in Brownlees and Engle (2012) and Engle et al. (2014) : a non-parametric kernel estimator was proposed;

 Cannot handle extreme events required for systemic risk measures, i.e.,

 $$1 - \tau = O(1/n)$$
Adapted extreme-value tools

Cai, Einmahl, de Haan & Zhou (2015) ⇔ Adapted tools for the estimation of

\[\text{QMES}(\tau'_n) = \mathbb{E} \left\{ X | Y > q_{Y,\tau'_n} \right\} \]

\[\approx \left(\frac{1 - \tau'_n}{1 - \tau_n} \right)^{-\gamma_X} \text{QMES}(\tau_n) \]

without recourse to any parametric structure on \((X, Y)\):

\[\hat{\text{QMES}}^\star(\tau'_n) = \left(\frac{1 - \tau'_n}{1 - \tau_n} \right)^{-\gamma_X} \hat{\text{QMES}}(\tau_n) \]

where

\[\hat{\text{QMES}}(\tau_n) = \frac{1}{n(1 - \tau_n)} \sum_{i=1}^{n} X_i \mathbb{1}\{X_i > 0, Y_i > \hat{q}_{Y,\tau_n}\}. \]

Tail dependence condition \(J_{\mathcal{C}2}(R, \beta, \kappa) \): There exist \(R(\cdot, \cdot), \beta > \gamma_X \) and \(\kappa < 0 \) such that

\[
\sup_{\begin{subarray}{c} x \in (0, \infty) \\ y \in [1/2, 2] \end{subarray}} \left| \frac{t \mathbb{P}(F_X(X) \leq x/t, F_Y(Y) \leq y/t) - R(x, y)}{\min(x^\beta, 1)} \right| = O(t^\kappa) \quad \text{as} \quad t \to \infty
\]
Daouia, Girard & Stupfler (2016):

\[
\text{XMES}(\tau_n') = \mathbb{E} \{ X | Y > \xi_{Y,\tau_n'} \} \\
\approx \left(\frac{1 - \tau_n'}{1 - \tau_n} \right)^{-\gamma_X} \text{XMES}(\tau_n)
\]

with

\[
\text{XMES}(\tau_n) = \mathbb{E} \{ X | Y > \xi_{Y,\tau_n} \}
\]

(1) ALS type estimator:

\[
\text{XMES}^*(\tau_n') = \left(\frac{1 - \tau_n'}{1 - \tau_n} \right)^{-\tilde{\gamma}_X} \text{XMES}(\tau_n)
\]

where

\[
\text{XMES}(\tau_n) = \frac{\sum_{i=1}^{n} X_i \mathbb{I}\{X_i > 0, Y_i > \tilde{\xi}_{Y,\tau_n}\}}{\sum_{i=1}^{n} \mathbb{I}\{Y_i > \tilde{\xi}_{Y,\tau_n}\}}.
\]

If \(\sqrt{n(1 - \tau_n)} (\tilde{\gamma}_X - \gamma_X) \overset{d}{\rightarrow} \Gamma \), then

\[
\sqrt{n(1 - \tau_n) \log[(1 - \tau_n)/(1 - \tau_n')] \left(\frac{\text{XMES}^*(\tau_n')}{\text{XMES}(\tau_n')} - 1 \right) \overset{d}{\rightarrow} \Gamma
\]
Suppose for all \((x, y) \in [0, \infty]^2\) such that at least \(x\) or \(y\) is finite, the limit

\[
\lim_{t \to \infty} t \mathbb{P}(F_X(X) \leq x/t, F_Y(Y) \leq y/t) := R(x, y)
\]

exists.

Under this tail dependence condition:

\[
\lim_{\tau \uparrow 1} \frac{X_{\text{MES}}(\tau)}{Q_{\text{MES}}(\tau)} = (\gamma_Y^{-1} - 1)^{-\gamma_X}
\]

(2) Estimator based on tail QMES:

\[
\hat{X}_{\text{MES}}^*(\tau'_n) = (\hat{\gamma}_Y^{-1} - 1)^{-\hat{\gamma}_X} \hat{Q}_{\text{MES}}^*(\tau'_n).
\]

If \(\sqrt{n(1 - \tau_n)} (\hat{\gamma}_X - \gamma_X) \xrightarrow{d} \Gamma\), then

\[
\frac{\sqrt{n(1 - \tau_n)}}{\log[(1 - \tau_n)/(1 - \tau'_n)]} \left(\frac{\hat{X}_{\text{MES}}^*(\tau'_n)}{X_{\text{MES}}(\tau'_n)} - 1 \right) \xrightarrow{d} \Gamma
\]
Outline of presentation

1. The class of expectiles
2. Extremal expectiles
3. Estimation of high expectiles
4. Expectile-based MES
5. Extreme level selection
6. Application
Expectile level selection

- **Aim**: choice of $\tau'_n = ?$ in the instruments of risk protection

 \[\xi_{\tau'_n}, \quad \text{XMES}(\tau'_n) \]

- **In the case of**

 \[q_{\alpha_n}, \quad \text{QMES}(\alpha_n) \]

 it is customary to choose

 \[\alpha_n \to 1 \quad \text{with} \quad n(1 - \alpha_n) \to c < \infty \]

 to allow for more ‘prudent’ risk management \rightsquigarrow Typical interest in once-in-a-decade or twice-per-decade events

- **Idea**: select τ'_n so that each expectile-based risk measure has the same intuitive interpretation as its quantile-based analogue

 \[\uparrow \]

 choose $\tau'_n = \tau'_n(\alpha_n)$ s.t. $\xi_{\tau'_n} \equiv q_{\alpha_n}$ for a given relative frequency α_n

 \[\downarrow \]

 \[\tau'_n(\alpha_n) = 1 - \frac{\mathbb{E} \{ |Y - q_{\alpha_n}| \mathbb{I}(Y > q_{\alpha_n}) \}}{\mathbb{E} |Y - q_{\alpha_n}|} \]
How to estimate

\[
\tau'_n(\alpha_n) = 1 - \frac{\mathbb{E}\{|Y - q_{\alpha_n}| \mathbb{I}(Y > q_{\alpha_n})\}}{\mathbb{E}|Y - q_{\alpha_n}|}
\]

Proposition

Under the model assumption of Pareto-type tails with \(0 < \gamma < 1\),

\[
1 - \tau'_n(\alpha_n) \sim (1 - \alpha_n) \frac{\gamma}{1 - \gamma}, \quad n \to \infty
\]

\[
\Rightarrow \hat{\tau}'_n(\alpha_n) = 1 - (1 - \alpha_n) \frac{\hat{\gamma}_n}{1 - \hat{\gamma}_n}
\]
VaR estimation

With

$$\tau_n' = \tilde{\tau}_n'(\alpha_n) \equiv 1 - (1 - \alpha_n) \frac{\tilde{\gamma}_n}{1 - \tilde{\gamma}_n}$$

both extreme expectile estimators

$$\hat{\xi}_{\tau_n'} = \left(\frac{1 - \tau_n'}{1 - \tau_n} \right)^{-\gamma} \hat{\xi}_{\tau_n}$$

$$\hat{\xi}_{\tau_n'} = \left(\frac{1 - \tau_n'}{1 - \tau_n} \right)^{-\gamma} \hat{\xi}_{\tau_n} = (\hat{\gamma}^{-1} - 1)^{-\gamma} \hat{q}_{\tau_n'}$$

estimate the same VaR $\xi_{\tau_n'(\alpha_n)} \equiv q_{\alpha_n}$ as

$$\hat{q}_{\alpha_n} := \left(\frac{1 - \alpha_n}{1 - \tau_n} \right)^{-\gamma} \hat{q}_{\tau_n}$$

- $\hat{\xi}_{\tau_n'(\alpha_n)} \equiv \hat{q}_{\alpha_n}$
- If $\sqrt{n(1 - \tau_n)(\hat{\gamma}_n - \gamma)} \xrightarrow{d} \Gamma$, then

$$\sqrt{n(1 - \tau_n)} \left(\frac{\hat{\xi}_{\tau_n'(\alpha_n)}}{q_{\alpha_n}} - 1 \right) \xrightarrow{d} \Gamma$$
MES estimation

With

\[\tau'_n = \hat{\tau}'_n(\alpha_n) \equiv 1 - (1 - \alpha_n) \frac{\hat{\gamma}_n}{1 - \hat{\gamma}_n} \]

both estimators

\[\hat{\text{XMES}}^*(\tau'_n) = \left(\frac{1 - \tau'_n}{1 - \tau_n} \right)^{-\hat{\gamma}_X} \hat{\text{XMES}}(\tau_n) \]

\[\hat{\text{XMES}}^*(\tau'_n) = (\hat{\gamma}_Y - 1)^{-\hat{\gamma}_X} \hat{\text{QMES}}^*(\tau'_n) \]

estimate the same MES \(\hat{\text{XMES}}(\tau'_n(\alpha_n)) \equiv \hat{\text{QMES}}(\alpha_n) \) as Cai et al. (2015)'s estimator

\[\hat{\text{QMES}}^*(\alpha_n) = \left(\frac{1 - \alpha_n}{1 - \tau_n} \right)^{-\hat{\gamma}_X} \hat{\text{QMES}}(\tau_n) \]

- \(\hat{\text{XMES}}^*(\hat{\tau}'_n(\alpha_n)) \equiv \hat{\text{QMES}}^*(\alpha_n) \)
- If \(\sqrt{n(1 - \tau_n)(\hat{\gamma}_X - \gamma_X)} \xrightarrow{d} \Gamma \), then

\[\frac{\sqrt{n(1 - \tau_n)}}{\log[(1 - \tau_n)/(1 - \alpha_n)]} \left(\frac{\hat{\text{XMES}}^*(\hat{\tau}'_n(\alpha_n))}{\hat{\text{QMES}}(\alpha_n)} - 1 \right) \xrightarrow{d} \Gamma \]
Outline of presentation

1. The class of expectiles
2. Extremal expectiles
3. Estimation of high expectiles
4. Expectile-based MES
5. Extreme level selection
6. Application

For the three banks, the dataset consists of the loss returns (X_i) on their equity prices at a daily frequency from July 3rd, 2000, to June 30th, 2010 (ten years).

We follow the same set-up as in Cai et al. (2015) to extract, for the same time period, daily loss returns (Y_i) of a value-weighted market index aggregating three markets:

- New York Stock Exchange
- American Express stock exchange
- National Association of Securities Dealers Automated Quotation system

The interest is on $\hat{Q}_{\text{MES}}(\alpha_n)$ and $\hat{X}_{\text{MES}}(\tau'_n(\alpha_n))$ that estimate $Q_{\text{MES}}(\alpha_n) \equiv X_{\text{MES}}(\tau'_n(\alpha_n))$ with $\alpha_n = 1 - 1/n$.

They represent the average daily loss return for a once-per-decade market crisis ($n = 2513$).
Plots of the Hill estimates

- $\hat{\gamma}_Y$ based on daily loss returns of market index
- $\hat{\gamma}_X$ based on daily loss returns of Goldman Sachs, Morgan Stanley, T. Rowe Price

\Downarrow

$\gamma_X, \gamma_Y < 1/2$
QMES* (black) & XMES* (rainbow)
The final MES estimates

<table>
<thead>
<tr>
<th>Bank</th>
<th>(\text{(\tilde{\text{X}}_{\text{M}})}(\tau_n'(\alpha_n)))</th>
<th>(\text{(\tilde{\text{Q}}_{\text{M}})}(\alpha_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goldman Sachs</td>
<td>0.286</td>
<td>0.280</td>
</tr>
<tr>
<td>Morgan Stanley</td>
<td>0.485</td>
<td>0.471</td>
</tr>
<tr>
<td>T. Rowe Price</td>
<td>0.297</td>
<td>0.279</td>
</tr>
</tbody>
</table>

The final estimates based on averaging the estimates from the first stable regions of the plots:

- The quantile-based estimates are less conservative than our ALS-based estimates, but not by much.
- MES levels for **Morgan Stanley** are largely higher than those for **Goldman Sachs** and **T. Rowe Price**.