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Return level

The rainfall is modeled by a random variable Y with survival function

F (y) = 1− F (y) = P(Y ≥ y)

We have an ordered sample of annual rainfall

Y1,n ≤ · · · ≤ Yn,n.

We want to estimate the level of rain H which is exceeded on average once in T
years i.e. we want to estimate H such that

1/T = P(Y ≥ H) = F (H)

i.e. we want to estimate

H = F
−1

(1/T )

H is the return level corresponding to a return period T .

It is the standard quantity of interest in environmental studies.
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Return level and quantile

The quantile of order α ∈ ]0, 1[ of the survival function is defined by

q(α) = F
−1

(α).

=⇒ The return level H = F
−1

(1/T ) is by consequence a quantile of order α = 1/T .

What happens if the return period T is greater than the observed period ?
In other words what happens if

T > n⇐⇒ α = 1/T < 1/n −→
n→∞

0 ?

We want to estimate extreme quantiles q(αn) of order αn defined by

q(αn) = F
−1

(αn) with αn → 0 when n→∞

A return level with a return period greater than the observed period is an extreme
quantile.
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Extremes Quantiles
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What happens if q(αn) > Yn,n ?
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Extremes Quantiles

We can prove that
P(q(αn) > Yn,n) = exp(−nαn(1 + o(1))

First case :

If nαn →∞ then P(q(αn) > Yn,n)→ 0.

A natural estimator is the order statistic Yn−bnαnc+1,n (where b.c is the floor
function).

Second case :

If nαn → 0 then P(q(αn) > Yn,n)→ 1.

In this case, we can not estimate q(αn) by simply inverting the empirical cumulative
distribution function :

F̂n(y) =
1

n

n∑
i=1

I{Yi ≤ y} because F̂n(y) = 1 for y ≥ Yn,n.

The behavior of Yn,n is caracterised by its cumulative distribution function
FYn,n (y) = F n(y) which has a degenerate distribution.

6 / 40



The Fisher-Tippett-Gnedenko theorem [1943]

Theorem

Let (Yn)n≥1 be a sequence of independent and identically distributed random variables
with cumulative distribution function F . If there exist two normalizing sequences
(an)n≥1 > 0 and (bn)n≥1 ∈ R and a non degenerate distribution Hγ such that

lim
n→∞

P
(
Yn,n − bn

an
≤ y

)
= lim

n→∞
F n(any + bn) = Hγ(y),

then we have
Hγ(y) = exp

(
− (1 + γy)−1/γ

+

)
,

where γ ∈ R and z+ = max(0, z) .

Hγ is called the cumulative distribution function of extreme value distribution.

an and bn are normalizing sequences.

If F verifies the Fisher-Tippett-Gnedenko theorem we say that F belongs to the
domain of attraction of Hγ .

This distribution depends on the unique shape parameter γ called extreme value
index or tail index.
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Three domains of attraction

According to the sign of γ, we distinguish between three domains of attraction :

if γ < 0, we say that F belongs to the domain of attraction of Weibull. It containts
distributions with survival function without tail distribution, i.e. short-tailed
distributions.

if γ = 0, we say that F belongs to the domain of attraction of Gumbel. It containts
distributions with survival function exponentially decreasing, i.e. light-tailed
distributions.

if γ > 0, we say that F belongs to the domain of attraction of Fréchet. It containts
distributions with survival function polynomially decreasing, i.e. heavy-tailed
distributions.

Fréchet (γ > 0) Gumbel (γ = 0) Weibull (γ < 0)
Pareto Normale Uniforme

Student Exponentielle Beta
Burr Log-normale ReverseBurr

Chi-deux Gamma
Fréchet Weibull

Log-gamma Logistique
Log-logistique GumbelI

Cauchy
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Heavy-tailed distributions

All distributions belonging to the domain of attraction of Fréchet can be rewritten

F (y) = y−1/γ`(y) with γ > 0,

and ` is a slowly varying function at infinity i.e. ∀λ ≥ 1,

lim
y→∞

`(λy)

`(y)
→ 1.

The parameter γ controls the behaviour of the tail of the survival function and by
consequence the behaviour of the extreme values.

In numerous applications the variable of interest is recorded simultaneously with some
covariate.
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The Cévennes-Vivarais region

Horizontally we have the longitude (in km), verticaly the latitude (in km) and in the
colour scale the altitude (in m). Some stations of interest (white rombus).
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Description of the real data set

The 523 stations of interest

Data set provided by Météo-France.

Y : daily rainfall measured in mm.

X = {longitude, lattitude, altitude}.

1958 =⇒ 2000 =43 years of data.

523 stations denoted {xt ; t = 1, . . . , 523}.
Observations = 5 513 734.

Aim =⇒ to obtain maps of estimated extreme risk measures in all point of the region.
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The Value-at-Risk

The Value-at-Risk of level α ∈ (0, 1) denoted by VaR(α) introduced in 1993 is
defined by

VaR(α) := F
−1

(α).
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The VaR(α) is the quantile of level α of the survival function of the r.v. Y .
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Defaults of the Value-at-Risk

Let us consider Y1 and Y2 two loss r.v. with survival function associated F 1 and F 2.
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The VaR(α) is different according to the survival function F 1 or F 2.
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Defaults of the Value-at-Risk

Let us consider Y1 and Y2 two loss r.v. with survival function associated F 1 and F 2.
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In particular, r.v. with light tail probabilities and with heavy tail probabilities
(Embrechts et al. 1997) may have the same VaR(α). This point is one main
criticism against VaR as a risk measure.
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The Conditional Tail Expectation

The Conditional Tail Expectation of level α ∈ (0, 1) denoted CTE(α) (see
Embrechts et al. [1997]) is defined by

CTE(α) := E(Y |Y > VaR(α)).
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The CTE(α), takes into account the whole information contained in the upper part
of the tail distribution and gives informations on the distribution of Y given that
Y > VaR(α) and contrary to the VaR(α), on the heaviness of the tail distribution.
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The Conditional-Value-at-Risk

The Conditional-Value-at-Risk of level α ∈ (0, 1) denoted CVaRλ(α) and introduced
by Rockafellar and Uryasev [2000] is defined by

CVaRλ(α) := λVaR(α) + (1− λ)CTE(α) with 0 ≤ λ ≤ 1.
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We can remark that CVaR1(α)=VaR(α) and CVaR0(α)=CTE(α).
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The Stop-loss Premium reinsurance

The risk measure Stop-loss Premium reinsurance with a retention level equals to
VaR(α) (see Cai and Tan [2007]) is defined by

SP(α) := E((Y −VaR(α))+) = α (CTE(α)−VaR(α)) .
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This risk measure thus permits to emphasize the dangerous cases.
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Framework : extreme losses and regression case

Our contributions consist in adding two difficulties in the framework of the estimation of
risk measures.

1 We add the presence of a random covariate X ∈ Rp.

2 We are interested in the estimation of risk measures in the case of extremes losses.

=⇒ To this end, we replace the fixed order α ∈ (0, 1) by a sequence αn → 0 as the
sample size n→∞.

Denoting by F (.|x) the conditional survival function of Y given that X = x , we define
the Regression Value-at Risk by

RVaR(αn|x) := F
−1

(αn|x),

and the Regression Conditional Tail Expectation by

RCTE(αn|x) := E(Y |Y > RVaR(αn|x),X = x),
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Inference

=⇒ All the risk measures depend on the RVaR and on the RCTE.

RCVaRλ(αn|x) = λRVaR(αn|x) + (1− λ)RCTE(αn|x),

RSP(αn|x) = αn(RCTE(αn|x)− RVaR(αn|x)).

=⇒ We want to estimate all these risk measures.

We define the conditional moment of order a ≥ 0 of Y given that X = x by

ϕa(y |x) = E (Y aI{Y > y}|X = x) ,

where I{.} is the indicator function.

Since ϕ0(y |x) = F (y |x), it follows

RVaR(αn|x) = ϕ−1
0 (αn|x),

RCTE(αn|x) =
1

αn
ϕ1(ϕ−1

0 (αn|x)|x).
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Choice of the estimators

Estimator of ϕa(.|x) :

To estimate the moment of order a ≥ 0 of Y given that X = x , we propose to use a
classical kernel estimator defined for (x , y) ∈ Rp × R by

ϕ̂a,n(y |x) =
n∑

i=1

K

(
x − Xi

hn

)
Y a

i I{Yi > y}

/
n∑

i=1

K

(
x − Xi

hn

)
.

The fonction K is called kernel. It is a bounded density on Rp, with support S
included in the unit ball of Rp.

(hn) is a non-random sequence such that hn → 0 when n→∞ called the
window-width.

Estimator of ϕ−1
a (.|x) :

Since ϕ̂a,n(.|x) is a non-increasing function, we can define an estimator of ϕ−1
a (.|x) by

ϕ̂−1
a,n(α|x)
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Inference

The Regression Value-At-Risk of level αn is thus estimated by

R̂VaRn(αn|x) = ϕ̂−1
0,n(αn|x),

and the Regression Conditional Tail Expectation is estimated by :

R̂CTEn(αn|x) =
1

αn
ϕ̂1,n

(
ϕ̂−1

0,n(αn|x)|x
)

=⇒ We thus can now estimate all the above mentioned risk measures.

To do it, we need the asymptotic joint distribution of

{
R̂CTEn(αn|x) , R̂VaRn(αn|x)

}
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Heavy-tailed distributions in the presence of a covariate

(F) We assume that the conditional survival distribution function of Y given X = x is
heavy-tailed and admits a probability density function.

This is equivalent to assume that

∀y > 0, we have F (y |x) = y−1/γ(x)`(y |x)

where in this context,

γ(.) is an unknown and positive function of the covariate x and will be called
conditional tail index since it tunes the tail heaviness of the conditional distribution
of Y given X = x .

`(.|x) is a slowly varying function at infinity. We have (for x fixed), for all λ > 0,

lim
y→∞

`(λy |x)

`(y |x)
= 1.

This hypothesis amounts to assuming that the conditional distribution of Y given X = x
is heavy-tailed.
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Asymptotic joint distribution of our estimators

Theorem 1

Suppose (F) hold and for all x ∈ Rp such that g(x) > 0 and 0 < γ(x) < 1/2 we have a
sequence (αn)n≥1 such that αn → 0 and nhp

nαn →∞ as n→∞, then, the random vector

√
nhp

nαn


(
R̂CTEn(αn|x)

RCTE(αn|x)
− 1

)
j∈{1,...,J}

,

(
R̂VaRn(αn|x)

RVaR(αn|x)
− 1

)
is asymptotically Gaussian, centred, with a covariance matrix

Σ(x) = γ2(x)
‖K‖2

2

g(x)

(
2(1−γ(x))
1−2γ(x)

1

1 1

)
.

Σ(x) is proportional to γ2(x) =⇒ the higher the γ(x) (i.e. the heavier is the tail)
the more the variance of our estimators increases.

The density g(x) of the covariate is part of the denominator of the covariance
matrix =⇒ the less the point (i.e. the smaller is the density) the more the variance
of our estimators increases.
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Conditions on the sequences αn and hn

nhp
nαn →∞ : necessary and sufficient condition for the almost sure presence of at

least one point in the region B(x , hn)× [RVaR(αn|x),+∞) of Rp × R.

If αn = α is fixed we find the classical condition of asymptotic normality : nhp
n →∞.

If hn = h is fixed we find the classical condition of asymptotic normality : nαn →∞.
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Extrapolation

In Theorem 1, the condition nhp
nαn →∞ provides a lower bound on the level of the

risk measure to estimate.

This restriction is a consequence of the use of a kernel estimator which cannot
extrapolate beyond the maximum observation in the ball B(x , hn).

In consequence, αn must be an order of an extreme quantile within the sample.

Definition

Let us consider (αn)n≥1 and (βn)n≥1 two positives sequences such that αn → 0, βn → 0
and 0 < βn < αn. A kernel adaptation of Weissman’s estimator [1978] is given by

R̂CTE
W

n (βn|x) = R̂CTEn(αn|x)

(
αn

βn

)γ̂n(x)

where

R̂CTEn(αn|x) is the previous kernel estimator.

(αn/βn)γ̂n(x) is the term which allows the extrapolation.

γ̂n(x) is an estimator of the conditional tail index.
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Asymptotic normality of R̂CTE
W

n (βn|x)

Theorem 2

Suppose the assumptions of Theorem 1 hold. Let us consider γ̂n(x) an estimator of the
tail index such that √

nhp
nαn(γ̂n(x)− γ(x))

d→ N
(

0, v 2(x)
)
,

with v(x) > 0. If (βn)n≥1 is a positive sequence such that βn → 0 and βn/αn → 0 as
n→∞, then for all x ∈ Rp, we have

√
nhp

nαn

log(αn/βn)

(
R̂CTE

W

n (βn|x)

RCTE(βn|x)
− 1

)
d→ N

(
0, v 2(x)

)
.

The condition βn/αn → 0 allows us to extrapolate and choose a level βn arbitrarily
small.

Daouia et al. [2011] have established the asymptotic normality of

R̂VaR
W

n (βn|x) = R̂VaRn(αn|x)

(
αn

βn

)γ̂n(x)
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Application to an hydrological data set

Y : daily rainfall measured in mm. X = {longitude, latitude, altitude}. 1958 =⇒ 2000.

The Cévennes-Vivarais region The 523 stations of interest

Aim =⇒ estimate RVaR(βn|x) and RCTE(βn|x) for βn = 1/(100 ∗ 365.25).
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Application to an hydrological data set

Y : daily rainfall measured in mm. X = {longitude, latitude, altitude}. 1958 =⇒ 2000.

The Cévennes-Vivarais region Grid 200 × 200 points

Aim =⇒ estimate RVaR(βn|x) and RCTE(βn|x) for βn = 1/(100 ∗ 365.25).
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Application to an hydrological data set

Y : daily rainfall measured in mm. X = {longitude, latitude, altitude}. 1958 =⇒ 2000.

The Cévennes-Vivarais region Work in B(x , hn)

Aim =⇒ estimate RVaR(βn|x) and RCTE(βn|x) for βn = 1/(100 ∗ 365.25).
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Procedure to choose (hn, αn)

Our estimators depend on the following two tuning parameters :

hn the bandwidth : recurrent issue in non-parametric statistics.

αn number of upper order statistics used : classical issue since it raises a compromise
bias/variance in extreme value theory.

A high value of αn =⇒ large bias since we move out of the tail distribution.
A small value of αn =⇒ large variance since we use few observations.

=⇒ Procedure to select simultaneously (hn, αn).

Our procedure is based on the estimation of the function γ(x) since it controls :

the tail heaviness of the distribution (see assumption (F)),

and the extrapolation.

The main idea of our procedure is to select the empirical pair (hemp, αemp) ∈ H×A for
which two different estimations of the tail index γ(xt) for each station t are closed.

Hydrologists =⇒ important to combine locals and regionals informations.
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The Hill estimator

Without covariate

Let us consider (αn)n≥1 a positive sequence such that αn → 0, the Hill estimator
[1975] is defined by :

γ̂n,αn =
1

bnαnc − 1

bnαnc−1∑
i=1

log (Yn−i+1,n)− log
(
Yn−bnαnc+1,n

)
.

With a covariate

Let us consider (αn)n≥1 a positive sequence such that αn → 0. A kernel version of
the Hill estimator (Gardes and Girard [2008]) is given by

γ̂n,αn (x) =
J∑

j=1

(log(R̂VaRn(τjαn|x))− log(R̂VaRn(τ1αn|x)))

/
J∑

j=1

log(τ1/τj),

where J ≥ 1 and (τj)j≥1 is a positive and decreasing sequence of weights.
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A leave one out cross validation procedure to select hn and αn : Step 1

Double loop on H = {hi ; i = 1, . . . ,M} and on A = {αj ; j = 1, . . . ,R}.
Loop on all stations {xt ; t = 1, . . . , 523}.

Remove all the others stations

We estimate γ > 0 using the
classical Hill estimator.

It only depends on αj .

The αj are chosen such that we
stay in the tail of the
distribution max

j∈{1,...,R}
(αj) < 0.1

=⇒ We obtain γ̂n,t,αj
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A leave one out cross validation procedure to select hn and αn : Step 2

We remove this station xt

We work in B(xt , hi ) \ {xt}

We estimate γ(x) > 0 using the
conditional Hill estimator.

It depends on αj and on hi .

The hi are chosen such that
there is at least one station
in B(xt , hi ) \ {xt}.

=⇒ We obtain γ̂n,hi ,αj (xt)

(hemp, αemp) = arg min
(hi ,αj )∈H×A

median {(γ̂n,t,αj − γ̂n,hi ,αj (xt))2, t ∈ {1, . . . , 523}}.
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It depends on αj and on hi .

The hi are chosen such that
there is at least one station
in B(xt , hi ) \ {xt}.
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Applications to an hydrological data set

Y : daily rainfall measured in mm. X = {longitude, latitude, altitude}. 1958 =⇒ 2000.

The Cévennes-Vivarais region The 523 stations of interest

=⇒ Results of the procedure : (hemp, αemp) = (24, 1/(3 ∗ 365.25)).
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The Cévennes-Vivarais region Grid 200 × 200 points

=⇒ Results of the procedure : (hemp, αemp) = (24, 1/(3 ∗ 365.25)).

34 / 40



Applications to an hydrological data set

Y : daily rainfall measured in mm. X = {longitude, latitude, altitude}. 1958 =⇒ 2000.
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Applications to an hydrological data set

Y : daily rainfall measured in mm. X = {longitude, latitude, altitude}. 1958 =⇒ 2000.

The Cévennes-Vivarais region Bi-quadratic kernel

=⇒ Results of the procedure : (hemp, αemp) = (24, 1/(3 ∗ 365.25)).
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Non extrapolated risk measures in the Cévennes-Vivarais region

R̂VaRn(1/(3 ∗ 365.25)|x) R̂CTEn(1/(3 ∗ 365.25)|x)
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Risk measures in the Cévennes-Vivarais region

The Cévennes-Vivarais region γ̂n,(1/(3∗365.25))(x)
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Risk measures in the Cévennes-Vivarais region

The Cévennes-Vivarais region R̂VaR
W

n (1/(100 ∗ 365.25)|x)
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Risk measures in the Cévennes-Vivarais region

The Cévennes-Vivarais region R̂CTE
W

n (1/(100 ∗ 365.25)|x)
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Conclusions

Keys points

Estimation of VaR, CTE, CVaR, and SP in the case of extreme losses for
heavy-tailed distributions in the presence of a covariate.

Extrapolate those risk measures to arbitrary small levels.

Application to an hydrological data set.

Commentaries

+ Maps obtained are coherent according to hydrologists.

+ New tool for the prevention of risk in hydrology.

+ Theoretical properties similar to the univariate case (extreme or not) and with or
without a covariate.

– Curse of dimensionality.

Perspectives

Extend our work to all domains of attraction =⇒ γ(x) ∈ R
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Further readings

This presentation is based on two research articles :

El Methni, J., Gardes, L. and Girard, S. (2014). Nonparametric estimation of
extreme risk measures from conditional heavy-tailed distributions, Scandinavian
Journal of Statistics, vol. 41 (4), pp. 988–1012.

El Methni, J., Gardes, L. and Girard, S. (2015). Estimation de mesures de risque
pour des pluies extrêmes dans la région Cévennes Vivarais, La Houille Blanche, vol.
4, pp. 46–51

Thank you for your attention
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