Estimation of Mars surface physical properties from hyperspectral images using the SIR method

Caroline Bernard-Michel, Sylvain Douté, Laurent Gardes and Stéphane Girard

- Hyperspectral image data
- Inverse problem
- II. Dimension reduction
 - PCA
 - SIR
- III. Regularization and estimation
 - Zhong et al., 2005
 - Tikhonov
- IV. Validation on simulations
- V. Application to the south polar cap of Mars
- VI. Conclusion and future work

- Hyperspectral image data
- Inverse problem
- II. Dimension reduction
 - PCA
 - SIR
- III. Regularization and estimation
 - Zhong et al., 2005
 - Tikhonov
- IV. Validation on simulations
- V. Application to the south polar cap of Mars
- VI. Conclusion and future work

Introduction

Hyperspectral cube

Spectrometer

Radiative transfer model

RADIATIVE TRANSFER MODEL: evaluates direct link between parameters and spectra. Allows the construction of a training data

Inverse problem

INVERSE PROBLEM: evaluates the properties of atmospheric and surface materials from the spectra

Usual methods

- Nearest neighbor
- Weighted Nearest neighbor

Aim

- To establish functional relationships between:
 - -Spectra $x \in \mathbb{R}^p$ (p=184) from Mars Express mission
 - -Physical parameter $y \in \mathbb{R}$: proportion of water, proportion of dust, grain size...
 - -Construct *f* in order to estimate parameters:

$$f:\mathbb{R}^p\to\mathbb{R}$$

$$x \rightarrow y$$

Difficulties

- Curse of dimensionality (184 wavelengths):
 dimension of x has to be reduced
- Find projection axis a ∈ ℝ^p (here, only the first axis will be retained)
- Instead of estimating f such as y = f (x), we will suppose there exists g : ℝ → ℝ exists such that:

$$y = g(\langle a, x \rangle, \varepsilon)$$

- Hyperspectral image data
- Inverse problem
- II. Dimension reduction
 - PCA
 - SIR
- III. Regularization and estimation
 - Zhong et al., 2005
 - Tikhonov
- IV. Validation on simulations
- V. Application to the south polar cap of Mars
- VI. Conclusion and future work

Principal component analysis

- Maximizes the variance of the projections of the observations x
- Does not take into account y

Sliced inverse regression

- Proposed by Li (1991)
- Maximizes the between-slice variance of projections
- PCA of E(Z/Y) with $Z = \Sigma^{-\frac{1}{2}}X$
- Eigenvectors of $\Sigma^{-1}\Gamma$ with $\Gamma = \operatorname{var}(E(X/Y))$

Application of SIR

Problem

- Covariance matrix is ill-conditioned
 - Bad estimations of the directions
 - Sensitivity to noise
- Can be solved using regularization

- Hyperspectral image data
- Inverse problem
- II. Dimension reduction
 - PCA
 - SIR
- III. Regularization and estimation
 - Zhong et al., 2005
 - Tikhonov
- IV. Validation on simulations
- V. Application to the south polar cap of Mars
- VI. Conclusion and future work

Regularization (1)

• Usual SIR:

– eigenvectors of $\Sigma^{-1}\Gamma$

- Regularized SIR:
 - Zhong et al., 2005: eigenvectors of

 $\left(\sum +\lambda Id\right)^{-1}\Gamma$

- Tikhonov regularization: eigenvectors of $(\sum^2 + \lambda Id)^{-1} \Sigma \Gamma$

Regularization (2)

Usual SIR

Regularized SIR (Tikhonov)

- Depends on the regularization parameter λ
 The condition number of the matrix decreases when λ increases
- > The estimation bias increases when λ increases

Estimation

- Nearest neighbors (quite long!)
- Spline functions (choice of new parameters, boundaries)
- Linear interpolation

Choice of the regularization parameter

• By minimization of "Normalized RMSE" criterion

$$\frac{\|\hat{y} - y\|}{\|y - \overline{y}\|} = \frac{\text{Residuals sum of square}}{\text{Total sum of square}}$$

- Hyperspectral image data
- Inverse problem
- II. Dimension reduction
 - PCA
 - SIR
- III. Regularization and estimation
 - Zhong et al., 2005
 - Tikhonov
- IV. Validation on simulations
- V. Application to the south polar cap of Mars
- VI. Conclusion and future work

Validation (1)

Validation (2)

Weighted nearest neighbors

Validation (3)

- SIR gives better results than nearest neighbor classification
- Tikhonov and Zhong regularizations are equivalent
- With Tikhonov regularization, minimal normalized RMSE is reached on a larger interval than with Zhong's.

- Hyperspectral image data
- Inverse problem
- II. Dimension reduction
 - PCA
 - SIR
- III. Regularization and estimation
 - Zhong et al., 2005
 - Tikhonov
- IV. Validation on simulations
- V. Application to the south polar cap of Mars
- VI. Conclusion and future work

Application to south polar cap of Mars

- Model determined by physicists (water + CO2 + dust)
- 17753 spectra
- 184 wavelengths
- Training data simulated by radiative transfer model
- 5 parameters to study : proportions of water, dust and CO2, grain sizes of CO2 and water.

Proportion of CO2

Regularized Sliced Inverse Regression (Tikhonov)

Nearest neighbors

Weighted nearest neighbors

Proportion of water

Regularized Sliced Inverse Regression (Tikhonov) x 10⁻³ 2.5 50 100 1.5 150 200 0.5 250 20 40 80 100 120 60

Nearest neighbors

Weighted nearest neighbors

Proportion of Dust

Grain size of water

Grain size of CO2

- Hyperspectral image data
- Inverse problem
- II. Dimension reduction
 - PCA
 - SIR
- III. Regularization and estimation
 - Zhong et al., 2005
 - Tikhonov
- IV. Validation on simulations
- V. Application to the south polar cap of Mars
- VI. Conclusion and future work

Conclusion and future work

- Good results on simulations
- Realistic results on real data
- Validation is difficult because of the lack of ground measurements
- Choice of the regularization parameter?
- Uncertainties?
- Comparisons to other methods