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Abstract: This report summarizes my contributions in high dimensional classification and/or

clustering.

Clustering in high-dimensional spaces is a recurrent problem in many fields of sci-
ence, for example in image analysis. Indeed, the data used in image analysis are often
high-dimensional and this penalizes clustering methods. In this paper, we focus on
model-based clustering method. Popular clustering methods are based on the Gaus-
sian mixture model and show a disappointing behavior when the size of the dataset
is too small compared to the number of parameters to estimate. This well-known
phenomenon is called curse of dimensionality.

To avoid overfitting, it is necessary to find a balance between the number of parame-
ters to estimate and the generality of the model. I proposed a Gaussian mixture model
which takes into account the specific subspace in which each cluster is located and
therefore limits the number of parameters to estimate. The Expectation-Maximization
(EM) algorithm is used for parameter estimation and the intrinsic dimension of each
group is determined automatically either with the scree-test of Cattell or by maxi-
mum likelihood [1] or by extreme-value based methods [2, 3]. This allows to derive
a robust clustering method in high-dimensional spaces, called High Dimensional Data
Clustering (HDDC) [4]. The method has also been adapted to supervised classification
(HDDA – High Dimensional Data Analysis) [5, 6] and to the label noise situation [7].

In order to further limit the number of parameters, it is possible to make additional
assumptions on the model. We can for example assume that classes are spherical in
their subspaces or fix some parameters to be common between classes. Finally, HDDA
and HDDC are evaluated and compared to standard clustering or classification meth-
ods on artificial and real datasets. These approaches are shown to outperform existing
clustering methods [8, 9] on spectroscopic data and astrophysics. The methods are
implemented in a R package [10, 11] which is freely available on the CRAN archive.
Finally, the extension to the classification of non necessarily quantitative data is inves-
tigated in [12]. Applications are developped in grassland classification [13, 14], verbal
autopsy [15], and hyperspectral remote sensing [16].
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