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Abstract: This report summarizes my contributions in high dimensional classification and/or

clustering.

Clustering in high-dimensional spaces is a recurrent problem in many fields of sci-
ence, for example in image analysis. Indeed, the data used in image analysis are often
high-dimensional and this penalizes clustering methods. In this paper, we focus on
model-based clustering method. Popular clustering methods are based on the Gaus-
sian mixture model and show a disappointing behavior when the size of the dataset
is too small compared to the number of parameters to estimate. This well-known
phenomenon is called curse of dimensionality.
To avoid overfitting, it is necessary to find a balance between the number of parame-
ters to estimate and the generality of the model. I proposed a Gaussian mixture model
which takes into account the specific subspace in which each cluster is located and
therefore limits the number of parameters to estimate. The Expectation-Maximization
(EM) algorithm is used for parameter estimation and the intrinsic dimension of each
group is determined automatically either with the scree-test of Cattell or by maximum
likelihood [1]. This allows to derive a robust clustering method in high-dimensional
spaces, called High Dimensional Data Clustering (HDDC) [2]. The method has also
been adapted to supervised classification (HDDA – High Dimensional Data Analy-
sis) [3, 4] and to the label noise situation [5]. In order to further limit the number of
parameters, it is possible to make additional assumptions on the model. We can for
example assume that classes are spherical in their subspaces or fix some parameters to
be common between classes. Finally, HDDA and HDDC are evaluated and compared
to standard clustering or classification methods on artificial and real datasets. These
approaches are shown to outperform existing clustering methods [6]. The methods
are implemented in a R package [7, 8] which is freely available on the CRAN archive.
Finally, the extension to the classification of non necessarily quantitative data is inves-
tigated in [9].
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