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Abstract

This note summarizes my contributions to the estimation of extreme level curves. This

problem is equivalent to estimating quantiles when covariate information is available and

when their order converges to one as the sample size increases. Several estimators of these so-

called ”extreme conditional quantiles” are developped and the links with boundary or frontier

estimation are emphasized.

1 Extreme-value analysis

Extreme value theory is a branch of statistics dealing with the extreme deviations from the bulk

of probability distributions. More specifically, it focuses on the limiting distributions for the

minimum or the maximum of a large collection of random observations from the same arbitrary

(unknown) distribution. Let x1 < · · · < xn denote n ordered observations from a random variable

X representing some quantity of interest. A pn-quantile of X is the value qpn such that the

probability that X is greater than qpn is pn, i.e. P (X > qpn) = pn. When pn < 1/n, such a

quantile is said to be extreme since it is usually greater than the maximum observation xn. To

estimate such extreme quantiles requires therefore specific methods to extrapolate information

beyond the observed values of X. Those methods are based on Extreme value theory. This kind of

issues appeared in hydrology. One objective was to assess risk for highly unusual events, such as

100-year floods, starting from flows measured over 50 years.

The decay of the survival function P (X > x) = 1 − F (x), where F denotes the cumulative

distribution function associated to X, is driven by a real parameter called the extreme-value index

γ. When this parameter is positive, the survival function is said to be heavy-tailed, when this

parameter is negative, the survival function vanishes above its right end point. If this parameter is

zero, then the survival function decreases to zero at an exponential rate. An important part of our

work is dedicated to the study of such distributions. For instance, in reliability, the distributions

of interest are included in a semi-parametric family whose tails are decreasing exponentially fast.
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These so-called Weibull tail-distributions encompass a variety of light-tailed distributions, such as

Weibull, Gaussian, gamma and logistic distributions. Let us recall that a cumulative distribution

function F has a Weibull tail if it satisfies the following property: There exists θ > 0 such that for

all λ > 0,

lim
y→∞

log(1 − F (λy))

log(1 − F (y))
= λ1/θ.

I also addressed the estimation of extreme level curves. This problem is equivalent to esti-

mating quantiles when covariate information is available and when their order converges to one

as the sample size increases. We show that, under some conditions, these so-called ”extreme con-

ditional quantiles” can still be estimated through a kernel estimator of the conditional survival

function. Sufficient conditions on the rate of convergence of their order to one are provided to

obtain asymptotically Gaussian distributed estimators. Making use of this result, some estimators

of the extreme-value parameters are introduced and extreme conditional quantiles estimators are

deduced [1, 2, 3, 4, 5, 6, 7, 8, 9]. Finally, the tail copula is widely used to describe the dependence in

the tail of multivariate distributions. In some situations such as risk management, the dependence

structure may be linked with some covariate. The tail copula thus depends on this covariate and is

referred to as the conditional tail copula. The aim of [10] is to propose a nonparametric estimator

of the conditional tail copula and to establish its asymptotic normality.

Applications are found in hydrology [11, 12] and more generally in risk estimation [13, 14, 15].

2 Boundary or frontier estimation

In image analysis, the boundary estimation problem arises in image segmentation as well as in

supervised learning. In the extreme quantiles approach, the boundary bounding the set of points

is viewed as the larger level set of the points distribution. Its estimation is thus an extreme quantile

curve estimation problem. Estimators based on projections [16, 17] as well as on kernel regression

methods are applied on the extreme values set [18, 19]. These two families are unified in [20, 21]

and the asymptotic distribution of the L1 error is investigated in [22, 23, 24]. Applications to

econometrics are considered in [25, 26].
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G. Molinié. Evaluation of classical spatial-analysis schemes of extreme rainfall. Natural Haz-

ards and Earth System Sciences, 12:3229–3240, 2012.

[12] L. Gardes and S. Girard. Conditional extremes from heavy-tailed distributions: An application

to the estimation of extreme rainfall return levels. Extremes, 13(2):177–204, 2010.

[13] E. Deme, S. Girard, and A. Guillou. Reduced-bias estimators of the conditional tail expec-

tation for heavy-tailed distributions. In M. Hallin et al., editor, Mathematical Statistics and

Limit Theorems, pages 105–123. Springer, 2015.

[14] J. El Methni, L. Gardes, and S. Girard. Nonparametric estimation of extreme risks from

conditional heavy-tailed distributions. Scandinavian Journal of Statistics, 41:988–1012, 2014.

[15] E. Deme, S. Girard, and A. Guillou. Reduced-bias estimator of the proportional hazard

premium for heavy-tailed distributions. Insurance: Mathematics and Economics, 22:550–559,

2013.

3



[16] S. Girard and P. Jacob. Extreme values and Haar series estimates of point process boundaries.

Scandinavian Journal of Statistics, 30(2):369–384, 2003.

[17] S. Girard and P. Jacob. Projection estimates of point processes boundaries. Journal of

Statistical Planning and Inference, 116(1):1–15, 2003.

[18] S. Girard and P. Jacob. Extreme values and kernel estimates of point processes boundaries.

ESAIM: Probability and Statistics, 8:150–168, 2004.

[19] S. Girard and P. Jacob. A note on extreme values and kernel estimators of sample boundaries.

Statistics and Probability Letters, 78:1634–1638, 2008.

[20] S. Girard and L. Menneteau. Central limit theorems for smoothed extreme value estimates

of point processes boundaries. Journal of Statistical Planning and Inference, 135(2):433–460,

2005.

[21] S. Girard and L. Menneteau. Smoothed extreme value estimators of non-uniform point pro-

cesses boundaries with application to star-shaped supports estimation. Communication in

Statistics - Theory and Methods, 37(6):881–897, 2008.

[22] J. Geffroy, S. Girard, and P. Jacob. Asymptotic normality of the L1-error of a boundary

estimator. Nonparametric Statistics, 18(1):21–31, 2006.

[23] S. Girard. On the asymptotic normality of the L1- error for Haar series estimates of Poisson

point processes boundaries. Statistics and Probability Letters, 66:81–90, 2004.

[24] S. Girard and P. Jacob. Asymptotic normality of the L1-error for Geffroy’s estimate of Poisson

point process boundaries. Publications de l’Institut de Statistique de l’Université de Paris,
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