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Principal component analysis (PCA) is a well-known method for extracting linear structures
from high-dimensional datasets. It computes the subspace best approaching the dataset from the
Euclidean point of view. This method benefits from efficient implementations based either on
solving an eigenvalue problem or on iterative algorithms. We refer to [12] for details. In a similar
fashion, multi-dimensional scaling [1, 14, 19] addresses the problem of finding the linear subspace
best preserving the pairwise distances. More recently, new algorithms have been proposed to
compute low dimensional embeddings of high dimensional data. For instance, Isomap [21], LLE
(Locally linear embedding) [18] and CDA (Curvilinear distance analysis) [4] aim at reproducing
in the projection space the structure of the initial local neighborhood. These methods are mainly
dedicated to visualization purposes. They cannot produce an analytic form of the transformation
function, making it difficult to map new points into the dimensionality-reduced space. Besides,
since they rely on local properties of pairwise distances, these methods are sensitive to noise and
outliers. We refer to [16] for a comparison between Isomap and CDA and to [23] for a comparison
between some features of LLE and Isomap.

Finding nonlinear structures is a challenging problem. An important family of methods focuses
on self-consistent structures. The self-consistency concept is precisely defined in [20]. Geometri-
cally speaking, it means that each point of the structure is the mean of all points that project
orthogonally onto it. For instance, it can be shown that the k-means algorithm [10] converges to
a set of k self-consistent points. Principal curves and surfaces [3, 11, 15, 22] are examples of one-
dimensional and two-dimensional self-consistent structures. Their practical computation requires
to solve a nonlinear optimization problem. The solution is usually non robust and suffers from
a high estimation bias. In [13], a polygonal algorithm is proposed to reduce this bias. Higher
dimensional self-consistent structures are often referred to as self-consistent manifolds even though
their existence is not guaranteed for arbitrary datasets. An estimation algorithm based on a grid
approximation is proposed in [9]. The fitting criterion involves two smoothness penalty terms
describing the elastic properties of the manifold.

In my work, auto-associative models are proposed as candidates to the generalization of PCA.
We show in [7] that these models are dedicated to the approximation of the dataset by a manifold.
Here, the word ”manifold” refers to the topology properties of the structure [17]. The approxi-
mating manifold is built by a projection pursuit algorithm presented in [5]. At each step of the
algorithm, the dimension of the manifold is incremented. Some theoretical properties are provided
in [7]. In particular, we can show that, at each step of the algorithm, the mean residuals norm is
not increased. Moreover, it is also established that the algorithm converges in a finite number of
steps. The note [6] is devoted to the presentation of some particular auto-associative models. They
are compared to the classical PCA and some neural networks models. Implementation aspects are
discussed in [2]. We show that, in numerous cases, no optimization procedure is required. Some
illustrations on simulated and real data are presented in [8].
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