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Principal component analysis (PCA) is a well-known method for extracting lin-
ear structures from high-dimensional datasets. It computes the subspace best ap-
proaching the dataset from the Euclidean point of view. This method benefits from
efficient implementations based either on solving an eigenvalue problem or on itera-
tive algorithms. We refer to [15] for details. In a similar fashion, multi-dimensional
scaling [3, 17, 22] addresses the problem of finding the linear subspace best pre-
serving the pairwise distances. More recently, new algorithms have been proposed
to compute low dimensional embeddings of high dimensional data. For instance,
Isomap [24], LLE (Locally linear embedding) [21] and CDA (Curvilinear distance
analysis) [7] aim at reproducing in the projection space the structure of the initial
local neighborhood. These methods are mainly dedicated to visualization purposes.
They cannot produce an analytic form of the transformation function, making it
difficult to map new points into the dimensionality-reduced space. The intrinsic
dimension of the manifold should be estimated at a preliminary step, see [1, 2, 5] for
some related works. Besides, since they rely on local properties of pairwise distances,
these methods are sensitive to noise and outliers. We refer to [19] for a comparison
between Isomap and CDA and to [26] for a comparison between some features of
LLE and Isomap.

Finding nonlinear structures is a challenging problem. An important family
of methods focuses on self-consistent structures. The self-consistency concept is
precisely defined in [23]. Geometrically speaking, it means that each point of the
structure is the mean of all points that project orthogonally onto it. For instance, it
can be shown that the k-means algorithm [13] converges to a set of k self-consistent
points. Principal curves and surfaces [6, 14, 18, 25] are examples of one-dimensional
and two-dimensional self-consistent structures. Their practical computation requires
to solve a nonlinear optimization problem. The solution is usually non robust and
suffers from a high estimation bias. In [16], a polygonal algorithm is proposed to
reduce this bias. Higher dimensional self-consistent structures are often referred to as
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self-consistent manifolds even though their existence is not guaranteed for arbitrary
datasets. An estimation algorithm based on a grid approximation is proposed in [12].
The fitting criterion involves two smoothness penalty terms describing the elastic
properties of the manifold.

In my work, auto-associative models are proposed as candidates to the general-
ization of PCA. We show in [10] that these models are dedicated to the approxima-
tion of the dataset by a manifold. Here, the word ”manifold” refers to the topology
properties of the structure [20]. The approximating manifold is built by a projection
pursuit algorithm presented in [8]. At each step of the algorithm, the dimension of
the manifold is incremented. Some theoretical properties are provided in [10]. In
particular, we can show that, at each step of the algorithm, the mean residuals norm
is not increased. Moreover, it is also established that the algorithm converges in a
finite number of steps. The note [9] is devoted to the presentation of some particular
auto-associative models. They are compared to the classical PCA and some neu-
ral networks models. Implementation aspects are discussed in [4]. We show that,
in numerous cases, no optimization procedure is required. Some illustrations on
simulated and real data are presented in [11].
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