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Abstract: This report summarizes my contributions to functional estimation. Most of my

work addresses the problem of frontier or boundary estimation. Three methods are devel-

opped: Estimators based on the extreme values of the sample, estimators based on linear

programming techniques and estimators based on high order moments. Some applications to

reference curves estimation and production frontier estimation are provided.

Contributions

Boundary or frontier estimation, and more generally, level sets estimation, are recurrent
functional estimation problems in statistics which are linked to outlier detection. In
biology, one is interested in estimating reference curves, that it to say curves which
bound 90% (for instance) of the population. Points outside this bound are considered
as outliers compared to the reference population. Here, reference curves are computed
through nonparametric regression quantile estimations [1, 2, 3, 4].

In image analysis, the boundary estimation problem arises in image segmentation
as well as in supervised learning. Two different and complementary approaches are
developed. In the extreme quantiles approach, approach, the boundary bounding the
set of points is viewed as the larger level set of the points distribution. Its estimation
is thus an extreme quantile curve estimation problem. Estimators based on projection
as well as on kernel regression methods are applied on the extreme values set [5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. In this framework, we
obtain the asymptotic distribution of the error between the estimators and the true
frontier [23, 24, 25].

In the linear programming approach, the boundary of a set of points is defined
as a closed curve bounding all the points and with smallest associated surface. It is
thus natural to reformulate the boundary estimation problem as a linear programming
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problem. This method belongs to the Support Vector Machines (SVM) techniques [26,
27, 28, 29].

Besides, the use of high order moments techniques permits to use all the observa-
tions from the sample [30, 31, 32, 33] similarly to the methods used for the production
frontier estimation [34, 35] in econometrics.

Finally, I developped dimension reduction methods for high dimensional regression
problems [36, 37, 38, 39, 40, 41, 2].
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