
Scientific outputs in 2005
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Abstract

This report summarizes my scientific contributions in 2005. Three main research topics

are addressed: Boundary or frontier estimation, High dimensional statistical learning and

Extreme-value analysis.

1 Extreme-value analysis

The decay of the survival function P (X > x) is driven by a real parameter called the extreme-value

index. When this parameter is positive, the survival function is said to be heavy-tailed. In this

context, I proposed a Bayesian procedure to estimate it [1]. When this parameter is negative, the

survival function vanishes above its right end point. If this parameter is zero, then the survival

function decreases to zero at an exponential rate. An important part of my work is dedicated to

the study of such distributions [2, 3, 4, 5]. For instance, in reliability, the distributions of interest

are included in a semi-parametric family whose tails are decreasing exponentially fast. These so-

called Weibull-tail distributions include Gaussian, gamma, exponential and Weibull distributions,

among others. I also introduced an estimator of the extreme-value index valid in all cases [6]. The

proposed methods have been included in a software [7] freely available from my webpage.

2 Boundary or frontier estimation

In image analysis, the boundary estimation problem arises in image segmentation as well as in

supervised learning. Two different and complementary approaches are developed. In the extreme

quantiles approach the boundary bounding the set of points is viewed as the larger level set of

the points distribution. Its estimation is thus an extreme quantile curve estimation problem [8].

Estimators based on projection as well as on kernel regression methods are applied on the extreme

values set [9, 10].

1



Besides, the use of optimization techniques permits to select automatically the relevant points

from all the observations of the sample [11, 12] similarly to the methods used in Support Vector

Machines (SVM).

3 High dimensional statistical learning

I have proposed a parametrization of the Gaussian mixture model for classification purposes. It is

assumed that the high-dimensional data live in subspaces with intrinsic dimensions smaller than

the dimension of the original space and that the data of different classes live in different subspaces

with different intrinsic dimensions. New high-dimensional data classifiers are introduced on the

basis of this model [13, 14, 15, 16].

I also developped dimension reduction methods for high dimensional regression problems [17].

Image analysis and computer vision are two important application domains for high dimensional

data analysis and, more precisely, for dimension reduction methods. Indeed, a M ×M grey-level

image can be represented as a p-dimensional vector with p = M2 or by a set of local descriptors. In

both case, even with moderate image sizes, one obtains data living in very high-dimensional spaces.

Principal Component Analysis (PCA) is usually an efficient tool for reducing the dimension of such

data. However, even simple transformations between images can yield strong non-linearities in the

p-dimensional space and thus strongly reduce the PCA efficiency. To overcome this problem, I have

introduced Auto-Associative models allowing to build new nonlinear dimension reduction methods.

The dataset is approximated by a differentiable manifold generalizing PCA’s linear subspaces. The

approximation algorithm is simple: it consists in incrementing the dimension of the manifold step

by step [18].

Another aspect of multivariate data analysis is the modeling of dependence between variables.

Copula provides a relevant tool to build multivariate probability laws, from fixed marginal distri-

butions and required degree of dependence. From Sklar’s Theorem, the dependence properties of

a continuous multivariate distribution can be entirely summarized, independently of its margins,

by a copula. We have introduced a new semiparametric family of bivariate copulas. The family is

generated by a univariate function, determining the symmetry (radial symmetry, joint symmetry)

and dependence property (quadrant dependence, total positivity, ...) of the copulas. An estimation

procedure has also been introduced [19]
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[8] L. Gardes and S. Girard. Estimation d’une fonction quantile extrême. In 3èmes Journées de
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grande dimension. In 37èmes Journées de Statistique organisées par la Société Française de
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