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ABSTRACT
This paper is concerned with the estimation of a local mea-
sure of intrinsic dimensionality (ID) recently proposed by
Houle. The local model can be regarded as an extension of
Karger and Ruhl’s expansion dimension to a statistical set-
ting in which the distribution of distances to a query point
is modeled in terms of a continuous random variable. This
form of intrinsic dimensionality can be particularly useful in
search, classification, outlier detection, and other contexts in
machine learning, databases, and data mining, as it has been
shown to be equivalent to a measure of the discriminative
power of similarity functions. Several estimators of local ID
are proposed and analyzed based on extreme value theory,
using maximum likelihood estimation (MLE), the method
of moments (MoM), probability weighted moments (PWM),
and regularly varying functions (RV). An experimental eval-
uation is also provided, using both real and artificial data.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics—Distribution Functions; I.2.6 [Computing Method-
ologies]: Artificial Intelligence—Learning, Parameter Learn-
ing
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1. INTRODUCTION
In an attempt to improve the discriminability of similar-

ity measures, and the scalability of methods that depend on
them, much attention has been given in the areas of machine
learning, databases, and data mining to the development of
dimensional reduction techniques. Linear techniques for di-
mensionality reduction include Principal Component Anal-
ysis (PCA) and its variants [4, 24]. Non-linear dimension-
ality reduction methods — also known as manifold learn-
ing techniques — include Isometric Mapping [36], Multi-
Dimensional Scaling [35,37], Locally Linear Embedding and
its variants [30], and Non-Linear Component Analysis [32].
Most reduction techniques require that a target dimension
be provided by the user, although some attempt to deter-
mine the dimension automatically. Ideally, the supplied di-
mension should depend on the intrinsic dimensionality (ID)
of the data. This has served to motivate the development of
models of ID, as well as accurate estimators.

Over the past few decades, many practical models of the
intrinsic dimensionality of data sets have been proposed.
Examples include the previously mentioned Principal Com-
ponent Analysis and its variants [4, 24], as well as several
manifold learning techniques [26,30,32,37]. Topological ap-
proaches to ID estimate the basis dimension of the tangent
space of the data manifold from local samples [5,38]. Fractal
methods such as the Correlation Dimension (CD) estimate
an intrinsic dimension from the space-filling capacity of the
data [6, 14]. Graph-based methods use the k-nearest neigh-
bors graph along with density in order to estimate ID [8].

The aforementioned intrinsic dimensionality measures can
be described as ‘global’, in that they consider the dimension-
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ality of a given set as a whole, without any individual object
being given a special role. In contrast, ‘local’ ID measures
are defined in this paper as those that involve only the k-
nearest neighbor distances of a specific location in the space.
Several local intrinsic dimensionality models have been pro-
posed recently, such as the expansion dimension (ED) [25],
the generalized expansion dimension (GED) [19], the min-
imum neighbor distance (MiND) [31], and local continuous
intrinsic dimension (which we will refer to here as LID) [17].
These models quantify ID in terms of the rate at which the
number of encountered objects grows as the considered range
of distances expands from a reference location.

Local approaches can be very useful when data is com-
posed of heterogeneous manifolds. In addition to applica-
tions in manifold learning, measures of local ID have been
used in the context of similarity search, where they are used
to assess the complexity of a search query [22, 25], or to
control the early termination of search [20, 21]. They have
also found applications in outlier detection, in the analysis
of a projection-based heuristic [9], and in the estimation of
local density [39]. The efficiency and effectiveness of the
algorithmic applications of intrinsic dimensional estimation
(such as [20, 21]) depends greatly on the quality of of the
estimators employed.

Distances from a query point can be seen as realizations
of a continuous positive random variable. In this case, the
smallest distances encountered would be ‘extreme events’
associated with the lower tail of the underlying distance dis-
tribution. In Extreme Value Theory (EVT), a discipline
of statistics concerned with the study of tails of continu-
ous probability distributions, the random variable associated
with nearest neighbor distances can be assumed to follow a
power-law distribution [7]. Continuous lower-bounded ran-
dom variables are known to asymptotically converge to the
Weibull distribution as the sample size grows, regardless of
the original distance measure and its distribution. In an
equivalent formulation of EVT due to Karamata, the cu-
mulative distribution function of a tail distribution can be
represented as a regularly-varying (RV) function whose dom-
inant factor is a polynomial in the distance [7,18]; the degree
(or ’index’) of this polynomial factor determines the shape
parameter of the associated Weibull distribution, or equiva-
lently the exponent of the associated power law. The index
has been interpreted as a form of intrinsic dimension [7].
Maximum likelihood estimation of the index leads to the
well-known Hill estimator for power-law distributions [16].

While EVT provides an asymptotic description of tail dis-
tributions, in the case of continuous distance distributions,
the distribution can be exactly characterized in terms of
LID [18]. The LID model introduces a function that assesses
the discriminative power of the distribution at any given dis-
tance value [17,18]. A distance measure is described as ‘dis-
criminative’ when an expansion in the distance results in a
relatively small increase in the number of observations. This
function is shown to fully characterize the cumulative dis-
tribution function without the explicit involvement of the
probability density [18]. The limit of this function yields
the skewness of the Weibull distribution (or equivalently,
the Karamata representation index, or power law exponent)
associated with the lower tail. It is the estimation of this
limit that is the main focus of this paper.

In addition to the more traditional applications stated ear-
lier, LID has the potential for wide application in many ma-

chine learning and data mining contexts, as it makes no as-
sumptions on the nature of the data distribution other than
continuity.

The main original contributions of this paper are:

• a framework for the estimation of local continuous in-
trinsic dimension (LID) using well-established tech-
niques: the maximum likelihood estimation (MLE),
the method of moments (MoM), and the method of
probability-weighted moments (PWM). In particular,
we verify that applying MLE to LID leads to the well-
known Hill estimator [16].

• a new family of estimators based on the extreme-value-
theoretic notion of regularly varying functions. Several
existing dimensionality models (ED, GED, and MiND)
are shown to be special cases of this family.

• confidence intervals for the variance and convergence
of the estimators we propose.

• an experimental study using artificial data and syn-
thetic distance distributions, in which we compare our
estimators with state-of-the-art global and local esti-
mators. We also show that the empirical variance and
convergence rates of the MLE (Hill) and MoM estima-
tors are superior to those of the other local estimators
studied.

• experiments showing that local estimators are more ro-
bust than global ones in the presence of noise in non-
linear manifolds. Our experiments show that our ap-
proaches are very competitive in this regard with other
methods, both local and global.

• profiles of several real-world data sets in terms of LID,
illustrating the degree of variability of complexity from
region to region within a dataset. The profiles demon-
strate that a single ‘global’ ID value is in general not
sufficient to fully characterize the complexity of real-
world data.

2. CONTINUOUS INTRINSIC DIMENSION
LID [17] aims to quantify the local ID of a feature space

exclusively in terms of the distribution of inter-point dis-
tances. Formally, let (Rm, d) be a domain equipped with
a non-negative distance function d. Let us consider the
distribution of distances within the domain with respect to
some fixed point of reference. We model this distribution in
terms of a random variable X with support [0,∞). X is said
to have probability density fX, where fX is a non-negative
Lebesgue-integrable function, if and only if

Pr[a ≤ X ≤ b] =

∫ b

x=a

fX(x) dx,

for any a, b ∈ [0,∞) such that a ≤ b. The corresponding
cumulative density function FX is canonically defined as

FX(x) = Pr[X ≤ x] =

∫ x

u=0

fX(u) du.

Accordingly, whenever X is absolutely continuous at x, FX

is differentiable at x and its first-order derivative is fX(x).

Definition 1 (Houle [17]). Given an absolutely con-
tinuous random distance variable X, for any distance thresh-
old x such that FX(x) > 0, the local continuous intrinsic
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dimension of X at distance x is given by

IDX(x) , limε→0+
lnFX ((1 + ε)x)− lnFX(x)

ln(1 + ε)

wherever the limit exists.

With respect to the generalized expansion dimension [19],
a precursor of LID, the above definition of IDX(x) is the out-
come of a dimensional test of neighborhoods of radii x and
(1+ε)x in which the neighborhood cardinalities are replaced
by the expected number of neighbors. LID also turns out to
be equivalent to a formulation of the (lack of) discriminative
power of a distance measure, as both formulations have the
same closed form:

Theorem 1 (Houle [17]). Let X be an absolutely con-
tinuous random distance variable. If FX is both positive and
differentiable at x, then

IDX(x) =
xfX(x)

FX(x)
.

3. EXTREME VALUE THEORY
Extreme value theory is concerned with the modeling of

what can be regarded as the extreme behavior of stochastic
processes. Its best known theorem, attributed in parts to
Fisher and Tippett [10], and Gnedenko [13], states that the
maximum of N independent identically-distributed random
variables (after proper renormalization) converges in distri-
bution to a generalized extreme value distribution as N goes
to infinity.

3.1 Threshold excesses
Consider the following two definitions.

Definition 2. Let ξ ∈ R and σ > 0. The family of gen-
eralized Pareto distributions is defined by its cumulative dis-
tribution function:

FX(x) = 1−
(

1 +
ξx

σ

)− 1
ξ

.

Definition 3. Let X be a random variable whose distri-
bution FX has the upper endpoint x+ ∈ R ∪ {∞}. Given
w < x+, the conditional excess distribution FX,w of X is the
distribution of X− w conditioned on the event X > w:

FX,w (x) =
FX(w + x)− FX(w)

1− FX(w)
.

We are now in a position to introduce a powerful theorem
due to Balkema and de Haan [1], and Pickands [28], which
can be regarded as the counterpart to the central limit the-
orem for extremal statistics.

Theorem 2 (Balkema-de Haan [1], Pickands [28]).
Let (Xi)i∈N be a sequence of independent random variables
with identical distribution function FX satisfying the condi-
tions of the Fisher-Tippett-Gnedenko Theorem. As w → x+,
FX,w (x) converges to a distribution in FGPD.

In the following we demonstrate a direct relation between
local ID and extreme value theory, which arises as an im-
plication of Theorem 2. Note that any choice of distance
threshold w corresponds to a neighborhood of radius w based

at the reference point, or equivalently, to the tail of the dis-
tribution of distances on [0, w). As discussed in [7], Theo-
rem 2 also applies to lower tails: one can reason about min-
ima using the transformation Y = −X. The distribution of
the excess Y − (−w) (conditioned on Y > −w) then tends
to a distribution in FGPD, as w tends to the lower endpoint
of FX located at zero. Accordingly, as w tends to zero, the
distribution in the tail [0, w) can be restated as follows [7].

Lemma 1. Let X be an absolutely continuous random dis-
tance variable with support [0,∞) and cumulative distribu-
tion function FX such that FX(x) > 0 if x > 0. Let c ∈ (0, 1)
be an arbitrary constant. Let w > 0 be a distance threshold,
and consider x restricted to the range [cw,w). As w tends
to zero, the distribution of X restricted to the tail [cw,w)
satisfies, for some fixed ξ < 0:

(x/w)
− 1
ξ

FX,w (x)
→ 1

Note that the distribution of excess distance w − X is
bounded from above by w which, according to [7], enforces
that ξ < 0.

To summarize, whenever Theorem 2 applies to a distance
variable X, the cumulative distribution of distances within
a radius-w neighborhood is asymptotically determined by a
single parameter ξ < 0. We can prove the following state-
ment concerning LID.

Theorem 3. Let X be an absolutely continuous random
distance variable with support [0,∞), satisfying the condi-
tions of Theorem 2, and w > 0 be a distance threshold.
Then, as w tends to zero,

IDX(w)→ −1

ξ
=: IDX.

Proof. Omitted due to space limitations.

Note that together Lemma 1 and Theorem 3 allow us to
restate the asymptotic cumulative distribution of distances
in the tail [cw,w) as

(x/w)IDX

FX,w (x)
→ 1. (1)

3.2 Regularly-varying functions
The Fisher-Tippett-Gnedenko Theorem and the Pickands-

Balkema-de Haan Theorem have been shown to be equiva-
lent to a third characterization of the tail behavior, in terms
of regularly-varying (RV) functions. The asymptotic cumu-
lative distribution of X in the tail [0, w) can be expressed as
FX(x) = xκ`X(1/x), where `X is differentiable and slowly
varying ; that is, for all c > 0, `X satisfies

lim
t→∞

`X(ct)

`X(t)
= 1.

FX restricted to [0, w) is itself said to be regularly varying
with index κ. In particular, a cumulative distribution F ∈
FGEV has ξ < 0 if and only if F is RV and has a finite
endpoint. Note that the slowly-varying component `X(1/x)
of FX is not necessarily constant as x tends to zero. For a
detailed account of RV functions, we refer the reader to [2].

The following corollary is a straightforward extension of
the examples given in Section 2.

Corollary 1. Let X be a random distance variable re-
stricted to [0, w) with distribution FX(x) = xκ`X(1/x). As
w tends to zero, the index κ converges to IDX.
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4. ESTIMATION
This section is concerned with practical methods for the

estimation of the local intrinsic dimension of a random dis-
tance variable X. In particular, we adapt known GPD pa-
rameter estimators such as the maximum-likelihood estima-
tor (in Section 4.1) and moment based estimators (in Sec-
tions 4.2 and 4.3), and propose a new estimator based on
regularly varying functions (in Section 4.4).

For the remainder of this discussion we assume that we
are given a sequence x1, . . . , xn of observations of a random
distance variable X with support [0, w), in ascending order
— that is, x1 ≤ x2 ≤ · · · ≤ xn.

4.1 Maximum Likelihood Estimation
Using the asymptotic expression of the distance distribu-

tion given in Equation 1, we see that the log-likelihood of
IDX for the sample is

L(IDX) = n ln
FX,w (w)

w
+ n ln IDX + (IDX − 1)

n∑
i=1

ln
xi
w
.

Accordingly, the maximum-likelihood estimate ÎDX is

ÎDX = −
(

1

n

∑n

i=1
ln
xi
w

)−1

,

which follows the form of the well-known Hill estimator for
the scaling exponent of a power-law tail distribution [16].

The MLE model ensures the usual regularity conditions
that guarantee the consistency, the asymptotic normality
and the efficiency of this estimator. The variance is asymp-
totically given by the inverse of the Fisher information de-
fined as:

I = E

[
−∂

2L(IDX)

∂ ID2
X

]
=

n

ID2
X

,

where E[·] denotes the expectation. Therefore, if the number

of samples n is sufficiently large, we have ÎDX ∼ N (IDX, ID
2
X

/ n). Accordingly, with probability 1− β, a sample of n dis-

tances in [0, w) provides an estimate ÎDX lying within

IDX ±
IDX√
n

Φ−1

(
1− β

2

)
.

In other words, the 1− β confidence interval is[
ÎDX

1 + n−1/2Φ−1(1− β/2)
,

ÎDX

1− n−1/2Φ−1(1− β/2)

]
.

4.2 Method of Moments
For any choice of k ∈ N, the k-th order non-central mo-

ment µk of the random distance X is

µk = E
[
Xk
]

=

∫ w

x=0

xkfX(x) dx = wk
IDX

IDX + k
.

Solving for the intrinsic dimension gives

IDX = −k µk
µk − wk

= g
( µk
wk

)
,

with g(x) = k x
1−x . When estimating the order-k moment

by its empirical counterpart µ̂k = 1
n

∑n
i=1 x

k
i , we see that

E[µ̂k] = µk and E[µ̂2
r] = (nµ2k + n(n− 1)µ2

k)n−2, so that

Var[µ̂2
k] =

µ2k − µ2
k

n
=

w2kIDXk
2

n(IDX + 2k)(IDX + k)2
.

Therefore, the distribution of µ̂k
wk

is asymptotically normal
with

µ̂k
wk
∼ N

(
IDX

IDX + k
;

IDXk
2

n(IDX + 2k)(IDX + k)2

)
.

According to [29, Th. 6a2.9], if x ∼ N (µ;σ2n−1) asymp-
totically, then g(x) ∼ N (g(µ);σ2n−1g′(µ)2), where g′ is the
first-order derivative of g. Therefore, asymptotically

ÎDX ∼ N
(

IDX;
ID2

X

n

(
1 +

(k/IDX)2

ID2
X(1 + 2k/IDX)

))
.

This variance is monotonically increasing in k/IDX, which
indicates that we should use moments of small order k.
When k/IDX tends to zero, the variance converges to ID2

X/n,
the variance of the maximum-likelihood estimator (see Sec-
tion 4.1). Note that an upper bound on IDX implies that the
variance is bounded. In this case we can derive confidence
intervals similar to Section 4.1.

4.3 Probability-Weighted Moments
General probability-weighted moments are defined as

mk,l,m = E
[
FX(x)k(1− FX(x))lXm

]
.

We restrict here our attention to a subfamily: for any choice
of k ∈ N, νk is defined as

νk , E
[
FX(x)kX

]
=

∫ w

x=0

FX(x)kxfX(x) dx

=
IDX w

IDX k + IDX + 1
;

solving for the intrinsic dimension yields

IDX =
νk

w − νk(k + 1)
= h

(νk
w

)
,

where h(x) = x
1−(k+1)x

.

4.4 Estimation Using Regularly Varying Func-
tions

In this section we introduce an ad hoc estimator for the
intrinsic dimensionality based on the characterization of dis-
tribution tails as regularly varying functions (as discussed in

Section 3). Consider the empirical distribution function F̂X,
defined as

F̂X(x) =
1

n

∑n

j=1
Jxj < xK ,

where JϕK refers to the Iverson bracket which evaluates to
1 if ϕ is true, and 0 otherwise. We propose the following
estimator for the index κ of FX.

Definition 4. Let X be an absolutely continuous random
distance variable restricted to [0, w). The local intrinsic di-
mension IDX can be estimated as

ÎDX = κ̂ =

∑J
j=1 αj ln

[
F̂X((1 + τjδn)xn)/F̂X(xn)

]
∑J
j=1 αj ln(1 + τjδn)

,

under the assumption that xn, δn → 0 as n → ∞, where
(αj)1≤j≤J and (τj)1≤j≤J are sequences.

We will refer to this family of estimators as RV, for ‘reg-
ularly varying’. Note that since RV estimators involve only
the products τjδn for 1 ≤ j ≤ J , we may assume without
loss of generality that τ1 + · · ·+ τJ = 1. The estimators are
based on the observation that, for all 1 ≤ j ≤ J ,
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ln [FX((1 + τjδn)xn)/FX(xn)]

= κ ln(1 + τjδn) + ln [`X((1 + τjδn)xn)/`X(xn)]

' κ ln(1 + τjδn).

The RV family covers several of the known local estima-
tors of intrinsic dimensionality. For the parameter choices
J = 1 and ε = τδn, the RV estimator reduces to the GED
formulation proposed in [19]:

ÎDX =
ln
[
F̂X((1 + ε)xn)/F̂X(xn)

]
ln(1 + ε)

,

By setting ε = 1, Karger & Ruhl’s expansion dimension
is obtained, while by setting xn as the distance to the k-
nearest neighbor and ε such as (1 + ε)xn as the distance to
the nearest neighbor, we find a special case of the MiND
family (MiNDml1) [31].

Alternatively, by setting J = n, αi = 1 for all i ∈ [1..n],
and choosing the vector τ such that 1 + τiδn = xi

xn
, the RV

estimator becomes

ÎDX =

∑n
j=1 ln [j/n]∑n
j=1 ln [xj/xn]

≈ ln
√

2πn− n∑n
j=1 ln [xj/xn]

As n→∞, this converges to the MLE (Hill) estimator pre-
sented in Section 4.1, with w = xn.

We now turn our attention to an analysis of the variation
of RV estimators. First, we introduce an auxiliary function
which drives the speed of convergence of the estimator pro-
posed in Definition 4. For x ∈ R let εX(x) be defined as

εX(x) ,
x`′X(x)

`X(x)
.

In [11, 12], the auxiliary function is assumed to be regu-
larly varying, and the estimation of the corresponding reg-
ular variation index is addressed. Within this article, so
as to prove the following results, we limit ourselves to the
assumption that εX is ultimately non-increasing.

Theorem 4. Let X be a random distance variable over
[0, w) with distribution function FX(x) = xκ`X(1/x), and

let τmax , max1≤j≤J τj. Furthermore, let δn, xn → 0 so that

nFX(xn)δn →∞ and
√
nFX(xn)δnεX(1/[(1+τmaxδn)xn])→

0 as n approaches infinity. If the auxiliary function εX is

ultimately non-increasing, then
√
nFX(xn)δn ·[IDX − ÎDX]

converges to a centered Gaussian with variance

IDXVα,τ = IDX
α>Sα

(α>τ)2
,

where Sa,b = (|τa| ∧ |τb|)Jτaτb > 0K for (a, b) ∈ {1, . . . , J}2.
(A ∧B denotes the minimum of A and B.)

Note that the requirement nFX(xn)δn →∞ can be inter-
preted as a necessary and sufficient condition for the almost
sure presence of at least one distance sample in the interval
[xn, (1 + τjδn)xn)]. In addition, the condition√

nFX(xn)δnεX(1/[rn(1 + τmaxδn)])→ 0

enforces that the approximation bias εX(1/[(1 + δn)xn]) is
negligible compared to the standard deviation of the esti-
mate, 1/

√
nFX(xn)δn. We continue the analysis by propos-

ing choices of α that minimize the variance in Theorem 4.

Lemma 2. The weight vector α = (α1, . . . , αJ)> mini-
mizing Vα,τ is proportional to α0 = S−1τ = (1, 0, . . . , 0)>,
and the associated optimal variance is given by V0(τ) =(
τ>S−1τ

)−1
.

Proof. Omitted due to space limitations.

For the case J = 1, we see that τ = (1)> and V0(1) = 1.
This indicates that the GED minimizes the variance of es-
timation. However, different choices can be made regarding
the weight vector τ and regarding the criterion to use in or-
der to optimize the choice of α. Minimizing variance is one
choice explored in this paper, but other criteria can be used.
In general, however, the following confidence interval holds
for RV estimators:

Lemma 3. Let β ∈ (0, 1), and assume that the assump-
tions of Theorem 4 hold with α = S−1τ . Let uβ = Φ−1((1 +
β)/2), where Φ is the cumulative distribution function of the
standard Gaussian distribution. Then

IDX ± uβ
(
nδnV0(τ)ÎDXF̂X(xn)

)−1/2

are the boundaries of the asymptotic confidence interval of

level β for ÎDX.

Proof. Lemma 3 is a direct consequence of the asymp-
totic distribution established in Theorem 4 and the conver-
gence of F̂X(xn) to FX(xn) as n→∞.

5. EXPERIMENTAL FRAMEWORK

5.1 Methods
The methods used in this study include MLE, MoM,

PWM, and RV. The RV estimators are evaluated for the
choices J = 1 and J = 2, as follows:

ÎDRV =

{
lnn−lnbn/2c

ln xn−ln xbn/2c
, if J = 1

lnbn/jc−(p−1) lnbi/jc
ln xn/xj+(p−1) ln xi/xj

, if J = 2,

where p = (xi − 2xj + xn)/(xn − xj), i = bn/2c, and j =
b3n/4c. Note that the estimator RV for J = 1 is a form
of generalized expansion dimension (GED) [19]. For every
dataset, we report the average of ID estimates across all the
points in the dataset. All estimators in our study can be
computed in time linear in the number of sample points.

Method Parameters

PCA threshold = 0.025
kNNG1 k = 100, γ = 1, M = 1, N = 10
kNNG2 k = 100, γ = 1, M = 10, N = 1
MiNDml1 None
MiNDmli k = 100

Table 1: Parameter choices used in the experiments.

Our experimental framework includes several state-of-the-
art intrinsic dimensionality measures. The global estima-
tors consist of a projection method (PCA), fractal methods
(CD [6], Hein [15], Takens [34]), and graph-based methods
(kNNG1, kNNG2 [8]). The local distance-based estimators
are MiNDml1 and MiNDmli [31]. Table 1 summarizes the
parameter choices for every method, except for the fractal
methods, which do not involve any parameter.

The MiND variants makes more restrictive assumptions
than our methods: they assume the data to be uniformly dis-
tributed on a hypersphere, with a locally isometric smooth
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Figure 1: Comparison of the mean and standard deviation of LID estimates provided by MLE, MoM and RV (for J = 1
and J = 2) on increasingly large samples drawn from artificially-generated distance distributions. The results cover target
dimensionality values of 2, 8, 32, and 128. The values are marked in the corresponding plots.

map between the hypersphere and the representational space.
MiND uses only the two extreme samples (smallest and
largest), and requires knowledge of the dimension of the
space (D). In contrast, our approach assumes only that the
nearest neighbor distances are in the lower tail of the dis-
tance distribution, where EVT estimation can be performed.

5.2 Artificial Distance Distributions
In the following we propose a set of experiments concern-

ing artificial data, and describe the method employed for the
generation of test data.

First, consider a point P drawn uniformly at random from
within the m-dimensional unit sphere, for some choice of
m ∈ N. According to the method of normal variates, we
define P = Z1/mY‖Y‖−1, where Z is uniformly distributed
on [0, 1], and Y is a random vector in Rm whose coefficients
follow the standard normal distribution. The distance of
P, with respect to our choice of reference point at location
0 ∈ Rm, is distributed as follows.

X =
‖Z1/mY‖
‖Y‖ = Z1/m.

Note that, by measuring LID purely based on distance values
with respect to a reference point, the model does not require
that the data have an underlying spatial representation. As
such, non-integer values of m ∈ R can be selected for the
generation of distances, if desired.

For choices of m ∈ {2, 8, 32, 128}, we draw 100 indepen-
dent sequences of sample distance values from the distribu-
tion described above, and record the estimates produced by
each of our methods for sample sizes n between 10 and 104.

5.3 Artificial Data
The data sets used in our experiments have been proposed

in [31]. They consist of 15 manifolds of various stuctures
and intrinsic dimensionalities (d) represented in spaces of
different dimensions (D). They are summarized in Table 2.

These datasets were generated in different sizes (103, 104,
and 105 points) in order to evaluate the effect of the num-

Manifold d D Description

1 10 11 Uniformly sampled sphere.
2 3 5 Affine space.
3 4 6 Concentrated figure

confusable with a 3d one.
4 4 8 Non-linear manifold.
5 2 3 2-d Helix
6 6 36 Non-linear manifold.
7 2 3 Swiss-Roll.
8 12 72 Non-linear manifold.
9 20 20 Affine space.

10a 10 11 Uniformly sampled hypercube.
10b 17 18 Uniformly sampled hypercube.
10c 24 25 Uniformly sampled hypercube.
11 2 3 Möbius band 10-times twisted.
12 20 20 Isotropic multivariate Gaussian.
13 1 13 Curve.

Table 2: Artificial datasets used in the experiments.

ber of points on the quality of the different estimators. For
each dataset and for each of the three sizes, we average the
estimates over 20 instances.

In order to evaluate the robustness of the estimators, we
also prepared versions of these datasets with noise added.
For each attribute f , we added normally-distributed noise
with mean equal to zero and standard deviation σn = p · σf
where σf is the standard deviation of the attribute itself,
and p ∈ {0.01, 0.04, 0.16, 0.64}. For attributes with σf = 0,
the noise was generated with standard deviation σn = p ·σ∗f
where σ∗f is the minimum of the nonzero standard deviations
over all attributes.

5.4 Real Data
Not only can a reliable estimation of ID greatly benefit the

practical performance of many applications, it also serves as
a characterization of high-dimensional data sets and the po-
tential problems associated with their use in practice. To
this end, we investigate the distribution of LID estimates on
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Figure 2: Plots of the distribution of LID values across 104 distinct query locations for each data set. The LID values were
obtained using the MLE estimator on the size-1000 neighborhoods of the individual reference points.
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Figure 3: Histograms of LID values across 104 distinct query locations for each data set, obtained using the MLE estimator
on the size-1000 neighborhoods of the individual reference points.

the following data sets, each taken from a real-world appli-
cation scenario.

The ALOI (Amsterdam Library of Object Images) data
set contains a total of 110250 color photos of 1000 differ-
ent objects taken from varying viewpoints under various il-
lumination conditions. Each image is described by a 641-
dimensional vector of color and texture features [3].

The MNIST database [27] contains of 70000 recordings of
handwritten digits. The images have been normalized and
discretized to a 28× 28-pixel grid. The gray-scale values of
the resulting 784 pixels are used to form the feature vectors.

The ANN SIFT1B data set consists of 128-dimensional
SIFT descriptors extracted from a collection of ∼ 109 im-
ages. This set has been created for the evaluation of nearest-
neighbor search strategies at very large scales [23].

For each data set, we estimate LID with respect to 104 dis-
tinct reference points, based on the distribution of distances
to their respective 103-nearest neighbors. For ANN SIFT1B
we use a selection of 104 query points that is provided with
the data. In the case of ALOI and MNIST, we computed
distance samples with respect to 104 points selected uni-
formly at random.

6. EXPERIMENTAL RESULTS

6.1 Artificial Distance Distributions
We begin our experimental study with an assessment —

in terms of bias, variance, and convergence — of the ability
of each estimator to identify the ID of a sample of distance
values generated according to different choices of target ID.
Note that for these trials, the distributional model asserted
in Lemma 1 holds everywhere on the range [0, w) by con-
struction (with w = 1).

Fig. 1 shows the behavior of MLE, MoM, and RV (for
choices of J = 1 and J = 2). The convergence to the tar-
get ID value observed in every case empirically confirms the
consistency of these estimators. Likewise, PWM is consis-

tent however, one should beware of PWM’s susceptibility
to the effects of numerical instability.

We also note that the RV estimator with J = 1 (GED)
— which asymptotically minimizes variance according to
Lemma 2 — is not the choice that minimizes variance when
the number of samples is limited. Faster initial convergence
favors the choice of MLE and MoM for applications where
the number of available query-to-neighbor distances is lim-
ited, or where time complexity is an issue.

6.2 Artificial Data
In Tables 3 and 4, due to space limitations, we present

only a representative selection of the experimental results,
averaged over 20 runs each. It should be noted that as PCA
and MiNDmli estimates are restricted to integer values, their
bias is lower for examples having integer ground-truth intrin-
sic dimension, especially when this dimensionality is small.
Also, unlike the other estimators tested, MiND estimators
also require that an upper bound on the ID be supplied
(set to D in these experiments). PCA requires a threshold
parameter to be supplied, the value of which can greatly
influence the estimation.

The experimental results indicate that local estimators
tend to over-estimate dimensionality in the case of non-linear
manifolds (sets m3, m4, m5, m6, m7, m8, m11 and m13) and
to under-estimate it in the case of linear manifolds (sets m1,
m2, m9, m10a, m10b, m10c and m12). For highly non-linear
manifolds, such as the Swiss Roll (m7), global estimators
have difficulty in identifying the intrinsic dimension. The
experimental results with higher sampling rates confirm the
reduction in bias that would be expected with smaller k-
nearest-neighbor distances, as the local manifold structure
more closely approximates the tangent space.

To show the effects of noise on the estimators, we display
in Tables 5, 6 and 7 for each method the deviation of
every estimate in the presence of noise as a proportion of
the estimate obtained in the absence of noise. On the one
hand, we note that global methods, k-NNG in particular, are
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Dataset d D IDMLE IDMoM IDPWM IDGED IDRVE MiNDml1 MiNDmli CD Hein Takens kNNG1 kNNG2 PCA
m1 10 11 8.07 8.08 8.14 7.91 7.79 9.50 8.95 9.24 5.35 9.44 7.96 7.02 11.00
m2 3 5 2.67 2.67 2.68 2.65 2.60 2.94 3.00 2.87 2.75 2.91 2.53 2.52 3.00
m3 4 6 3.56 3.56 3.59 3.55 3.49 3.88 4.00 3.63 3.70 3.66 4.00 2.88 5.30
m7 2 3 2.49 2.80 3.04 3.22 3.12 2.00 2.00 1.95 1.90 1.95 3.10 2.86 3.00
m8 12 72 12.29 12.33 12.51 11.97 11.79 13.49 13.00 11.00 3.60 11.85 14.28 12.56 24.00
m9 20 20 12.39 12.40 12.50 11.96 11.79 15.03 13.50 12.84 4.30 14.68 19.68 10.84 20.00

m10a 10 11 7.39 7.40 7.47 7.28 7.16 8.50 8.00 8.42 8.15 8.45 10.69 6.65 10.00
m10c 24 25 14.05 14.07 14.22 13.52 13.32 17.69 15.35 16.82 6.05 16.90 17.31 29.77 24.00
m11 2 3 2.49 2.74 2.94 3.05 2.97 2.01 2.00 1.99 2.70 2.00 2.83 2.59 3.00
m12 20 20 12.48 12.46 12.43 11.85 11.67 16.79 14.00 13.69 3.70 13.64 11.71 5.13 20.00

Table 3: ID estimates for 1000 points.

Dataset d D IDMLE IDMoM IDPWM IDGED IDRVE MiNDml1 MiNDmli CD Hein Takens kNNG1 kNNG2 PCA
m1 10 11 9.04 9.10 9.32 9.06 8.92 9.61 9.00 9.56 8.95 9.59 9.20 9.87 11.00
m2 3 5 2.88 2.90 2.94 2.90 2.85 2.96 3.00 3.08 3.55 2.98 2.77 2.44 3.00
m3 4 6 3.86 3.90 3.97 3.92 3.85 3.92 4.00 3.75 3.90 3.76 3.94 3.94 5.05
m7 2 3 1.96 1.99 2.02 1.99 1.95 1.99 2.00 1.97 1.95 1.98 1.83 1.83 3.00
m8 12 72 13.72 13.86 14.50 13.91 13.69 12.91 14.00 11.95 8.10 11.92 14.08 14.08 24.00
m9 20 20 14.47 14.56 15.08 14.41 14.18 15.95 15.00 15.69 2.65 15.74 10.11 10.11 20.00

m10a 10 11 8.20 8.25 8.43 8.21 8.08 8.86 8.00 8.87 9.10 8.92 6.55 6.55 10.00
m10c 24 25 16.66 16.77 17.45 16.54 16.28 18.50 17.00 18.08 10.90 18.13 15.00 15.00 24.00
m11 2 3 1.99 2.03 2.06 2.04 2.00 1.99 2.00 1.99 2.00 2.00 1.84 1.84 3.00
m12 20 20 15.46 15.54 16.03 15.23 15.00 17.74 16.00 15.04 3.70 15.00 37.63 37.63 20.00

Table 4: Dimensionality estimates for 10000 points.

Dataset d D IDMLE IDMoM IDPWM IDGED IDRVE MiNDml1 MiNDmli CD Hein Takens kNNG1 kNNG2 PCA
m1 10 11 -10.07 -10.55 -11.80 -11.81 -11.88 -1.56 -2.78 -11.82 -38.55 -12.10 -62.17 -64.74 -22.73
m2 3 5 2.43 -1.03 -3.06 -3.10 -3.51 36.49 0.00 12.01 -18.31 23.15 16.97 32.79 -33.33
m3 4 6 -30.83 -32.05 -33.25 -33.16 -33.25 -23.47 -25.00 -22.13 -41.03 -22.34 -35.79 -35.79 -60.40
m7 2 3 -8.67 -14.57 -16.34 -15.58 -15.90 34.17 0.00 14.21 10.26 9.60 -44.81 -44.81 -66.67
m8 12 72 44.17 43.00 39.79 35.44 35.65 115.49 60.71 86.53 25.93 85.99 93.68 93.68 95.21
m9 20 20 -21.77 -22.25 -24.34 -24.01 -23.98 -9.97 -17.00 -22.12 167.92 -22.62 157.17 157.17 -31.75

m10a 10 11 21.46 21.45 21.59 20.83 20.92 22.12 25.00 9.02 -64.29 8.07 338.17 338.17 10.00
m10c 24 25 7.98 7.87 7.45 6.83 6.88 14.76 11.76 -2.99 -74.31 -3.75 -177.73 -177.73 4.17
m11 2 3 32.16 29.56 28.64 28.43 28.50 47.74 0.00 41.21 10.00 40.50 195.65 195.65 -35.00
m12 20 20 -22.83 -23.10 -24.52 -23.90 -23.93 -16.52 -19.69 -16.22 13.51 -16.27 -84.45 -84.45 -26.00

Table 5: Deviation of dimensionality estimates for 10000 manifold points with added noise (p=0.01).

Dataset d D IDMLE IDMoM IDPWM IDGED IDRVE MiNDml1 MiNDmli CD Hein Takens kNNG1 kNNG2 PCA
m1 10 11 -10.18 -10.66 -11.91 -11.92 -12.00 -1.87 -2.78 -17.05 -63.69 -12.20 -341.09 -324.72 -23.18
m2 3 5 2.43 -1.03 -3.06 -3.45 -3.51 37.16 0.00 18.83 -9.86 22.82 -7.94 4.51 -33.33
m3 4 6 -30.57 -32.05 -33.25 -33.16 -33.25 -23.47 -25.00 -26.40 -42.31 -22.07 -31.47 -31.47 -60.40
m7 2 3 -8.67 -14.57 -16.83 -15.58 -15.90 34.17 0.00 15.74 7.69 11.62 -38.25 -38.25 -66.67
m8 12 72 44.24 43.07 39.86 35.59 35.72 116.42 60.71 86.69 46.30 86.16 9.52 9.52 95.21
m9 20 20 -21.77 -22.25 -24.27 -24.01 -23.91 -10.22 -17.33 -22.31 132.08 -22.74 15.73 15.73 -31.75

m10a 10 11 21.46 21.45 21.59 20.83 20.79 21.78 25.00 3.04 -48.35 7.96 25.65 25.65 10.00
m10c 24 25 8.04 7.87 7.51 6.83 6.94 14.49 11.76 -7.85 -59.17 -3.53 -18.80 -18.80 4.17
m11 2 3 32.16 29.56 28.64 28.43 28.50 46.73 0.00 40.20 37.50 39.00 255.43 255.43 -35.00
m12 20 20 -22.83 -23.10 -24.52 -23.90 -23.93 -16.18 -19.37 -16.16 33.78 -16.33 -174.25 -174.25 -26.00

Table 6: Deviation of dimensionality estimates for 10000 manifold points with added noise (p=0.04).

Dataset d D IDMLE IDMoM IDPWM IDGED IDRVE MiNDml1 MiNDmli CD Hein Takens kNNG1 kNNG2 PCA
m1 10 11 -10.18 -10.66 -11.80 -11.81 -11.88 -1.77 -2.78 -16.95 -35.75 -12.10 -37.61 -41.84 -22.73
m2 3 5 2.43 -1.03 -3.06 -3.10 -3.51 37.16 0.00 19.48 -18.31 23.49 -24.19 -13.93 -33.33
m3 4 6 -30.83 -32.05 -33.25 -33.42 -33.25 -22.96 -25.00 -31.20 -35.90 -22.34 -35.03 -35.03 -60.40
m7 2 3 -8.67 -14.57 -16.34 -15.58 -15.90 34.17 0.00 19.29 18.46 15.15 4.37 4.37 -66.67
m8 12 72 44.17 43.00 39.79 35.44 35.57 115.72 59.64 85.94 -11.11 85.65 -11.93 -11.93 95.21
m9 20 20 -21.77 -22.25 -24.27 -24.01 -23.98 -9.66 -17.00 -22.12 100.00 -22.68 -907.22 -907.22 -31.75

m10a 10 11 21.46 21.45 21.59 20.83 20.79 21.22 25.00 9.02 -39.56 8.18 34.35 34.35 10.00
m10c 24 25 8.04 7.93 7.51 6.89 6.88 14.43 11.76 -2.71 -30.73 -3.42 -610.20 -610.20 4.17
m11 2 3 31.66 29.06 28.64 28.43 28.50 46.73 0.00 27.64 10.00 39.00 3811.41 3811.41 -35.00
m12 20 20 -22.83 -23.17 -24.52 -23.90 -23.93 -16.52 -19.69 -16.16 6.76 -16.27 -835.80 -835.80 -26.00

Table 7: Deviation of dimensionality estimates for 10000 manifold points with added noise (p=0.16).

36



 0

 20000

 40000

 60000

 80000

 0  200  400  600  800  1000

N
e
ig

h
b

o
r 

D
is

ta
n
ce

Neighbor Rank

Distribution of Neighbor Distances

A B C D E F G

(a) Illustration of the distribution of k-nearest neighbor distances
for k ∈ [1, 1000] with respect to 7 points of interest.

 0

 5

 10

 15

 20

 25

 30

 35

 200  400  600  800  1000

E
st

im
a
te

d
 I
D

Neighborhood Size

Distribution of Neighborhood ID

A B C D E F G

(b) Distribution of LID estimates based on k-nearest neighbor sets
for k ∈ [10, 1000] with respect to 7 points of interest.

Figure 4: Distribution of IDMLE estimates and distance values across neighborhoods around the points of interest.

significantly affected by noise: their estimates diverge very
quickly as noise is being introduced. On the other hand,
the local estimators display more resistance to noise in the
case of non-linear manifolds; among the local estimators, our
EVT estimators tend to outperform the MiND variants.

We note that the additive noise considered in this experi-
ment does not drastically impact the intrinsic dimensional-
ity in the case of hypercubes. (sets m10a, m10b and m10c).
That explains why PCA appears resistant to noise for the
sets m10a, m10b and m10c.

6.3 Real Data
Based on our experiments on synthetic data, we expect

the performance of our proposed estimators to be largely
in agreement with one another. Accordingly, for clarity of
presentation, for the experimentation on real data, we show
results only for the MLE estimator.

Fig. 2 illustrates the distribution of LID estimates across
reference points for all three data sets. The scatter plot
for the ANN SIFT1B data set furthermore contains several
points of interest annotated with their LID values, corre-
sponding to objects of interest which we discuss later. First,
we clearly observe differences in the location of the distri-
bution of LID values among the three data sets; for exam-
ple, the mean value and standard deviation of the LID esti-
mates for ALOI are considerably lower than those obtained
for ANN SIFT1B. More specifically, we observe mean val-
ues of µALOI ≈ 2.2, µMNIST ≈ 6.3, and µANN SIFT1B ≈ 12.3,
with the corresponding standard deviations of σALOI ≈ 1.9,
σMNIST ≈ 2.7, and σANN SIFT1B ≈ 3.0. It should be noted
that the measured ID within the neighborhoods that were
tested is far smaller than the dimension of the full feature
spaces. By plotting the same data as histograms in Fig. 3,
we can furthermore see that the individual distributions of
LID values differ in kurtosis and skewness as well.

The most striking difference between the individual points
of interest are the distances to their respective k-nearest
neighbors. Fig. 4a displays for each point of interest the
specific distribution of neighbor-distances for all values of k
between 1 and 1000. Interestingly, the ID measured at the
points of interest appears to be associated with other prop-
erties of the respective objects. For example, distribution of
neighbor-distances for objects with high corresponding di-
mensionality (D, E and F ) indicate that these points are

in some sense outliers. On the other hand, despite their
distance distributions being quite dissimilar, the LID values
measured at A, B, and C are nearly identical.

7. CONCLUSION
Our experimental results on synthetic data show that the

estimation of LID stabilizes for sample sizes on the order
of 100. However, for Theorem 2 to be applicable, one must
set a sufficiently small threshold on the lower tail of the
distribution, which may severely limit the number of data
objects falling within the tail. Although there is a conflict
between the accuracy of the estimator and the validity of
the model, this conflict is resolved as the size of the dataset
scales upward; it is in precisely such situations where the
applications of ID have the most impact.

Estimates of local ID constitute a measure of the complex-
ity of data. Along with other indicators such as contrast [33],
LID could give researchers and practitioners more insight
into the nature of their data, and therefore help them im-
prove the efficiency and efficacy of their applications. As
a tool for guiding learning processes, the proposed estima-
tors could serve in many ways. Data collected during the
retrieval processes could be automatically filtered out as
noise, whenever they are associated with an unusually high
ID value. In this way, the quality of query results may be
enhanced as well.

The performance of content-based retrieval systems is usu-
ally assessed in terms of the precision and recall of queries on
a ground truth data set. However, in high-dimensional set-
tings it is often the case that some points are much less likely
to appear in a query result than others. Unlike LID, conven-
tional measures of complexity or performance do not account
for this difficulty. LID has therefore the potential to aid in
the design of fair benchmarks that truly reflect the power
of retrieval systems, according to a sound, mathematically-
grounded procedure.
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