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former PhD students.

1 Myriam Garrido (Researcher, INRA)

Extreme value theory is a branch of statistics dealing with the extreme deviations from
the bulk of probability distributions. More specifically, it focuses on the limiting distri-
butions for the minimum or the maximum of a large collection of random observations
from the same arbitrary (unknown) distribution. Let x1 < · · · < xn denote n ordered
observations from a random variable X representing some quantity of interest. A pn-
quantile of X is the value qpn such that the probability that X is greater than qpn is pn,
i.e. P (X > qpn) = pn. When pn < 1/n, such a quantile is said to be extreme since it is
usually greater than the maximum observation xn. To estimate such extreme quantiles
requires therefore specific methods to extrapolate information beyond the observed
values of X. Those methods are based on Extreme value theory. This kind of issues ap-
peared in hydrology. One objective was to assess risk for highly unusual events, such as
100-year floods, starting from flows measured over 50 years. The decay of the survival
function P (X > x) = 1 − F (x), where F denotes the cumulative distribution function
associated to X, is driven by a real parameter called the extreme-value index γ. We
proposed Bayesian estimators of γ, see [1]. The choice of a tail model is an important
issue, we proposed a goodness-of-fit test [2, 3], see [4] for its implementation.

2 Laurent Gardes (Professor, Strasbourg)

We proposed several estimators for the parameter γ, see [5, 6, 7]. When this parameter
is positive, the survival function is said to be heavy-tailed, when this parameter is
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negative, the survival function vanishes above its right end point. If the parameter
γ is zero, then the survival function decreases to zero at an exponential rate. An
important part of our work is dedicated to the study of such distributions. For instance,
in reliability, the distributions of interest are included in a semi-parametric family
whose tails are decreasing exponentially fast. These so-called Weibull tail-distributions
encompass a variety of light-tailed distributions, such as Weibull, Gaussian, gamma
and logistic distributions. Let us recall that a cumulative distribution function F has
a Weibull tail if it satisfies the following property: There exists θ > 0 such that for all
λ > 0,

lim
y→∞

log(1 − F (λy))

log(1 − F (y))
= λ1/θ.

Dedicated methods have been proposed to estimate the Weibull tail-coefficient θ since
the relevant information is only contained in the extreme upper part of the sample.
More specifically, the estimators I proposed are based on the log-spacings between the
upper order statistics [8, 9, 10, 11]. See also [12, 13, 14, 15] for the estimation of
the associated extreme quantiles. We also addressed the estimation of extreme level
curves. This problem is equivalent to estimating quantiles when covariate informa-
tion is available and when their order converges to one as the sample size increases.
We show that, under some conditions, these so-called ”extreme conditional quantiles”
can still be estimated through a kernel estimator of the conditional survival function.
Sufficient conditions on the rate of convergence of their order to one are provided to ob-
tain asymptotically Gaussian distributed estimators. Making use of this result, some
estimators of the extreme-value parameters are introduced and extreme conditional
quantiles estimators are deduced [16, 17, 18, 19, 20, 21, 22, 23, 24]. Finally, the tail
copula is widely used to describe the dependence in the tail of multivariate distribu-
tions. In some situations such as risk management, the dependence structure may be
linked with some covariate. The tail copula thus depends on this covariate and is re-
ferred to as the conditional tail copula. The aim of [18] is to propose a nonparametric
estimator of the conditional tail copula and to establish its asymptotic normality. In
the multivariate context, we focus on extreme geometric quantiles [25]. Their asymp-
totics are established, both in direction and magnitude, under suitable integrability
conditions, when the norm of the associated index vector tends to one. Applications
of extreme-value theory are found in hydrology [26, 27, 28] and more generally in risk
estimation [29].

Sliced Inverse Regression (SIR) is an effective method for dimension reduction in
high-dimensional regression problems. The original method, however, requires the
inversion of the predictors covariance matrix. In case of collinearity between these
predictors or small sample sizes compared to the dimension, the inversion is not possible
and a regularization technique has to be used. The proposed approach is based on a
Fisher Lecture given by R.D. Cook where it is shown that SIR axes can be interpreted
as solutions of an inverse regression problem. A Gaussian prior is introduced on the
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distribution on the unknown parameters of the inverse regression problem in order to
regularize their estimation [30]. We showed that some existing SIR regularizations
can enter this framework, which permits a global understanding of these methods [31].
Three new priors are proposed leading to new regularizations of the SIR method. A
comparison on simulated data as well as an application to the estimation of Mars
surface physical properties from hyperspectral images are provided [32].

3 Charles Bouveyron (Professor, Paris)

Clustering in high-dimensional spaces is a recurrent problem in many fields of science,
for example in image analysis. Indeed, the data used in image analysis are often
high-dimensional and this penalizes clustering methods. In this paper, we focus on
model-based clustering method. Popular clustering methods are based on the Gaussian
mixture model and show a disappointing behavior when the size of the dataset is too
small compared to the number of parameters to estimate. This well-known phenomenon
is called curse of dimensionality.

To avoid overfitting, it is necessary to find a balance between the number of parame-
ters to estimate and the generality of the model. I proposed a Gaussian mixture model
which takes into account the specific subspace in which each cluster is located and
therefore limits the number of parameters to estimate. The Expectation-Maximization
algorithm is used for parameter estimation and the intrinsic dimension of each group
is determined automatically either with the scree-test of Cattell or by maximum like-
lihood [33]. This allows to derive a robust clustering method in high-dimensional
spaces, called High Dimensional Data Clustering (HDDC) [34]. The method has also
been adapted to supervised classification (HDDA – High Dimensional Data Analy-
sis) [35, 36] and to the label noise situation [37]. In order to further limit the number
of parameters, it is possible to make additional assumptions on the model. We can for
example assume that classes are spherical in their subspaces or fix some parameters
to be common between classes. Finally, HDDA and HDDC are evaluated and com-
pared to standard clustering or classification methods on artificial and real datasets.
These approaches are shown to outperform existing clustering methods [38]. The meth-
ods are implemented in a R package [39, 40] which is freely available on the CRAN
archive. Finally, the extension to the classification of non necessarily quantitative data
is investigated in [41, 42].

4 Alexandre Lekina (Engineer, Lille)

The PhD thesis of Alexandre Lekina was co-advised with Laurent Gardes, See Section 2
for a description of the associated publications [21, 22].
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5 El-hadji Deme (Assistant Professor, Sénégal)

We focussed on the estimation of the extreme-value index [5] and of some risk measures
(Conditional Tail Expectation and Proportional Hazard Premium) in case of heavy-
tailed distributions [43, 44].

6 Jonathan Elmethni (Assistant Professor, Paris)

The PhD thesis of Jonathan Elmethni was co-advised with Laurent Gardes, See Sec-
tion 2 for a description of the associated publications [29, 27, 13].

7 Gilles Stupfler (Assistant Professor, UK)

A part of our work focussed on the case where the parameter γ is negative and thus
the survival function vanishes above its right end point. Some estimation methods for
the right end point have been proposed in [45, 46]. When a covariate is available, the
right end point is a function referred to as the frontier. The estimation of the frontier
is addressed in [47, 48].

A popular way to study the tail of a distribution function is to consider its high
or extreme quantiles. While this is a standard procedure for univariate distributions,
it is harder for multivariate ones, primarily because there is no universally accepted
definition of what a multivariate quantile should be. In [25, 49], we focus on extreme
geometric quantiles. Their asymptotics are established, both in direction and magni-
tude.

8 Gildas Mazo (Postdoc, Belgium)

A bivariate copula defined on the unit square [0, 1]2 is a bivariate cumulative dis-
tribution function (cdf) with univariate uniform margins. Sklar’s Theorem states
that any bivariate distribution with cdf H and marginal cdf F and G can be written
H(x, y) = C(F (x), G(y)), where C is a copula. This result justifies the use of copulas
for building bivariate distributions. While there exist various families of bivariate cop-
ulas, the construction of flexible and yet tractable copulas suitable for high-dimensional
applications is much more challenging. This is even more true if one is concerned with
the analysis of extreme values. In [50, 51], we construct a class of one-factor copulas
and a family of extreme-value copulas well suited for high-dimensional applications
and exhibiting a good balance between tractability and flexibility. The inference for
these copulas is performed by using a least-squares estimator based on dependence
coefficients [52]. The modeling capabilities of the copulas are illustrated on simulated
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and real datasets. This class of copula is extended in [53]. In [54], we propose a
class of multivariate copulas based on products of transformed bivariate copulas. No
constraints on the parameters refrain the applicability of the proposed class. Further-
more the analytical forms of the copulas within this class allow to naturally associate
a graphical structure which helps to visualize the dependencies and to compute the
likelihood efficiently even in high dimension.

We also worked on the application to extreme-value methods to hydrology [55].
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