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(2) Université Joseph Fourier de Grenoble,
Laboratoire d’Etude des Transferts en Hydrologie et Environnement.

E-mail: Gilles.Molinie@hmg.inpg.fr
http://www.lthe.hmg.inpg.fr

This work is supported by the French Research Agency (ANR) through its VMC2007 program (Vulnérabilité: Milieux, Climats).
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1. Introduction

The problem.

• Estimation of extreme quantiles associated to a random variable Y .

• Some covariate x is recorded simultaneously with Y .

• The extreme quantile of Y given x depends on x, and is thus refered to as a conditional

extreme quantile.

Our approach: Combination of a nearest neighbor approach with extreme-value

methods.

Motivating application: Estimation of return periods associated to extreme rainfalls

as a function of the geographical location (x is a three-dimensional covariate involving the

longitude, latitude and altitude).
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Framework. E a metric space associated to a metric d.

•Model: The conditional tail quantile function of Y given x ∈ E is, for all α ∈ (0, 1],

q(α, x) = F←(1− α, x) = sup{y > 0, F (y, x) ≤ 1− α} = α−γ(x)ℓ(α−1, x),

where

◦ γ(x) is the conditional tail-index, an unknown positive function of the covariate x,

◦ for x fixed, ℓ(., x) is a slowly-varying function, i.e. for v > 0,

lim
y→∞

ℓ(vy, x)

ℓ(y, x)
= 1.

Thus, the conditional distribution of Y given x is heavy-tailed.

• Data: A sample (Y1, x1), . . . , (Yn, xn) iid from the above model where the design

points x1, . . . , xn are non random points in E.

Goals. For a given t ∈ E, estimate

• the conditional tail-index γ(t),

• the conditional extreme quantiles q(αn,t, t) where αn,t → 0 as n→∞.
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2. Nearest neighbor estimators ...

• Number of nearest neighbors: mn,t a positive sequence tending to ∞,

• Selected observations: {Zi, i = 1, . . . , mn,t} the response variables Yi associated

to the mn,t nearest covariates x⋆
i of t.

• Corresponding order statistics: Z1,mn,t
≤ . . . ≤ Zmn,t,mn,t

,

• Intermediate sequence: kn,t →∞ and kn,t/mn,t → 0,

• Conditional tail-index estimators: A weighted sum of the rescaled log-spacings

between the largest selected observations

γ̂n(t, a, λ) =

kn,t
∑

i=1

i log

(

Zmn,t−i+1,mn,t

Zmn,t−i,mn,t

)

p (i/kn,t, a, λ)

/ kn,t
∑

i=1

p (i/kn,t, a, λ)

• Conditional extreme quantile estimators: A Weissman type estimator

q̂(αn,t, t) = Zmn,t−kn,t+1,mn,t

(

kn,t

mn,tαn,t

)γ̂n(t,a,λ)
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... with log-gamma weights

For all s ∈ (0, 1], a ≥ 1, λ ∈ (0, 1].

p(s, a, λ) =
λ−a

Γ(a)
s1/λ−1(− log(s))a−1.
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3. Asymptotic results

Assumptions on the conditional distribution

• The slowly varying function ℓ(., t) is normalized, i.e. its Karamata representation

can be written as

ℓ(α−1, t) = c(t) exp

{

∫ α−1

1

∆(v, t)

v
dv

}

,

• The function |∆(., t)| is regularly varying with index ρ(t) < 0,

• The function |∆(., t)| is ultimately decreasing.

Controlling the regularity. The largest oscillation of the log-quantile function with

respect to its second variable is defined for all β ∈ (0, 1/2) as

ωn(β) = sup

{∣

∣

∣

∣

log

(

q(α, x)

q(α, x′)

)∣

∣

∣

∣

, α ∈ (β, 1− β) , (x, x′) ∈ {t, x⋆
1, . . . , x

⋆
mn,t
}2

}

.
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Asymptotic normality

Theorem. If, for some δ > 0, k
1/2
n,t ∆(mn,t/kn,t, t)→ ξ(t) ∈ R and k2

n,tωn(m
−(1+δ)
n,t )→ 0

then

k
1/2
n,t

(

γ̂n(t, a, λ)− γ(t)−∆

(

mn,t

kn,t
, t

)

AB(a, λ, ρ(t))

)

converges in distribution to a N
(

0, γ2(t)AV(a, λ)
)

random variable, with

AB(a, λ, ρ(t)) = (1− λρ(t))−a and AV(a, λ) =
Γ(2a− 1)

λΓ2(a)
(2− λ)1−2a.

If, moreover, αn,t < kn,t/mn,t then

k
1/2
n,t

log
(

kn,t

mn,tαn,t

)

(

log

(

q̂(αn,t, t)

q(αn,t, t)

)

− log

(

kn,t

mn,tαn,t

)

∆

(

mn,t

kn,t
, t

)

AB(a, λ, ρ(t))

)

has the same Gaussian limiting distribution.

7



Remark 1. If ℓ does not depend on the covariate, condition k2
n,tωn(m

−(1+δ)
n,t )→ 0

reduces to a regularity condition on the tail-index:

k2
n,t log(mn,t) sup

(x,x′)∈{t,x⋆
1,...,x

⋆
mn,t
}2
|γ(x)− γ(x′)| → 0 as n→∞.

Remark 2.

• The asymptotic variance is lower bounded: AV(a, λ) ≥ 1 for all a ≥ 1 and λ ∈ (0, 1].

• The asymptotic bias AB(a, λ, ρ(t)) is an increasing function of ρ(t).

Since the second-order parameter ρ(t) is unknown in practice, the comparison of

asymptotic bias associated to different log-gamma weights is difficult.

=⇒ Introduction of the mean-squared bias defined as:

MSB(a, λ) =

∫ 0

−∞

AB2(a, λ, ρ)dρ =
1

λ(2a− 1)
.
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4. Choice of log-gamma parameters

Nearest-neighbor Hill estimator: (a = λ = 1)

γ̂H

n(t) = γ̂n(t, 1, 1) =
1

kn,t

kn,t
∑

i=1

i log

(

Zmn,t−i+1,mn,t

Zmn,t−i,mn,t

)

.

Same expression as in Hill (1975). MSB(1, 1) = 1 and AV(1, 1) = 1 (optimal variance

estimator).

Nearest neighbor Zipf estimator: (a = 2 and λ = 1).

γ̂Z

n(t) = γ̂n(t, 2, 1) =

kn,t
∑

i=1

i log(kn,t/i) log

(

Zmn,t−i+1,mn,t

Zmn,t−i,mn,t

)

/ kn,t
∑

i=1

log(kn,t/i) .

Similar to the Zipf estimator proposed by Kratz et al. (1996) and Schultze et al. (1996).

MSB(2, 1) = 1/3 and AV(2, 1) = 2.
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Controlling the asymptotic mean-squared error.

• The asymptotic mean-squared error is defined as

AMSE(a, λ) = ∆2

(

mn,t

kn,t
, t

)

MSB(a, λ) +
γ2(t)AV(a, λ)

kn,t
,

but it cannot be evaluated since the function ∆ is unknown.

• Introducing π(a, λ) =MSB(a, λ)AV(a, λ), we obtain an upper bound

AMSE(a, λ) ≤
π(a, λ)

kn,t

{

ξ2(t) + γ2(t)(2amax − 1) + o(1)
}

,

for all λ ∈ (0, 1] and a ∈ [1, amax].

• Considering the log-gamma parameters defined as:

(aπ, λπ) = arg min
a,λ

π(a, λ),

yields a new estimator γ̂π
n(t, a, λ) = γ̂n(t, aπ, λπ) withMSB(aπ, λπ) ≈ 0.40 and

AV(aπ, λπ) ≈ 1.51.
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Optimal asymptotic variance estimators. The optimal asymptotic variance is

defined as the smallest variance that can be reached for a fixed bias:

OAV(b) = min
a,λ
AV(a, λ) under the constraintMSB(a, λ) = b.

X
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dashed lines: level curves of π = AV ×MSB,

points: positions of the estimators γ̂H

n (HILL),

γ̂Z

n (ZIPF) and γ̂π
n (PI).

Zipf estimator is not optimal. An estimator

with same bias (MSB = 1/3) and smaller

variance (AV ≈ 1.85) can be found in the log-

gamma family.
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5. An application to rainfall data

n = 264, 056 hourly rainfall observations at 142 stations in the Cévennes-Vivarais region

(southern part of France) during 7 years.

Y is the hourly rainfall,

x = (x1, x2, x3) is a three-

dimensional covariate such that

x1 is the longitude, x2 is the

latitude and x3 is the altitude.
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Selection of the hyperparameters.

• mn,t and kn,t are assumed to be independent of t, they are thus denoted by h and k

respectively.

• They are selected by minimizing dissimilarity measure between the estimators:

(k̂, m̂) = arg min
kn,t,mn,t

max
t∈S
D(γ̂H

n(t), γ̂
Z

n(t), γ̂
π
n(t))

with D(u1, u2, u3)
def
= max{|u1 − u2|, |u2 − u3|, |u3 − u1|} and where

S = {(x1,j, x2,j, x3,j), j = 1, . . . , 142} is the set of coordinates of the raingauge

stations.

• This heuristics is sometimes used in functional estimation and relies on the idea that,

for a properly chosen pair (k̂, m̂), all three estimates should approximatively give the

same tail index.

• This procedure yields m̂/n = 55% and k̂/m̂ = 5.5%.
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Estimated tail-index as a function of the altitude: γ̂H

n(· · · ), γ̂π
n(×××) and γ̂Z

n(• • •).
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The shapes of the three curves representing

the estimated tail index as a function of the

altitude are qualitatively the same.

The tail index is a decreasing function of

the altitude till x3 = 800 meters and is

constant for altitudes ranging from 800

and 1600 meters. This phenomena can be

interpreted since extreme hourly rainfalls

are more likely to occur in the plains than

in the mountains.
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Estimated tail-index γ̂π
n as a function of the longitude and latitude.
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Heaviest tails are obtained in the plains

(Rhône valley and Mediterranean coast):

Flat areas are the more efficient in

capturing the solar energy which is in turn

available to involve deep convective clouds.
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Estimated 10 years- return level as a function of the altitude:

q̂H

n(· · · ), q̂π
n(×××) and q̂Z

n(• • •).
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The considered return level is globally

decreasing with the altitude. However, the

observed variability indicates that altitude

is not the unique factor.
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Estimated 10 years- return level q̂π
n as a function of the longitude and latitude.
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Valence area of Rhône Valley does not

suffer from high return levels whereas the

southern part does. The enhancement of

extreme rainfall rates could be due to the

supply of warm and moist air by northward

low level winds over the Mediterranean

sea.
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Postdoctoral position proposal

Spatial analysis of extreme rainfalls in the Cévennes-Vivarais region

• Location: Mistis, Rhône-Alpes Research Unit of INRIA, located near Grenoble and

Lyon. The Unit includes more than 500 people, within 25 research teams and 10

support services.

• Length: 12 months extendable.

•Monthly Salary after taxes: around 1900 euros (medical insurance included).

• Scientific context: collaboration between Mistis & Laboratoire d’Etude des

Transferts en Hydrologie et Environnement, supported by the French Research Agency

(ANR) through its VMC2007 program (Vulnérabilité: Milieux, Climats).

• Contact: {Laurent.Gardes, Stephane.Girard}@inrialpes.fr
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