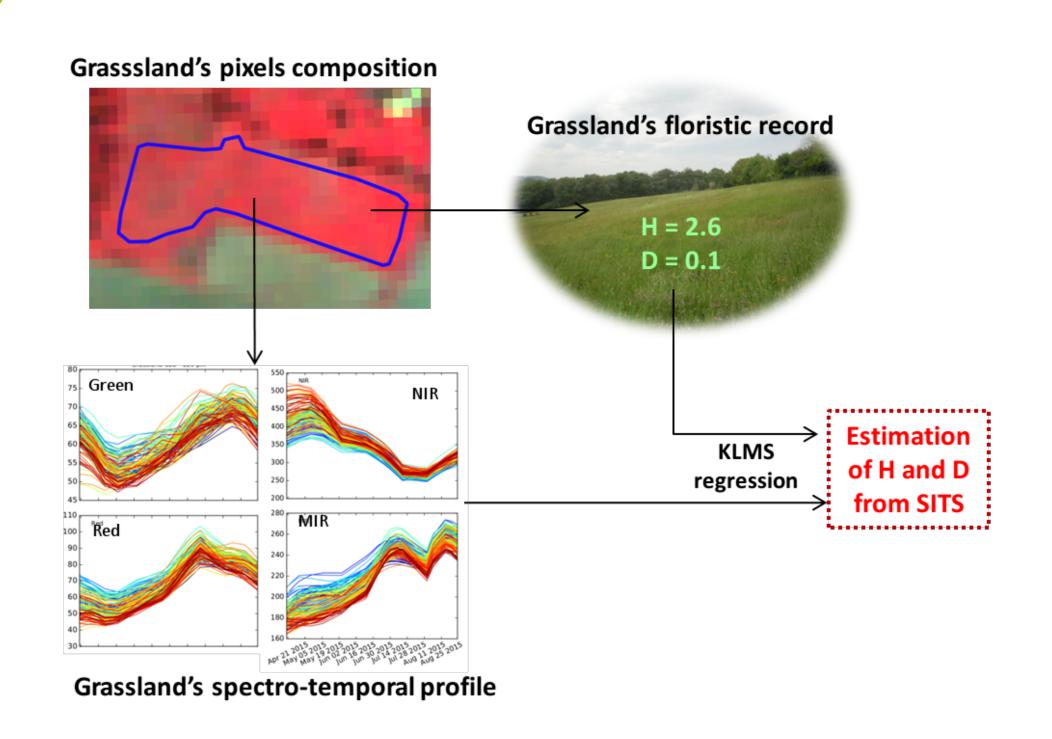
Potential of Sentinel-2 and SPOT5 (Take5) time series for the estimation of grasslands biodiversity indices

Mailys Lopes ¹, Mathieu Fauvel ¹, Annie Ouin ¹ and Stéphane Girard ²

¹ Dynafor, University of Toulouse, INRA, INPT, INPT - EI PURPAN, Castanet-Tolosan, France ² Team MISTIS, University Grenoble-Alpes, INRIA, LJK, Montbonnot, France

MultiTemp 2017, Bruges, Belgium, 27-29 June 2017

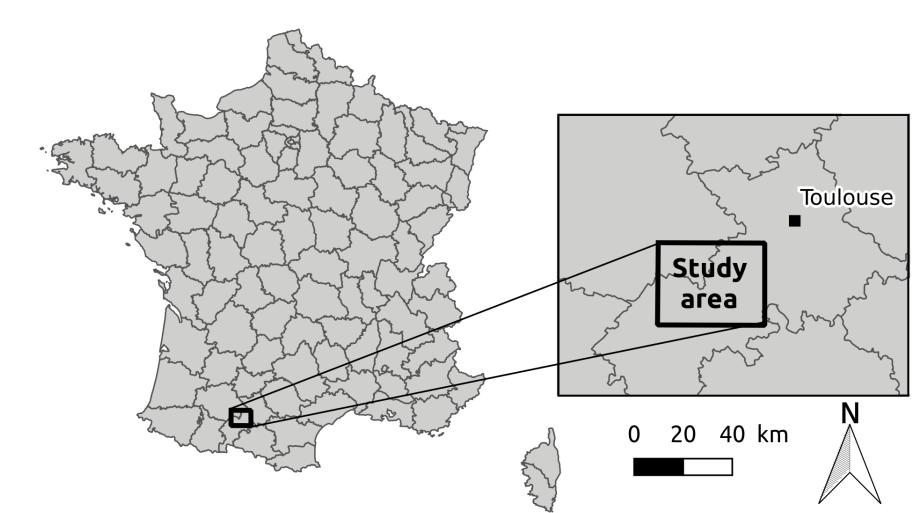
Context and objectives


Context

- Grasslands are one of the main **biodiversity** resource in farmed landscapes.
- Importance of monitoring grassland biodiversity over large extents.
- Biodiversity indices are defined at the grassland scale.
- Better to use very high spatial resolution (<1m) and hyperspectral data to discriminate the species. But limited availability.
- Tradeoff: multispectral SITS with high spatial resolution and very high temporal resolutions because species differ in their temporal behavior.

Objectives of this study

Assess the potential of multispectral satellite image time series (SITS) with high spatial and high temporal resolutions to estimate plant biodiversity at the grassland scale.


Principle

Study site and data

Study area

Long-Term Ecolog. Research site "Coteaux et Vallées de Gascogne", France.

Field data

- Floristic composition at the grassland scale recorded in 2015 and 2016, in 192 grasslands.
- Computation of abundance-based biodiversity indices:
- -Shannon index $H = -\sum_{i=1}^R p_i \ln p_i$
- -Simpson index $D = \sum_{i=1}^{R} p_i^2$

where p_i is the proportion of the ith species and R is the total number of species in the grassland (species richness).

Variable	Min	Max	Mean	SD	CV
Н	0.10	3.51	2.27 0.168	0.49	0.22
D	0.049	0.973	0.168	0.126	0.752

Satellite data

Two multispectral (MS) or NDVI intra-annual (April to September) SITS:

SITS	SPOT5 (Take5)							Sentinel-2 (S2)							
Year	2015		2016												
Spatial res. 10 meters								10 meters and 20 meters							
Spectral Green, Red, NIR, MIR bands								Blue, Green, Red, NIR (10m), 3 red-edge bands and 1 narrow NIR (20m resampled at 10m)							
Acquisition	ns 18 dates						7 dates								
	04	05	06	07	08	09	10	04	05	06	07	08	09	10	

Methodology

Grassland modeling

Each grassland g_i composed of n_i pixels represented by a **spectro-temporal vector** $\mathbf{x}_{ik} \in \mathbb{R}^d$, where $d = n_B n_T$ is the number of spectro-temporal variables. Two grassland representations: by its **mean vector** $\boldsymbol{\mu}_i = \frac{1}{n_i} \sum_{k=1}^{n_i} \mathbf{x}_{ik} \in \mathbb{R}^d$ and by its **whole set of pixels** \mathbf{x}_{ik} . **One response variable** $y_i \in \mathbb{R}$ per grassland.

Kernel least mean square (KLMS) regression.

The **KLMS regression** [1] consists in solving: $\min_{f} \sum_{i=1}^{G} (y_i - f(g_i))^2 + \theta ||f||^2$, where f is the regression function such as $f(g_i) = \hat{y}_i = \sum_{i=1}^{G} \beta_i K(g_i, g_i) + b$, \hat{y}_i

where f is the regression function such as $f(g_i) = \hat{y}_i = \sum_{j=1}^G \beta_j K(g_i, g_j) + b$, \hat{y}_i is the predicted variable of g_i , K is the kernel function, β_j 's are the parameters of f, b is the intercept and θ is the regularization hyperparameter. β_j and b are found by least-square minimization.

Two kernels based on two grassland modelings are investigated:

- Mean modeling and RBF kernel μ -KLMS: $K_{\mathsf{RBF}}(g_i, g_j) = \exp(-\sigma \|\boldsymbol{\mu}_i \boldsymbol{\mu}_i\|^2)$.
- ullet Empirical mean kernel *EMK-KLMS*: $K_{\mathsf{EMP}}(g_i,g_j) = \frac{1}{n_i n_i} \sum_{l,m=1}^{n_i,n_j} K_{\mathsf{RBF}}(\mathbf{x}_{il},\mathbf{x}_{jm}).$

Protocol

Regression repeated over 10 runs, dataset randomly split into two subsets: 80% for training and 20% for testing.

Optimal hyperparameters tuned during a 5-fold cross-validation based on

the highest coefficient of determination: $r^2 = 1 - \frac{\sum_i (y_i - \hat{y}_i)^2}{\sum_i (y_i - \bar{y})^2}$.

Results

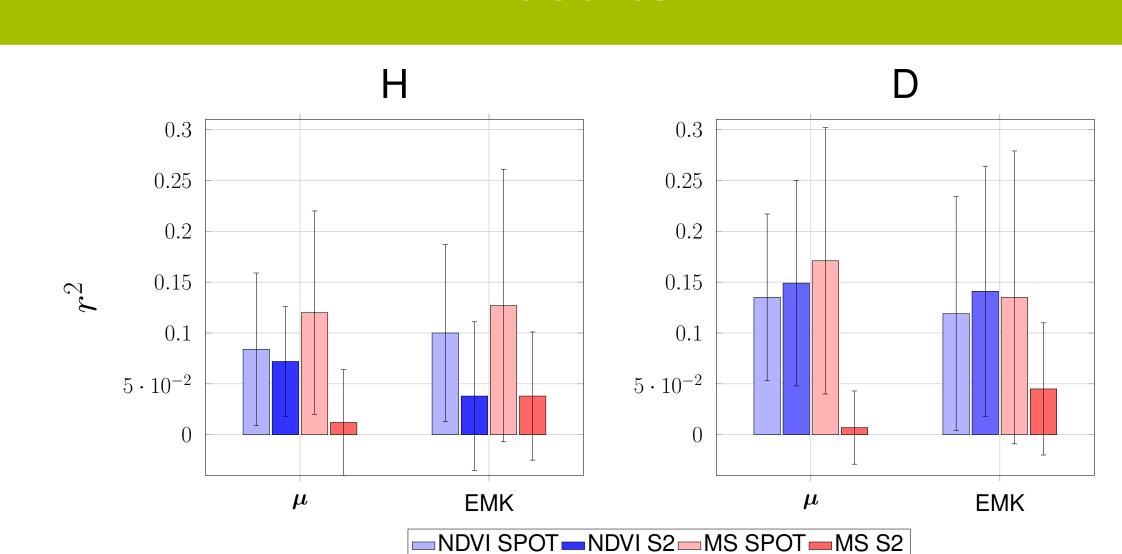
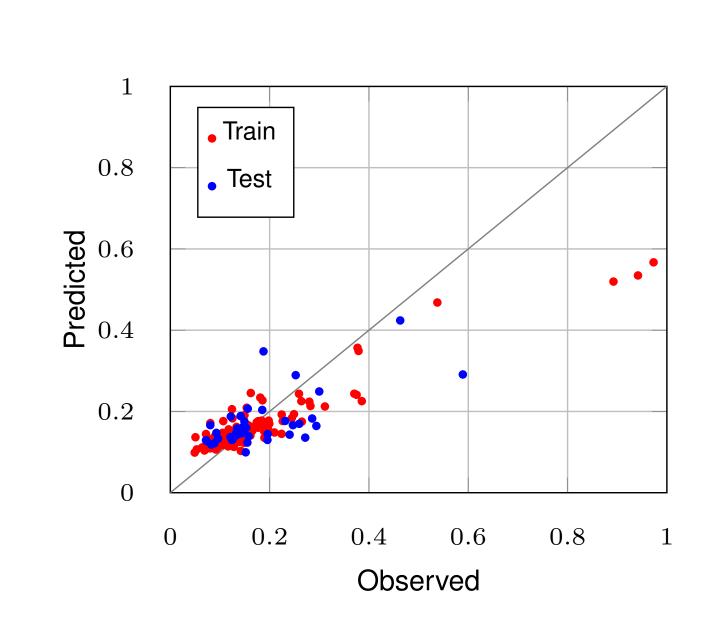
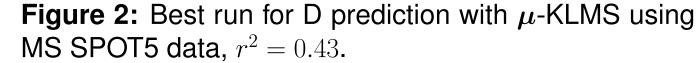




Figure 1: Mean and standard deviation of r^2 over the 10 repetitions.

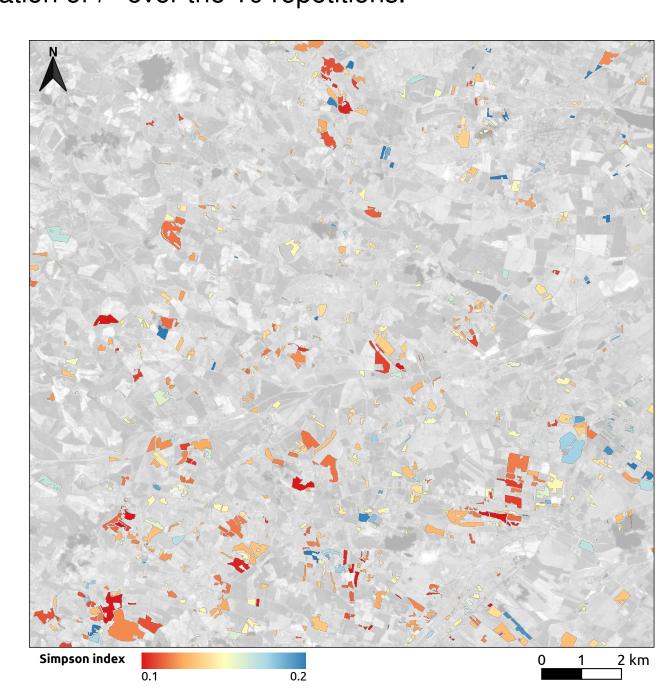


Figure 3: Estimation of Simpson index of all the grass-lands in the area.

Conclusions and prospects

- Lack of variance in the predicted dataset.
- Results suggest that **high temporal resolution** combined with high spatial resolution are **not sufficient to estimate plant biodiversity**.
- Simpson index was better predicted than Shannon index.
- Prospect: Spectral heterogeneity [2] as a proxy for species diversity.
 References
- [1] W. Liu et al., "The kernel least-mean-square algorithm," *IEEE Transactions on Signal Processing*, vol. 56, pp. 543–554, Feb 2008.
- [2] D. Rocchini *et al.*, "Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges," *Ecological Informatics*, vol. 5, no. 5, pp. 318 329, 2010.