Object-based classification of grassland from high resolution satellite image time series with Gaussian mean map kernels

Presented by Stéphane Girard¹ In collaboration with Mailys Lopes¹ and Mathieu Fauvel²

¹Team Mistis, INRIA Grenoble, France, ²Dynafor, INRA, University of Toulouse, France

TIES-GRASPA Conference - 24-26 July 2017 - Bergamo, Italy

Study objectives

Agroecological application

Discrimination of "old" permanent and "young" temporary grasslands

Data

SITS* with high spatial (\approx 10m) resolution and temporal (2-3 images per month) resolution *satellite image time series

Method

Supervised classification of spatial objects

Stéphane Girard

Feam Mistis, INRIA Grenoble, France

Context: grassland classification using dense satellite image time series		

Context: grassland classification using dense satellite image time series

Gaussian mean kernel

Experimental results

Conclusion

Stéphane Girard

Context: grassland classification using dense satellite image time series		

Remote sensing imagery

A digital remote sensing image corresponds to a spatial, spectral and temporal sampling of a landscape.

Object-based classification of grassland from high resolution satellite image time series with Gaussian mean map kernels

Gaussian mean keri 00000 Experimental results

Conclusion

Satellite image time series

Formosat-2 (False color composites, Green, Red, NIR)

February

August

December

Stéphane Girard

Feam Mistis, INRIA Grenoble, France

 Context:
 grassland classification using dense satellite image time series
 Gaussian mean kernel
 Experimental results
 Conclusion

 000
 00000
 0000000
 0000000
 0000000

Normalized Difference Vegetation Index (NDVI)

NDVI: vegetation index that reflects the photosynthetic activity of the vegetation.

$$NDVI = rac{NIR - Red}{NIR + Red}, -1 \le NDVI \le 1$$

Stéphane Girard

Context: grassland classification using dense satellite image time series		
000		
Satellite remote sensing of grasslands		

Semi-natural grasslands in Europe:

- Relatively small ($\approx 100m \times 100m) \Rightarrow$ need high spatial resolution images
- Heterogeneous in species composition ⇒ need multispectral images
- Have different **temporal behaviors** (phenology) ⇒ need **high temporal** resolution images

We propose to use **dense multispectral time series with high spatial resolution** to classify grasslands.

Context: grassland classification using dense satellite image time series $\odot \bullet \odot$		
Statistical problem		

Grassland's pixels spectro-temporal profile:

with

- g_i: grassland with index i,
- n_i: number of pixels in g_i
- k: pixel index, $k \in \{1, ..., n_i\}$
- d: number of spectro-temporal variables
- x_{ik}(t_l): spectral value of pixel k at time l

Grassland representation:

- $\mathbf{X}_i = \begin{bmatrix} \mathbf{x}_{i1} | ... | \mathbf{x}_{in_i} \end{bmatrix}$ is a matrix of size $(n_i \times d)$ that contains all the pixels inside g_i .
- Learn f such as $y_i = f(\mathbf{X}_i)$, where y_i is the predicted label.

Stéphane Girard

Team Mistis, INRIA Grenoble, France

Context: grassland classification using dense satellite image time series		
000		
Contributions		

Thematic contributions

- **Grassland** classification (semi-natural elements)
- Sentinel-2 contribution (new generation satellites, dense time series)

Methodological contributions

- Model grassland's pixels distribution
- Process grassland supervised classification at the grassland scale
- Robust to
 - ▶ the dimension of data (n_i pixels, d spectro-temporal variables with $n_i \approx d$),
 - the total number of grasslands pixels which might be large.

Figure: Histogram of grasslands size in number of pixels n_i . The red line corresponds to the number of variables d = 45.

Gaussian mean kernel	

Context: grassland classification using dense satellite image time series

Gaussian mean kernel

Experimental results

Conclusion

Stéphane Girard

Team Mistis, INRIA Grenoble, France

	Gaussian mean kernel	
	0000	
Statistical modeling of grasslands		

Several ways of modeling grasslands in the remote sensing literature:

- Pixel level, where the pixels are the samples: the response variable y_i of g_i is associated with each pixel x_{ik}, but each x_{ik} is processed independently of all others x_{ik'} of g_i.
- Object level
 - Mean vector μ_i of g_i is used to represent g_i :

$$\hat{\mu}_i = \frac{1}{n_i} \sum_{k=1}^{n_i} \mathbf{x}_{ik}.$$

Туре	Pros	Cons
Pixel by pixel	Account for the heterogeneity in the grassland	Large computational cost with SVM
Mean	Reduced processing time	Limited representation, does not account for heterogeneity

Stéphane Girard

Feam Mistis, INRIA Grenoble, France

	Gaussian mean kernel	
	0000	
Statistical modeling of grasslands		

We chose to model the grassland's pixels distribution by a Gaussian distribution $\mathcal{N}(\mu_i, \mathbf{\Sigma}_i)$ where:

Figure: Left: temporal profile of all the pixels in the grassland and their temporal mean in red. Middle: temporal mean in red, $+0.2 \times$ the 1st eigenvector in blue and $-0.2 \times$ the 1st eigenvector in black. Right: temporal mean in red, $+0.2 \times$ the 2nd eigenvector in blue and $-0.2 \times$ the 2nd eigenvector in black.

Stéphane Girard

Gaussian mean kernel	
00000	

- Pixel based and mean modelings: conventional RBF kernel
- Distributions
 - Kullback-Leibler divergence
 - Bhattacharyya distance

Conventional similarity measures used for moderate dimensional Gaussian distributions are not suitable for high dimensional Gaussian distributions.

Stéphane Girard

Team Mistis, INRIA Grenoble, France

Gaussian mean kernel	
00000	

Empirical mean kernel:

$$\mathcal{K}^{e}(\mathbf{p}_{i},\mathbf{p}_{j})=rac{1}{n_{i}n_{j}}\sum_{l,m=1}^{n_{i},n_{j}}k(\mathbf{x}_{il},\mathbf{x}_{jm}),$$

where p_i and p_j are distributions. \mathbf{x}_{ij} is the I^{th} realization of p_i , and k is a semi-definite positive kernel function.

Generative mean kernel:

$$\mathcal{K}^{g}(p_{i},p_{j}) = \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} k(\mathbf{x},\mathbf{x}')\hat{p}_{i}(\mathbf{x})\hat{p}_{j}(\mathbf{x}')d\mathbf{x}d\mathbf{x}'.$$

When p_i and p_j are Gaussian distributions and k is a Gaussian kernel, this becomes the Gaussian mean kernel:

$$\tilde{\mathcal{K}}^{G}(\mathcal{N}_{i},\mathcal{N}_{j}) = \frac{\exp\left\{-0.5(\hat{\boldsymbol{\mu}}_{i}-\hat{\boldsymbol{\mu}}_{j})^{T}\left(\hat{\boldsymbol{\Sigma}}_{i}+\hat{\boldsymbol{\Sigma}}_{j}+\gamma^{-1}\boldsymbol{\mathfrak{l}}_{d}\right)^{-1}(\hat{\boldsymbol{\mu}}_{i}-\hat{\boldsymbol{\mu}}_{j})\right\}}{|\hat{\boldsymbol{\Sigma}}_{i}+\hat{\boldsymbol{\Sigma}}_{j}+\gamma^{-1}\boldsymbol{\mathfrak{l}}_{d}|^{0.5}|2\hat{\boldsymbol{\Sigma}}_{i}+\gamma^{-1}\boldsymbol{\mathfrak{l}}_{d}|^{0.25}|2\hat{\boldsymbol{\Sigma}}_{j}+\gamma^{-1}\boldsymbol{\mathfrak{l}}_{d}|^{0.25}},$$

where γ is a positive regularization parameter coming from the Gaussian kernel k.

Stéphane Girard

Gaussian mean kernel	
00000	

Proposition: α -generative mean kernel:

$$\mathcal{K}^{\alpha}(p_i,p_j) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} k(\mathbf{x},\mathbf{x}') \hat{p}_i(\mathbf{x})^{(\alpha^{-1})} \hat{p}_j(\mathbf{x}')^{(\alpha^{-1})} d\mathbf{x} d\mathbf{x}'.$$

When p_i and p_j are Gaussian distributions, k is a Gaussian kernel and the normalization is applied, the expression gives rise to the α -Gaussian mean kernel:

$$\tilde{\mathcal{K}}^{\alpha}(\mathcal{N}_{i},\mathcal{N}_{j}) = \frac{\exp\left\{-0.5(\hat{\boldsymbol{\mu}}_{i}-\hat{\boldsymbol{\mu}}_{j})^{T}\left(\alpha(\hat{\boldsymbol{\Sigma}}_{i}+\hat{\boldsymbol{\Sigma}}_{j})+\gamma^{-1}\boldsymbol{I}_{d}\right)^{-1}(\hat{\boldsymbol{\mu}}_{i}-\hat{\boldsymbol{\mu}}_{j})\right\}}{|\alpha(\hat{\boldsymbol{\Sigma}}_{i}+\hat{\boldsymbol{\Sigma}}_{j})+\gamma^{-1}\boldsymbol{I}_{d}|^{0.5}|2\alpha\hat{\boldsymbol{\Sigma}}_{i}+\gamma^{-1}\boldsymbol{I}_{d}|^{0.25}|2\alpha\hat{\boldsymbol{\Sigma}}_{j}+\gamma^{-1}\boldsymbol{I}_{d}|^{0.25}}$$

Stéphane Girard

Team Mistis, INRIA Grenoble, France

	Experimental results	

Context: grassland classification using dense satellite image time series

Gaussian mean kernel

Experimental results

Conclusion

Stéphane Girard

	Experimental results	
	• 0 00000	

Study area

<u>Satellite data</u> Formosat-2 (8m) inter-annual time series of **NDVI** from 2012 to 2014 (**45 dates**).

	Experimental results	
	000000	

Data to classify

- Old grasslands: 14 years old and more
- Young grasslands: less than 5 years old

Class	Nb of grasslands	Nb of pixels
Old	59	31,166
Young	416	129,348
Total	475	160,514

	Experimental results	
	00000	
Competitive methods		

Methods based on RBF kernel:

- PMV (Pixel Majority Vote): It classifies each pixel with no a priori information on the object which the grassland belongs to. Then, a majority vote is performed.
- μ (mean): The distribution of the pixels reflectance of g_i is modeled by its mean vector μ_i .
- **BD** (Bhattacharyya Distance): This method uses the Bhattacharyya distance in the case of Gaussian distributions.

Method based on mean map kernels:

- **EMK** (Empirical Mean Kernel)
- **GMK** (Gaussian Mean Kernel)
- α**GMK** (α-Gaussian Mean Kernel).

Stéphane Girard

	Experimental results	
	0000000	

Figure: Contribution of the proposed method in grassland analysis for supervised classification. α GMK consists in a general modeling of the grassland at the object level and it encompasses several known modelings. The underlined methods are tested in this study.

Stéphane Girard

	Experimental results	
	0000000	
Classification protocol		

Stéphane Girard

Feam Mistis, INRIA Grenoble, France

Table: Absolute value of Wilcoxon rank-sum test statistics on F1 score. ** indicates the results are significantly different, *i.e.*, p-value < 0.05.

Method	ΡΜ٧	μ	BD	EMK	GMK	α GMK
PMV	-	3.52**	4.83**	1.93	0.98	1.32
μ		-	1.76	1.55	2.28**	4.80**
BD			-	3.23**	3.95**	6.09**
EMK				-	0.94	3.35**
GMK					-	2.42**
α GMK						-

Stéphane Girard

Team Mistis, INRIA Grenoble, France

Figure: Bar plot of $\hat{\alpha}$ values chosen by cross-validation and the average of associated F1 scores (red dots) using α GMK. NB: The value $\hat{\alpha} = 0$ was never selected.

Stéphane Girard T	eam Mistis, INRIA Grenoble, France
Object-based classification of grassland from high resolution satellite image time series with Gaussian mean map kernels	23 of 25

	Conclusion

Context: grassland classification using dense satellite image time series

Gaussian mean kernel

Experimental results

Conclusion

Stéphane Girard

	Conclusion

- **Flexible kernel** that encompasses both Gaussian and mean modelings.
- Kernel suitable for high dimensional data (low computational load).
- Good compromise between processing speed and accuracy.
- First application of generative mean kernels in remote sensing.
- Suitable for the classification of small and heterogeneous objects such as grasslands, but it could be used for other land cover (urban areas, peatlands..).

Thank you for your attention

Stéphane Girard

Appendix

Table: Characteristics of the methods used in this study.

Method	PMV	EMK	μ	BD	GMK	α GMK
Level	Pixel	Object	Object	Object	Object	Object
Expl. variable	x _{ik}	x _{ik}	μ_i	\mathcal{N}_{i}	\mathcal{N}_{i}	\mathcal{N}_{i}
Kernel	RBF	RBF	RBF	$K_{\rm B}$	<i>К</i> G	$ ilde{K}^lpha$
Parameters	σ, C	σ, C	σ, C	σ, C	γ, C	γ , α , C
Nb of samples	$1/10\cdot 162,500$	$1/10\cdot 162,500$	475	475	475	475

Stéphane Girard

Team Mistis, INRIA Grenoble, France