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The Value-at-Risk

Let Y ∈ R be a random loss variable. The Value-at-Risk of level α ∈ (0, 1)
denoted by VaR(α) is the α-quantile of the survival function F̄ (x) = P(Y > x)

VaR(α) := F
−1

(α) = inf{t,F (t) ≤ α}
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Drawback of the Value-at-Risk

Consider Y1 and Y2 two random loss variables with associated survival
functions F 1 and F 2.
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Random variables with light tail probabilities and with heavy tail probabilities
may have the same VaR(α). This is one of the main criticisms against the VaR,
Embrechts et al. [1997].
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The Conditional Tail Expectation

The Conditional Tail Expectation of level α ∈ (0, 1) denoted by CTE(α) is
defined by

CTE(α) := E(Y |Y > VaR(α)).
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The CTE takes into account the whole information contained in the upper part
of the tail distribution.
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Some risk measures

Let Y ∈ R be a random loss variable. The Value-at-Risk of level α ∈ (0, 1)
is the α-quantile defined by

VaR(α) := F
−1

(α),

where F
−1

is the (generalized) inverse of the survival function of Y .

The Conditional Tail Expectation of level α ∈ (0, 1) is defined by

CTE(α) := E(Y |Y > VaR(α)).

The Conditional-Value-at-Risk of level α ∈ (0, 1) introduced by Rockafellar
et Uryasev [2000] is defined by

CVaRλ(α) := λVaR(α) + (1− λ)CTE(α),

with 0 ≤ λ ≤ 1.

The Conditional Tail Variance of level α ∈ (0, 1) introduced by Valdez
[2005] is defined by

CTV(α) := E((Y − CTE(α))2|Y > VaR(α)).
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A new risk measure : the Conditional Tail Moment

The first goal of this work is to unify the definitions of the previous risk
measures. To this end, the Conditional Tail Moment of level α ∈ (0, 1) is
introduced :

CTMa(α) := E(Y a|Y > VaR(α)),

where a ≥ 0 is such that the moment of order a of Y exists.

All the previous risk measures of level α can be rewritten as

CTE(α) = CTM1(α),

CVaR(α) = λVaR(α) + (1− λ)CTM1(α),

CTV(α) = CTM2(α)− CTM2
1(α).

=⇒ All the risk measures depend on the VaR and the CTMa.
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Extreme losses and regression case

Our second aim is to estimate these risk measures in case of extreme losses and
in the case where a covariate X ∈ Rp is recorded simultaneously with Y .

1 The fixed level α ∈ (0, 1) is replaced by a sequence αn →
n→∞

0.

2 Denoting by F (.|x) the conditional survival distribution function of Y
given X = x , the Regression Value-at Risk is defined by :

RVaR(αn|x) := F
−1

(αn|x) = inf{t,F (t|x) ≤ αn},

and the Regression Conditional Tail Moment of order a is defined by :

RCTMa(αn|x) := E(Y a|Y > RVaR(αn|x),X = x),

where a > 0 is such that the moment of order a of Y exists.
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Extreme regression risk measures

This yields the following risk measures :

RCTE(αn|x) = RCTM1(αn|x),

RCVaRλ(αn|x) = λRVaR(αn|x) + (1− λ)RCTM1(αn|x),

RCTVn(αn|x) = RCTM2(αn|x)− RCTM2
1(αn|x).

=⇒ All the risk measures depend on the RVaR and the RCTMa.

The conditional moment of order a ≥ 0 of Y given X = x is defined by

ϕa(y |x) = E (Y aI{Y > y}|X = x) ,

where I{.} is the indicator function. Since ϕ0(y |x) = F (y |x), it follows

RVaR(αn|x) = ϕ−1
0 (αn|x),

RCTMa(αn|x) =
1

αn
ϕa(ϕ−1

0 (αn|x)|x).

Goal : estimate ϕa(.|x) and ϕ−1
a (.|x).
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Inference

Estimator of ϕa(.|x) :

We propose to use a classical kernel estimator given by

bϕa,n(y |x) =
nX

i=1

K

„
x − Xi

hn

«
Y a

i I{Yi > y}

,
nX

i=1

K

„
x − Xi

hn

«
.

hn is a sequence called the window-width such that hn → 0 as n→∞,

K is a bounded density on Rp with support included in the unit ball of Rp.

Estimator of ϕ−1
a (.|x) :

Since ϕ̂a,n(.|x) is a non-increasing function, an estimator of ϕ−1
a (α|x) can be

defined for α ∈ (0, 1) by

ϕ̂−1
a,n(α|x) = inf{t, ϕ̂a,n(t|x) < α}.
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Heavy-tail assumptions

(F.1) The conditional survival distribution function of Y given X = x is assumed
to be heavy-tailed i.e. for all λ > 0,

lim
y→∞

F (λy |x)

F (y |x)
= λ−1/γ(x).

In this context, γ(.) is a positive function of the covariate x and is referred to
as the conditional tail index since it tunes the tail heaviness of the conditional
distribution of Y given X = x .

Condition (F.1) also implies that for a ∈ [0, 1/γ(x)), RCTMa(.|x) exists, and
for all y > 0,

RCTMa(1/y |x) = y aγ(x)`a(y |x),

where for x fixed, `a(.|x) is a slowly-varying function i.e. for all λ > 0,

lim
y→∞

`a(λy |x)

`a(y |x)
= 1.
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Heavy-tail assumptions

(F.2) `a(.|x) is normalized for all a ∈ [0, 1/γ(x)).

In such a case, the Karamata representation of the slowly-varying function can
be written as

`a(y |x) = ca(x) exp

„Z y

1

εa(u|x)

u
du

«
,

where ca(.) is a positive function and εa(y |x)→ 0 as y →∞.

(F.3) |εa(.|x)| is continuous and ultimately non-increasing for all a ∈ [0, 1/γ(x)).
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Regularity assumptions

A Lipschitz condition on the probability density function g of X is also
required :

(L) There exists a constant cg > 0 such that |g(x)− g(x ′)| ≤ cgd(x , x ′).

where d(x , x ′) is the Euclidean distance between x and x ′.

Finally, for y > 0 and ξ > 0, the largest oscillation of the conditional moment
of order a ∈ [0, 1/γ(x)) is defined by

ω(x , y , a, ξ, hn) = sup

˛̨̨̨
ϕa(z |x)

ϕa(z |x ′) − 1

˛̨̨̨
, z ∈ [(1− ξ)y , (1 + ξ)y ], x ′ ∈ B(x , hn)

ff
,

where B(x , hn) denotes the ball centred at x with radius hn.
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Main result

Theorem 1 :

Suppose (F.1), (F.2) and (L) hold. Let

0 ≤ a1 < a2 < · · · < aJ ,

x ∈ Rp such that g(x) > 0 and 0 < γ(x) < 1/(2aJ),

αn → 0 and nhp
nαn →∞ as n→∞,

ξ > 0 such that
√

nhp
nαn (hn ∨maxa ω(x ,RVaR(αn|x), a, ξ, hn))→ 0,

Then,

p
nhp

nαn

8<:
 

R̂CTMaj ,n(αn|x)

RCTMaj (αn|x)
− 1

!
j∈{1,...,J}

,

 
R̂VaRn(αn|x)

RVaR(αn|x)
− 1

!9=;
is asymptotically Gaussian, centered, with covariance matrix
‖K‖22γ2(x)Σ(x)/g(x) where

Σ(x) =

0BBB@
ai aj (2−(ai +aj )γ(x))

(1−(ai +aj )γ(x))

a1

...
aJ

a1 · · · aJ 1

1CCCA .
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Conditions on the sequences αn and hn

nhp
nαn →∞ : Necessary and sufficient condition for the almost sure presence of

at least one point in the region B(x , hn)× [RVaR(αn|x),+∞) of Rp × R.

√
nhp

nαn (hn ∨maxa ω(x ,RVaR(αn|x), a, ξ, hn))→ 0 : The biais induced by the
smoothing is negligible compared to the standard-deviation.
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Consequences

Suppose the assumptions of Theorem 1 hold. Then, if 0 < γ(x) < 1/2,

p
nhp

nαn

 
R̂CTEn(αn|x)

RCTE(αn|x)
− 1

!
d−→ N

„
0,

2(1− γ(x))γ2(x)

1− 2γ(x)

‖K‖22
g(x)

«
p

nhp
nαn

 
R̂CVaRλ,n(αn|x)

RCVaRλ(αn|x)
− 1

!
d−→ N

„
0,
γ2(x)(λ2 + 2− 2λ− 2γ(x))

1− 2γ(x)

‖K‖22
g(x)

«

The RCTV(αn|x) estimator involves the computation of a second order
moment, it requires the stronger condition 0 < γ(x) < 1/4,

p
nhp

nαn

 
R̂CTVn(αn|x)

RCTV(αn|x)
− 1

!
d−→ N

„
0,Vγ(x)

‖K‖22
g(x)

«
,

where

Vγ(x) =
8(1− γ(x))(1− 2γ(x))(1 + 2γ(x) + 3γ2(x))

(1− 3γ(x))(1− 4γ(x))
.
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Illustration on a simulated dataset

A sample {(Xi ,Yi ), i = 1, . . . , n} of size n = 1000 is generated. The covariate
X is uniform on [0, 1]. The conditional distribution of Y |X = x is chosen in the
Hall class :

F (y |x) = y−1/γ(x) a(1 + byρ/γ(x))| {z }
`(y|x)

with a = 1/2, b = 1, ρ = −1 and conditional tail index function

x ∈ [0, 1]→ γ(x) =
1

2

„
1

10
+ sin(πx)

« 
11

10
− 1

2
exp

 
64

„
x − 1

2

«2
!!

.

We have chosen a bi-quadratic kernel

K(u) ∝ (1− u2)2I{|u|≤1}

with smoothing parameter hn = 0.1.
Our goal if to estimate RCTE(αn|x) and RVaR(αn|x) with αn = 0.05.
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Theoretical RCTE(αn|x) and RVaR(αn|x)

Theoretical RCTE(αn|x) and RVaR(αn|x) with a logarithmic scale.
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Theoretical and estimated RVaR(αn|x)

Theoretical and estimated RVaR(αn|x) with a logarithmic scale.
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Theoretical and estimated RCTE(αn|x)

Theoretical and estimated RCTE(αn|x) with a logarithmic scale.

20 / 35



Outline Extreme risk measures Estimators and asymptotic results Illustration on a simulated dataset Extrapolation Application

100 replications and theoretical RCTE(αn|x)

Theoretical and estimated RCTE(αn|x) with a logarithmic scale.
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Theoretical RCTE(αn|x) and mean of the 100 estimated RCTE(αn|x)

Theoretical and estimated RCTE(αn|x) with a logarithmic scale.
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A Weissman type estimator

In Theorem 1, the condition nhp
nαn →∞ provides a lower bound on the

level of the risk measure to estimate.

This restriction is a consequence of the use of a kernel estimator which
cannot extrapolate beyond the maximum observation in the ball B(x , hn).

In consequence, αn must be an order of an extreme quantile within the
sample.

Definition

Let us consider (αn)n≥1 and (βn)n≥1 two positive sequences such that αn → 0,
βn → 0 and 0 < βn < αn. A kernel adaptation of Weissman’s estimator [1978]
is given by

R̂CTM
W

a,n(βn|x) = R̂CTMa,n(αn|x)

„
αn

βn

«aγ̂n(x)

| {z }
extrapolation
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Extrapolation

Theorem 2 :

Suppose the assumptions of Theorem 1 hold together with (F.3). Let γ̂n(x) be
an estimator of the conditional tail index such thatp

nhp
nαn(γ̂n(x)− γ(x))

d→ N
“

0, v 2(x)
”
,

with v(x) > 0. If, moreover (βn)n≥1 is a positive sequence such that βn → 0
and βn/αn → 0 as n→∞, then

√
nhp

nαn

log(αn/βn)

0@ R̂CTM
W

a,n(βn|x)

RCTMa(βn|x)
− 1

1A d→ N
“

0, (av(x))2
”
.

The condition βn/αn → 0 allows us to extrapolate and choose a level βn

arbitrarily small.
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Estimation of the conditional tail index

Without covariate : Hill [1975]

Let (kn)n≥1 be a sequence of integers such that kn ∈ {1 . . . n}. The Hill
estimator is given by

γ̂n,αn =
1

kn − 1

kn−1X
i=1

log Zn−i+1,n − log Zn−kn+1,n,

where Z1,n ≤ · · · ≤ Zn,n are the order statistics associated with i.i.d.
random variables Z1, . . . ,Zn and αn = kn/n.

With a covariate :

A kernel version of the Hill estimator is given by

γ̂n,αn (x) =
JX

j=1

(log R̂VaRn(τjαn|x)− log R̂VaRn(τ1αn|x))

,
JX

j=1

log(τ1/τj),

where J ≥ 1 and (τj)j≥1 is a decreasing sequence of weights.
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Extrapolation

The asymptotic normality of γ̂n,αn (x) has been established by Daouia et al.
[2011] .

As a consequence, replacing R̂VaRn by R̂VaR
W

n and R̂CTMa,n by R̂CTM
W

a,n

provides (asymptotically Gaussian) estimators for all the risk measures
considered in this talk, and for arbitrarily small levels.

In particular, since RCTE(αn|x) = RCTM1(αn|x), we obtain

R̂CTE
W

n (βn|x) = R̂CTEn(αn|x)

„
αn

βn

«γ̂n(x)

.
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Daily rainfalls in the Cévennes-Vivarais region (France)

France Cévennes-Vivarais region Raingauge stations

523 raingauge stations, daily rainfall measures (in mm) during 1958–2000.

Estimation of risk measures associated to return periods of 100 years.
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A cross validation procedure to choose hn and αn : Step 1

Double loop on H = {hi ; i = 1, . . . ,M} and on A = {αj ; j = 1, . . . ,R}.
Loop on all raingauge stations {xt ; t = 1, . . . ,N}.

Remove all other raingauge stations

Estimate γ > 0 using the
classical Hill estimator.

It only depends on αj .

=⇒ We obtain γ̂n,t,αj
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A cross validation procedure to choose hn and αn : Step 1

Double loop on H = {hi ; i = 1, . . . ,M} and on A = {αj ; j = 1, . . . ,R}.
Loop on all raingauge stations {xt ; t = 1, . . . ,N}.

Consider one raingauge station xt

Remove all other raingauge stations

Estimate γ > 0 using the
classical Hill estimator.

It only depends on αj .

=⇒ We obtain γ̂n,t,αj
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A cross validation procedure to choose hn and αn : Step 2

Remove the station xt

Work in B(xt , hi ) \ {xt}

Estimate γ(x) > 0 using the
kernel version of the Hill
estimator.

It depends on αj and on hi .

=⇒ We obtain γ̂n,hi ,αj (xt)

(hemp, αemp) = arg min
(hi ,αj )∈H×A

median{(γ̂n,t,αj − γ̂n,hi ,αj (xt))2, t ∈ {1, . . . ,N}}.

29 / 35



Outline Extreme risk measures Estimators and asymptotic results Illustration on a simulated dataset Extrapolation Application

A cross validation procedure to choose hn and αn : Step 2

Work in B(xt , hi ) \ {xt}

Estimate γ(x) > 0 using the
kernel version of the Hill
estimator.

It depends on αj and on hi .

=⇒ We obtain γ̂n,hi ,αj (xt)

(hemp, αemp) = arg min
(hi ,αj )∈H×A

median{(γ̂n,t,αj − γ̂n,hi ,αj (xt))2, t ∈ {1, . . . ,N}}.

29 / 35



Outline Extreme risk measures Estimators and asymptotic results Illustration on a simulated dataset Extrapolation Application

A cross validation procedure to choose hn and αn : Step 2

Work in B(xt , hi ) \ {xt}

Estimate γ(x) > 0 using the
kernel version of the Hill
estimator.

It depends on αj and on hi .

=⇒ We obtain γ̂n,hi ,αj (xt)

(hemp, αemp) = arg min
(hi ,αj )∈H×A

median{(γ̂n,t,αj − γ̂n,hi ,αj (xt))2, t ∈ {1, . . . ,N}}.

29 / 35



Outline Extreme risk measures Estimators and asymptotic results Illustration on a simulated dataset Extrapolation Application

A cross validation procedure to choose hn and αn : Step 2

Work in B(xt , hi ) \ {xt}

Estimate γ(x) > 0 using the
kernel version of the Hill
estimator.

It depends on αj and on hi .

=⇒ We obtain γ̂n,hi ,αj (xt)

(hemp, αemp) = arg min
(hi ,αj )∈H×A

median{(γ̂n,t,αj − γ̂n,hi ,αj (xt))2, t ∈ {1, . . . ,N}}.

29 / 35



Outline Extreme risk measures Estimators and asymptotic results Illustration on a simulated dataset Extrapolation Application

A cross validation procedure to choose hn and αn : Step 2

Work in B(xt , hi ) \ {xt}

Estimate γ(x) > 0 using the
kernel version of the Hill
estimator.

It depends on αj and on hi .

=⇒ We obtain γ̂n,hi ,αj (xt)

(hemp, αemp) = arg min
(hi ,αj )∈H×A

median{(γ̂n,t,αj − γ̂n,hi ,αj (xt))2, t ∈ {1, . . . ,N}}.

29 / 35



Outline Extreme risk measures Estimators and asymptotic results Illustration on a simulated dataset Extrapolation Application

Computation of R̂VaR
W

n and R̂CTE
W

n

523 Stations Regular grid : 200×200

Two dimensional covariate X =(latitude, longitude).

Bi-quadratic kernel : K(x) ∝ (1− ‖x‖2)2I{‖x‖≤1}.

Harmonic sequence of weights : (τj)j∈{1,...,9} = 1/j .

Results of the procedure (hemp, αemp) = (24, 1/(3× 365.25)).
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Estimated risk measures for a return period of 3 years

R̂VaRn(1/(3× 365.25)|x) R̂CTEn(1/(3× 365.25)|x)
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Estimated conditional tail index
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R̂VaR
W

n (1/(100× 365.25)|x) : 100-year return level
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R̂CTE
W

n (1/(100× 365.25)|x) above the 100-year return level
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