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http://mistis.inrialpes.fr/people/girard/

March, 2014

Joint work with A. Guillou (Université de Strasbourg, France), A. Iouditski
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(Université Aix-Marseille, France).
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Outline

Very brief overview of the literature:

First frontier estimator Geffroy (ISUP, 1964)
Piecewise polynomial estimators Härdle, Park, Tsybakov
(JMVA, 1995)

Extreme-value estimators,

Linear programming estimators,

High order moments estimators.
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Framework

Let (Xi , Yi ), 1 ≤ i ≤ n be n independent copies of a random pair (X , Y )
such that their common distribution has a support

S := {(x , y) ∈ Ω× R ; 0 ≤ y ≤ g(x)}

where

X has a density fX on the compact subset Ω ⊂ Rd ,

Y |X = x has a density f (.|x) on [0, g(x)],

g is a positive function, g(x) = sup{Y |X = x}.

We address the problem of the estimation of g , called the frontier of S .
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Illustration Ω = [0, 1]
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Sharp/non-sharp boundaries

Härdle, Park, Tsybakov (JMVA, 1995) assumed that, for all (x , y) ∈ S ,

fX (x) ≥ fmin > 0,

f (y |x) ≥ c(g(x)− y)α where c > 0 and α ≥ 0.

Two cases arise:

If α = 0 then f (y |x) ≥ c > 0 for all y ∈ [0, g(x)], this is the
situation of a “sharp boundary”.

If α > 0 then we may have f (y |x)→ 0 as y → g(x), this is the
situation of a “non-sharp boundary”.
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Geffroy’s estimator

First frontier estimator Geffroy (ISUP, 1964), based on the
extreme-values of the sample:

Partition of Ω = [0, 1] into equidistant kn intervals In,r ,
r = 1, . . . , kn,

Maxima on each bin: Y ∗n,r = max{Yi : Xi ∈ In,r},

Piecewise constant estimator:

ĝn(x) =
kn∑

r=1

I{x ∈ In,r}Y ∗n,r .
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Illustration: Geffroy’s estimator
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Geffroy’s estimator

Asymptotic behaviour of the L1− distance ∆n :=
∫ 1

0
|ĝn(x)− g(x)|dx .

Theorem

Assume that g is γ− Lipschitzian γ ∈ (0, 1] and α = 0 (sharp boundary).
If some conditions on (kn) hold, then (n/kn)(∆n − βn) converges in
distribution to a Gumbel r.v. with c.d.f ψ(z) = exp(− exp(−θz)) where

θ = inf
x∈[0,1]

fX (x)f (g(x)|x),

and βn is the solution of the equation∫ 1

0

exp

[
log kn −

nβn

kn
fX (x)f (g(x)|x)

]
dx = 1.

The rate of convergence (n/kn) is (up to a logarithmic factor) nγ/(1+γ).
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Piecewise polynomial estimators

Proposed in Härdle, Park, Tsybakov (JMVA, 1995) to deal with

sharp or non-sharp boundaries (α ≥ 0),

smoother frontiers, i.e. for γ > 0, it is assumed that the bγcth
derivative of the frontier g is (γ − bγc)− Lipschitzian.

The estimator requires a partition In,r , r = 1, . . . , kn of Ω = [0, 1]. On
the r th bin, the estimator is defined as the polynomial of degree bγc
covering all the points and with smallest surface.

ĝθn (x) =
kn∑

r=1

I{x ∈ In,r}Pn,r (x ; θn,r ).

θn,r = arg min
θ

∫
In,r

Pn,r (x ; θ)dx s.t. Pn,r (Xi ; θ) ≥ Yi , Xi ∈ In,r .

Note that if γ ∈ (0, 1] then bγc = 0 and we find back Geffroy’s estimator.
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Piecewise polynomial estimators

Theorem

Under the above assumptions, and for a well chosen partition, piecewise
polynomial estimators have the optimal rate of convergence for the L1−
error, that is nγ/(1+(α+1)γ).

In the case where α = 0 (sharp boundary) and γ ∈ (0, 1], Geffroy’s
estimator has the optimal rate of convergence.

In practice, the estimators are biased downward and discontinuous.
The choice of the partition (kn) is also an issue.
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Illustration: Piecewise linear estimator
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Contributions

Extreme-value estimator (smoothed, bias correction, sharp
boundary, pointwise asymptotic normality)

Linear programming estimator (smoothed, no partition of Ω,
sharp boundary, strong L1− consistency)

High order moments estimator (smoothed, no partition of Ω,
non-sharp boundary, pointwise asymptotic normality, strong
L∞− consistency)
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1. Extreme-value estimator

Support S = {(x , y) ∈ Ω× R ; 0 ≤ y ≤ g(x)} with Ω ⊂ Rd .

Geffroy’s estimator.

ĝ (0)
n (x) =

kn∑
r=1

I{x ∈ In,r}Y ∗n,r .

where {In,r , r = 1, . . . , kn} is a partition of Ω and
Y ∗n,r = max{Yi : Xi ∈ In,r}.

Bias correction.
Assume that Y |X = x is uniformly distributed on [0, g(x)]
(sharp boundary).

ĝ (1)
n (x) =

kn∑
r=1

I{x ∈ In,r}Y ∗n,r (1 + N−1
n,r ),

where Nn,r is the number of Xi ∈ In,r .
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Extreme-value estimator

Smoothing

ĝ (2)
n (x) =

∫
Rd

Khn (x − t)ĝ (1)
n (t)dt

where Khn (u) = h−d
n K (u/hn), K is d− dimensional density with

compact support and hn is a smoothing parameter.
Nonparametric regression over the extreme-values of the sample:

ĝ (2)
n (x) =

kn∑
r=1

∫
In,r

Khn (x − t)dt Y ∗n,r (1 + N−1
n,r )

G & Menneteau (JSPI, 2005), Menneteau (ESAIM, 2008)

Theorem

Assume that g is γ− Lipschitzian, γ ∈ (0, 1]. Under some conditions on
the (hn) and (kn) sequences, for all (x1, ..., xp) ⊂ Ω, the random vector{

nhd/2
n k−1/2

n (ĝ (2)
n (xj)− g(xj)) : 1 ≤ j ≤ p

}
is asymptotically centred Gaussian with diagonal covariance matrix.
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Extreme-value estimator

Choosing hn � n−1/(γ+d) and kn � nd/(γ+d), the rate of
convergence is nγ/(d+γ), up to logarithmic factors.

Optimal L1− rate of convergence for sharp boundaries (α = 0) and
γ− Lipschitzian frontiers, γ ∈ (0, 1].

The rate of convergence of this extreme-value estimator is no more
optimal for smoother frontier functions (γ > 1). The approximation
of g(x) by a constant value Y ∗n,r for x ∈ In,r is not precise enough.
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Illustration: Extreme-value estimator
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Contributions

Extreme-value estimator (smoothed, bias correction, sharp
boundary, pointwise asymptotic normality)

Linear programming estimator (smoothed, no partition of Ω,
sharp boundary, strong L1− consistency)

High order moments estimator (smoothed, no partition of Ω,
non-sharp boundary, pointwise asymptotic normality, strong
L∞− consistency)
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2. Linear programming estimator

Support S = {(x , y) ∈ [0, 1]× R ; 0 ≤ y ≤ g(x)},
where g is γ− Lipschitzian, γ ∈ (0, 1].
The estimator is a linear combination of kernel functions:

ĝn(x) =
n∑

i=1

αiKhn (x − Xi ) .

The coefficients (αi )i=1,...,n are obtained by minimizing the surface of
the estimated support:

min

∫
R

ĝn(x)dx = min
n∑

i=1

αi ,

under the following constraints: for all i = 1, . . . , n

ĝn(Xi ) ≥ Yi (the sample is below the estimated frontier)

αi ≥ 0 (the estimated frontier function is positive)

|ĝ ′n(Xi )| ≤ c0h
γ−1
n (Lipschitz constraint)

Linear Programming (LP) problem.
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Linear programming estimator

Remark 1. Assume that Y |X = x is uniformly distributed on [0, g(x)]

Joint distribution of the sample Σn = (Xi ,Yi )i=1,...,n:

P(Σn | g) =
n∏

i=1

g(Xi )

Cg
· 1

g(Xi )
I{0 ≤ Yi ≤ g(Xi )},

with Cg =
∫

R g(x)dx .

Log-likelihood. Since Cĝn =
∑n

i=1 αi , we have

L(α) = log P(Σn | ĝn) = −n log
n∑

i=1

αi +
n∑

i=1

log I{Yi ≤ ĝn(Xi )}.

The (LP) problem can be read as the maximization of the log-likelihood
under the additional constraints |ĝ ′n(Xi )| ≤ c0h

γ−1
n , i = 1, . . . , n.
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Illustration: Linear programming estimator

(LP): Linear optimisation problem under linear constraints.

Efficient algorithms,

The solution is sparse: only few αi 6= 0 (triangles), not the same
points as ĝn(Xi ) = Yi (squares).
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Linear programming estimator

G, Iouditski & Nazin (ARC, 2005)

Theorem

Assume that g is γ− Lipschitzian, γ ∈ (0, 1]. Under some conditions on
the (hn) sequence (namely hn � (log n/n)1/(γ+1))

∆n :=

∫ 1

0

|ĝn(x)− g(x)|dx = O

((
log n

n

)γ/(1+γ)
)
,

almost surely.

Optimal L1− rate of convergence for sharp boundaries (α = 0),
d = 1 and γ− Lipschitzian frontiers, γ ∈ (0, 1], up to the
logarithmic factor.

Extension to γ > 1 should be possible.
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Linear programming estimator

Sketch of the proof: Lower bound.

Lemma

ĝn(x) ≥ g(x)− O (hγ) a.e.

Proof: There exists a.e. a point (Xi ,Yi ) close to (x , g(x)) i.e. such that
|x − Xi | ≤ c1hn and 0 ≤ g(Xi )− Yi ≤ c2h

γ
n . Then,

g(x)− ĝn(x) = [g(x)− g(Xi )]

+ [g(Xi )− Yi ]

+ [Yi − ĝn(Xi )]

+ [ĝn(Xi )− ĝn(x)] .

The terms are respectively controlled:
i) |g(x)− g(Xi )| ≤ c3h

γ
n : the frontier is γ− Lipschitzian,

ii) 0 ≤ g(Xi )− Yi ≤ c2h
γ
n : choice of the point,

iii) Yi − ĝn(Xi ) ≤ 0 : the point is below the estimated frontier,
iv) |ĝn(Xi )− ĝn(x)| ≤ c0h

γ−1
n c1hn : Lipschitz constraint.
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Linear programming estimator

Sketch of the proof: Upper bound.

Lemma

There exist a solution g̃n to (LP) such that∫ 1

0

g̃n(x)dx ≤
∫ 1

0

g(x)dx + c4h
γ
n a.e.

Proof: The idea is to consider

α̃i,n =

∫ Xi+1,n

Xi−1,n

(g(x) + c4h
γ
n )dx

and show that

g̃n(x) =
n∑

i=1

α̃i,nKhn (x − Xi,n)

satisfies the constraints of (LP).

Stéphane Girard Three different approaches to frontier estimation



24

Contributions

Extreme-value estimator (smoothed, bias correction, sharp
boundary, pointwise asymptotic normality)

Linear programming estimator (smoothed, no partition of Ω,
sharp boundary, strong L1− consistency)

High order moments estimator (smoothed, no partition of Ω,
non-sharp boundary, pointwise asymptotic normality, strong
L∞− consistency)
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High order moments estimator

Support S = {(x , y) ∈ Ω× R ; 0 ≤ y ≤ g(x)} with Ω ⊂ Rd .

Conditional survival function of Y given X = x

F (y | x) = (1− y/g(x))α(x)+1, ∀ x ∈ Ω, ∀ y ∈ [0, g(x)],

where α(x) ≥ −1 (sharp or non-sharp boundary).

Conditional moments: ∀ p ≥ 1,

µp(x) := E(Y p |X = x).

Then, for all p ≥ 1 and θ > 1,

1

g(x)
=

1

(θ − 1)p

[
(θp + 1)

µθp(x)

µθp+1(x)
− (p + 1)

µp(x)

µp+1(x)

]
.
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High order moments estimator

1 Estimate µp(x) by a kernel estimator

µ̂p(x) :=
n∑

i=1

Y p
i Khn (x − Xi )

/
n∑

i=1

Khn (x − Xi ).

The bandwidth hn selects the Xi ’s close to x .

2 To deal with the more general situation

F (y | x) = (1− y/g(x))α(x)+1 `
(
x , (1− y/g(x))−1

)
,

where `(x , .) is a slowly-varying function at infinity, p is replaced
with a sequence pn →∞. The high power pn gives more weight to
the Yi ’s close to g(x).
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High order moments estimator

We further assume a Hall model for the slowly-varying function: ` is
supposed to be bounded on Ω× [1, ∞) and

`(x , z) = C (x) + D(x) z−β(x) (1 + δ(x , z))

where all functions C , D and β are Lipschitzian. Moreover, for all
x ∈ Ω, δ(x , z)→ 0 as z →∞.

Theorem

Let x ∈ Ω such that fX (x) > 0. Then, under some conditions on the (hn)
and (pn) sequences,

vn(x) = n1/2 hd/2
n p(1−α(x))/2

n

(
ĝn(x)

g(x)
− 1

)
d−→ N

(
0,
‖K‖2

2 V (α(x), θ)

fX (x) C (x)

)

G, Guillou & Stupfler (JMVA, 2013)
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High order moments estimator

In the case of γ− Lipschizian frontier, choosing
hn � n−1/(γ(α(x)+1)+d) and pn � nγ/(γ(α(x)+1)+d) yields a the rate of
convergence is nγ/(γ(α(x)+1)+d), up to logarithmic factors.

Optimal L1− rate of convergence for sharp/non-sharp boundaries
(α(x) ≥ 0) and γ− Lipschitzian frontiers, γ ∈ (0, 1].

Compared to Härdle, Park, Tsybakov (JMVA, 1995), the case of
“super-sharp” boundaries is also possible: −1 < α(x) < 0. In this
case, f (y |x)→∞ as y → g(x).
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High order moments estimator

The estimation of the conditional tail-index α(x) is possible with
similar techniques:

αn(x) = (pn + 1)

(
ĝn(x)

µ̂pn (x)

µ̂pn+1(x)
− 1

)

An uniform almost sure consistency result is also available
G, Guillou & Stupfler (ESAIM, 2014):

Theorem

sup
x∈Ω
|ĝn(x)− g(x)| = O

(
n−γ/(γ(ᾱ+1)+d)

)
,

where ᾱ = supx∈Ω α(x).
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Illustration: High order moments estimator

Y |X = x is beta distributed. Best (left) and worst (right) results
obtained over 500 replications.
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Conclusion

Contributions

Extreme-value estimator (smoothed, bias correction, sharp
boundary, pointwise asymptotic normality)

Linear programming estimator (smoothed, no partition of Ω,
sharp boundary, strong L1− consistency)

High order moments estimator (smoothed, no partition of Ω,
non-sharp boundary, pointwise asymptotic normality, strong
L∞− consistency)

Further work

Arbitrary smoothness (γ > 1),

Adaptive choice of the tuning parameters (bandwidth, ...).
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