FRONTIER ESTIMATION VIA REGRESSION ON HIGH POWER-TRANSFORMED DATA

Stéphane Girard

INRIA Rhône-Alpes, team Mistis http://mistis.inrialpes.fr/people/girard

Joint work with Pierre Jacob, Montpellier 2 University

Joint Meeting of the SSC and the SFdS

Outline

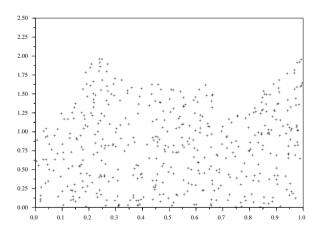
- 1. Frontier estimation.
- 2. Basic principle.
- 3. Theoretical properties.
- 4. Simulation study.

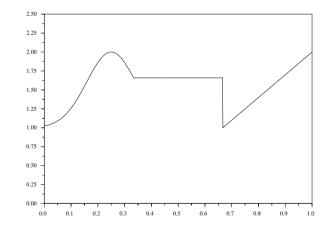
1. Frontier estimation.

Let (X_i, Y_i) , i = 1, ..., n be independent copies of a random pair (X, Y) with support S defined by

$$S = \{(x, y) \in E \times \mathbb{R}; 0 \le y \le g(x)\}.$$

The unknown function $g: E \to \mathbb{R}$ is called the frontier. We address the problem of estimating g in the case $E \subset \mathbb{R}^d$.





Stéphane Girard & Pierre Jacob

Our estimator of the frontier is based on a kernel regression on the power-transformed data. More precisely, the estimator of g is defined for all $x \in \mathbb{R}^d$ by

$$\hat{g}_n(x) = \left((p+1) \sum_{i=1}^n K_h(x - X_i) Y_i^p / \sum_{i=1}^n K_h(x - X_i) \right)^{1/p},$$

where

- $K_h(t) = K(t/h)/h^d$, with K being a probability density function (kernel) on \mathbb{R}^d ,
- $h = h_n$ a non-random sequence (bandwidth) such that $h \to 0$ as $n \to \infty$,
- $p = p_n$ a non-random sequence such that $p \to \infty$ as $n \to \infty$.

Note that, basing on the same principle, a local polynomial estimator has also been proposed.

Joint Meeting of the SSC and the SFdS

2. Basic principle.

Let Y_1, \ldots, Y_n be independent random variables from a $U([0, \theta])$ distribution. Consider

$$\bar{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i \text{ and } Y_{n,n} = \max\{Y_1, \dots, Y_n\}.$$

It is well-known that $2\bar{Y}_n$ and $\frac{n+1}{n}Y_{n,n}$ are two unbiased estimators of θ with variances

$$\operatorname{var}(2\bar{Y}_n) \propto \frac{1}{n} \text{ and } \operatorname{var}\left(\frac{n+1}{n}Y_{n,n}\right) \propto \frac{1}{n^2}.$$

Similarly, introducing for all $p \geq 1$,

$$\bar{Y_n^p} = \frac{1}{n} \sum_{i=1}^n Y_i^p,$$

the random variable $(p+1)\bar{Y}_n^p$ is an unbiased estimator of θ^p with variance

$$var((p+1)\bar{Y}_{n}^{p}) \propto \frac{p^{2}}{n(2p+1)}.$$

Consider the new estimator of θ defined by

$$\hat{\theta}_n = ((p+1)\bar{Y}_n^p)^{1/p} = \left(\frac{p+1}{n}\sum_{i=1}^n Y_i^p\right)^{1/p}.$$

Then, if $p \to \infty$ with $p/n \to 0$, one has the convergence in distribution

$$\sqrt{n(2p+1)}(\hat{\theta}_n - \theta) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \theta^2),$$

which can be compared to the classical result

$$n\left(\frac{n+1}{n}Y_{n,n}-\theta\right)\stackrel{d}{\longrightarrow} \mathcal{EVD}.$$

- Both estimators have (almost) same asymptotical variances,
- In the conditional case, $\hat{\theta}_n$ is easier to implement than $\frac{n+1}{n}Y_{n,n}$ since it does not require the extraction of the conditional maxima.

Back to the conditional case, if Y given X = x follows a $\mathcal{U}([0, g(x)])$ distribution, then

$$r_n(x) = \mathbb{E}((p+1)Y^p|X = x) = g^p(x),$$

and our estimator

$$\hat{g}_n(x) = \left((p+1) \sum_{i=1}^n K_h(x - X_i) Y_i^p / \sum_{i=1}^n K_h(x - X_i) \right)^{1/p}$$

can be interpreted as

$$\hat{g}_n(x) = \hat{r}_n^{1/p}(x)$$

where $\hat{r}_n(x)$ is the classical kernel estimator for the conditional expectation

$$\hat{r}_n(x) = (p+1) \sum_{i=1}^n K_h(x - X_i) Y_i^p / \sum_{i=1}^n K_h(x - X_i).$$

3. Theoretical properties.

Assumptions

(A.1): The frontier g is α -Lipschitz and the X_i 's cdf f is β -Lipschitz, with $0 < \alpha \le \beta \le 1$,

(A.2): $0 < g_{\min} \le g(x), \forall x \in \mathbb{R}^d$,

(A.3): $f(x) \le f_{\max} < \infty, \forall x \in \mathbb{R}^d$,

(A.4): K is a Lipschitzian pdf on \mathbb{R}^d , with support included in B, the unit ball of \mathbb{R}^d .

(A.5): Y given X = x is uniformly distributed on [0, g(x)].

Joint Meeting of the SSC and the SFdS

The frontier estimator can be expanded as

$$\hat{g}_n(x) = \left((p+1) \sum_{i=1}^n K_h(x - X_i) Y_i^p / \sum_{i=1}^n K_h(x - X_i) \right)^{1/p} = \left(\frac{\hat{\varphi}_n(x)}{\hat{f}_n(x)} \right)^{1/p}$$

where:

• $\hat{f}_n(x)$ is the classical kernel estimator

$$\hat{f}_n(x) = \frac{1}{n} \sum_{i=1}^n K_h(x - X_i)$$

of f(x) the X_i 's probability density function.

• $\hat{\varphi}_n(x)$ is the classical kernel estimator

$$\hat{\varphi}_n(x) = \frac{p+1}{n} \sum_{i=1}^n K_h(x - X_i) Y_i^p$$

of
$$\varphi_n(x) = f(x)r_n(x)$$
.

3.1. Preliminary result.

The properties of $\hat{f}_n(x)$ are well-known:

$$\mathbb{E}\left(\frac{\hat{f}_n(x)}{f(x)}\right) = 1 + O(h^{\alpha}),$$

$$\operatorname{var}\left(\frac{\hat{f}_n(x)}{f(x)}\right) = O(1/nh^d).$$

Let us focus on $\hat{\varphi}_n(x)$:

Lemma 1 Under (A.1)-(A.5), if $ph^{\alpha} \to 0$, then for all $x \in \mathbb{R}^d$

$$\mathbb{E}\left(\frac{\hat{\varphi}_n(x)}{\varphi_n(x)}\right) = 1 + O(ph^{\alpha}),$$

$$var\left(\frac{\hat{\varphi}_n(x)}{\varphi_n(x)}\right) = \frac{1}{nh^d} \frac{(p+1)^2}{2p+1} \int_B K^2(s) ds \frac{1}{f(x)} \left[1 + o(1)\right].$$

In view of these results, the asymptotic behavior of $\hat{g}_n(x)$ is driven by $\hat{\varphi}_n(x)$.

3.2. Asymptotic normality.

Theorem 1 Suppose that $nph^{d+2\alpha} \to 0$ and $p/(nh^d) \to 0$. Let us define

$$\sigma_n^{-1}(x) = ((2p+1)nh^d)^{1/2} \left(\frac{f(x)}{\int_B K^2(t)dt}\right)^{1/2}.$$

Then, under $(\mathbf{A.1})$ - $(\mathbf{A.5})$, for all $x \in \mathbb{R}^d$,

$$\sigma_n^{-1}(x) \left(\frac{\widehat{g}_n(x)}{g(x)} - 1 \right) \xrightarrow{d} \mathcal{N}(0, 1).$$

One can choose $h = n^{-1/(d+\alpha)}$ and $p = \varepsilon_n n^{\alpha/(d+\alpha)}$, where (ε_n) is a sequence tending to zero arbitrarily slowly. These choices yield

$$\sigma_n^{-1}(x) = \varepsilon_n^{1/2} n^{\alpha/(d+\alpha)} \left(\frac{2f(x)}{\int_B K^2(t) dt} \right)^{1/2} (1 + o(1)),$$

which is the optimal speed (up to the ε_n factor) for estimating α — Lipschitzian d—dimensional frontiers.

Joint Meeting of the SSC and the SFdS

3.3. Complete convergence.

Although, in the definition of $\hat{g}_n(x)$, the normalizing term $(p+1)^{1/p}$ is specially designed for the case where Y given X = x is uniformly distributed on [0, g(x)], it can be shown that $\hat{g}_n(x)$ is completely convergent to g without assumption neither on the distribution of X nor on the distribution of Y given X = x.

Theorem 2 Suppose (A.1)–(A.4) hold and $nh^d/\log n \to \infty$. Then $\widehat{g}_n(x)$ converges completely to g(x) for all $x \in \mathbb{R}^d$ such that f(x) > 0.

Joint Meeting of the SSC and the SFdS

4. Numerical experiments.

Here, we limit ourselves to unidimensional random variables X (d = 1) with compact support E = [0, 1]. Besides, Y given X = x is distributed on [0, g(x)] such that

$$\mathbb{P}(Y > y | X = x) = \left(1 - \frac{y}{g(x)}\right)^{\gamma},$$

with $\gamma > 0$. This conditional survival distribution function belongs to the Weibull domain of attraction, with extreme value index $-\gamma$.

- The case $\gamma = 1$ corresponds to the situation where Y given X = x is uniformly distributed on [0, g(x)].
- The larger γ is, the smaller the probability $\mathbb{P}(Y > y | X = x)$ is, when y is close to the frontier g(x).

The following kernel is chosen

$$K(t) = \cos^2(\pi t/2) \mathbf{1} \{ t \in [-1, 1] \},$$

with associated bandwidth $h = 4\hat{\sigma}(X)n^{-1/2}$ and with $p = n^{1/2}$.

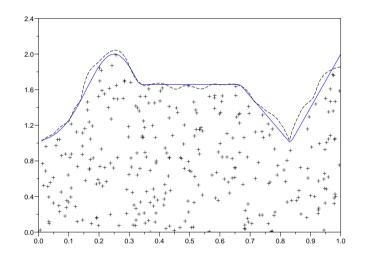
- The dependence of these sequences with respect to n is chosen according to Theorem 1 with $\alpha = d = 1$.
- The multiplicative constant $4\hat{\sigma}(X)$ in h is chosen heuristically.
- ullet The dependence with respect to the standard-deviation of X is inspired from the density estimation case.
- The scale factor 4 was chosen on the basis of intensive simulations.

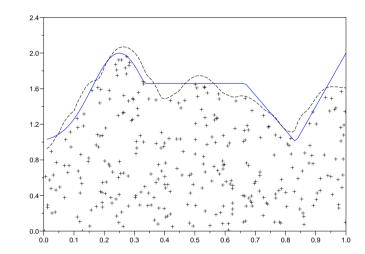
Joint Meeting of the SSC and the SFdS

The experiment involves four steps:

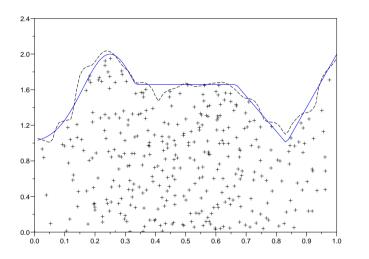
- First, m = 500 replications of the sample are simulated.
- For each of the m previous set of points, the frontier estimator \hat{g}_n is computed.
- The m associated L_1 distances to g are evaluated on a grid.
- The smallest and largest L_1 errors are recorded.

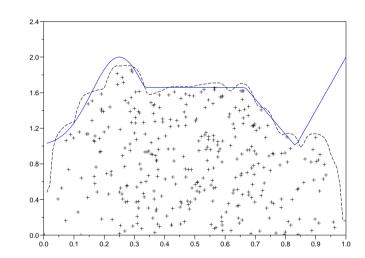
The best situation (i.e. the estimation corresponding to the smallest L_1 error) and the worst situation (i.e. the estimation corresponding to the largest L_1 error) are represented.



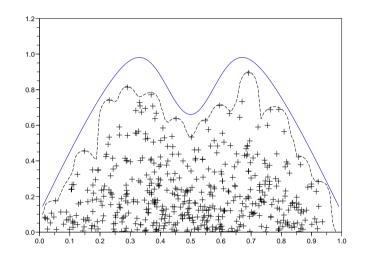


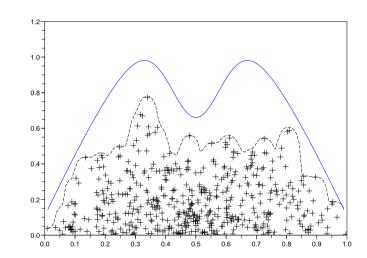
The frontier (blue) and its estimation (black). Left: Best situation, Right: Worst situation. The sample size is n = 300, X is uniformly distributed on [0, 1] and $\gamma = 1$.





The frontier (blue) and its estimation (black). Left: Best situation, Right: Worst situation. The sample size is n = 300, X is Beta(2, 2) distributed on [0, 1] and $\gamma = 1$.





The frontier (blue) and its estimation (black). Left: Best situation, Right: Worst situation. The sample size is n=500, X is Beta(2, 2) distributed on [0, 1] and $\gamma=3$.