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1. Frontier estimation.

Let (X;,Y;),i=1,...,n be independent copies of a random pair (X, Y') with support S
defined by
S={(z,y) € ExR;0<y < g(x)}.

The unknown function g : E — R is called the frontier. We address the problem of
estimating ¢ in the case £ C R%

250 250
225 o 225 -
200 | 200 |
175 175 |
+ M + |
150 - e 150 |
R e 9
" i i
i + i
125 — s 125
o, |
+ . "
100 o < B R R 100
+ " + 4 i
075 | ¥ L 075
. i
“ . +
[ I “ 050 |
+ s 1
.
K L
025 4 + e 025
+ + I o+ + 4
+, + +F i
W g ++ tore
000 e B e L B e s B 00 +——7 71 1 T T~ T T~ T T T T~ T T T
00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 10

Stéphane Girard & Pierre Jacob




Frontier estimation via regression on high power-transformed data Joint Meeting of the SSC and the SFdS

Our estimator of the frontier is based on a kernel regression on the power-transformed
data. More precisely, the estimator of ¢ is defined for all z € R by

1/p
Ggn(x) = <p+1ZKhx— ZKM— > ,

1=1

where
o K),(t) = K(t/h)/h?, with K being a probability density function (kernel) on R,
e h = h, a non-random sequence (bandwidth) such that h — 0 as n — oo,
e p = p, a non-random sequence such that p — oo as n — oo.

Note that, basing on the same principle, a local polynomial estimator has also been
proposed.
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2. Basic principle. |

Let Y7, ..., Y, be independent random variables from a U([0, 6]) distribution. Consider

N
V, = =SV and Y, = max{Yi,....Y,}.
nz an n = max{Y) }

1=1

It is well-known that 2Y,, and ”THYWL are two unbiased estimators of 6 with variances

_ 1 + 1 1
var(2Y,) o« — and var (n—Ynn) X —5.
n n n

Similarly, introducing for all p > 1,
_ 1 <
Y/ =~ Y?.
i

the random variable (p 4+ 1)Y;? is an unbiased estimator of 6?7 with variance

var((p + 1)Y,}) o ﬁ
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Consider the new estimator of 6 defined by

n 1/]7
b = (p+ DY) = (p - ZY?) |
1=1

n
Then, if p — oo with p/n — 0, one has the convergence in distribution

Vn(2p +1)(0, — 0) 4, N(0,6%),

which can be compared to the classical result

n (” Ty - 9) 4, evD.

n

e Both estimators have (almost) same asymptotical variances,

e In the conditional case, 6, is easier to implement than "THYW, since it does not require
the extraction of the conditional maxima.
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Back to the conditional case, if Y given X = x follows a ([0, g(x)]) distribution, then
ro(2) = E((p+ DYPIX = 2) = ¢°(x),
and our estimator

1/p
gn(z) = <p+1ZKhm /ZKM )

=1

can be interpreted as
gn(gj) - 727%/11)(37)

where 7,(x) is the classical kernel estimator for the conditional expectation

= (p+1 ZKM— /ZKhx—
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3. Theoretical properties. |

Assumptions

(A.1): The frontier g is a-Lipschitz and the X;’s cdf f is B-Lipschitz, with
0<a<pB<,

(A.2): 0 < guin < g(2), V2 € R?,
(A.3): f(2) < fuax < 00, Vz € RY,
(A.4): K is a Lipschitzian pdf on R?, with support included in B, the unit ball of RY.

(A.5): Y given X = z is uniformly distributed on [0, g(z)].
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The frontier estimator can be expanded as

1/p . 1/p
() = (puzm /zm ) _(%;ng;)

where:

o fn(a:) is the classical kernel estimator

%;Kh(x—)(

of f(x) the X;’s probability density function.

e p,(x) is the classical kernel estimator

R p+1 n
Yn U .
(x) = " g Knlx — X;)Y

1
1=1
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3.1. Preliminary result.

The properties of f,(z) are well-known:

E(f"(x)> = 1+ 0(h"),

f(z)
van (f”m) — O(1/nh?).

f(z)
Let us focus on ¢, (x):

Lemma 1 Under (A.1)-(A.5), if ph® — 0, then for all v € R?
E (“"”(m)> = 1+ O(ph"),

on(T)

()

W(Z(w)) N nzd 2+ 1 / K dsﬁ 4ol

In view of these results, the asymptotic behavior of g,(x) is driven by ¢, (x).
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3.2. Asymptotic normality.
Theorem 1 Suppose that nph?™>* — 0 and p/(nh?) — 0. Let us define

. 1/2
0, (x) = ((2p + 1)nh®)'/? (f f((Q(zf)dt) ‘

Then, under (A.1)—(A.5), for all x € RY,

o\ (z) @”(%) - 1) —LL N0, 1).

d+a) /(d+a)

One can choose h = n=/( and p = ¢,n" , where (€,,) is a sequence tending to

zero arbitrarily slowly. These choices yield

. 1/2
07;1(33) = gi/Zna/(dJF@) (fBiﬁg(t))dt> (14 o(1)),

which is the optimal speed (up to the g, factor) for estimating a— Lipschitzian d—

dimensional frontiers.
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3.3. Complete convergence.

Although, in the definition of §,(x), the normalizing term (p + 1)*/? is specially designed
for the case where Y given X = x is uniformly distributed on [0, g(x)], it can be shown
that g,(x) is completely convergent to g without assumption neither on the distribution
of X nor on the distribution of Y given X = x.

Theorem 2 Suppose (A.1)-(A.4) hold and nh?/logn — oo. Then G,(x) converges
completely to g(x) for all z € R? such that f(x) > 0.
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4. Numerical experiments.

Here, we limit ourselves to unidimensional random variables X (d = 1) with compact
support E = [0, 1]. Besides, Y given X = z is distributed on [0, g(z)] such that

v
Y
P(Y > y|X = 2) = (1__) ,
( | ) o(2)
with v > 0. This conditional survival distribution function belongs to the Weibull

domain of attraction, with extreme value index —.

e The case v = 1 corresponds to the situation where Y given X = x is uniformly
distributed on [0, g(x)].

e The larger ~ is, the smaller the probability P(Y > y|X = z) is, when vy is close to the
frontier g(z).

Stéphane Girard & Pierre Jacob 13




Frontier estimation via regression on high power-transformed data Joint Meeting of the SSC and the SFdS

The following kernel is chosen
K(t) = cos®(nt/2)1{t € [-1,1]},
with associated bandwidth h = 46(X)n~'/? and with p = n'/?.

e The dependence of these sequences with respect to n is chosen according to Theorem 1
with a = d = 1.

e The multiplicative constant 46(X) in h is chosen heuristically.

e The dependence with respect to the standard-deviation of X is inspired from the
density estimation case.

e The scale factor 4 was chosen on the basis of intensive simulations.
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The experiment involves four steps:
e First, m = 500 replications of the sample are simulated.
e For each of the m previous set of points, the frontier estimator g,, is computed.
e The m associated L; distances to g are evaluated on a grid.
e The smallest and largest L errors are recorded.

The best situation (i.e. the estimation corresponding to the smallest Ly error) and the
worst situation (i.e. the estimation corresponding to the largest Ly error) are represented.
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24 24

The frontier (blue) and its estimation (black). Left: Best situation, Right: Worst
situation. The sample size is n = 300, X is uniformly distributed on [0, 1] and v = 1.
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24 24

The frontier (blue) and its estimation (black). Left: Best situation, Right: Worst
situation. The sample size is n = 300, X is Beta(2, 2) distributed on [0, 1] and v = 1.
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The frontier (blue) and its estimation (black). Left: Best situation, Right: Worst
situation. The sample size is n = 500, X is Beta(2, 2) distributed on [0, 1] and v = 3.
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