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Extreme value theory

Extreme value theory

Let Xi,..., X, be independent copies of a real random variable X with survival
function F = 1 — F. The order statistics associated to this sample are denoted
by . Xl,n S S Xn,n-

Fréchet Maximum domain of attraction

The cumulative distribution function F belongs to the Fréchet maximum
domain of attraction if and only if

F(x) = x"74(x),
where v > 0 is the extreme-value index and £ is a slowly varying function i.e.

L(Ax)

1769 — 1 as x — oo forall A > 1.

This condition is equivalent to F is regularly varying with index —1/y
(heavy-tailed distribution).

4

The asymptotic distribution of estimators of ~ is obtained under a second order
condition.



Extreme value theory
Extreme value theory

Second order condition

There exist a function A(x) — 0 and a second order parameter p < 0 such
that, for all A > 0,

XI|_}n;O ﬁ log (igé:?) =K,(\) = /1A u’du.

|A| is regularly varying with index p.
If p is small, the rate of convergence of ¢(Ax)/{(x) to one is high (and
conversely).

@ p controls the bias of the estimators of ~.

@ p is of primordial importance in the adaptative choice of k which is the
number of upper order statistics X,—x,+1,n < -+ < Xp,n used in the
estimation of ~.

@ A third order condition is needed to deal with the asymptotic distribution
of p estimators.
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Extreme value theory

Third order condition

There exist functions A(x) — 0 and B(x) — 0, a second order parameter p < 0
and a third order parameter 8 < 0 such that, for every A > 0,

A s
Lo = [ 57 [ " s,
1 1

and where the functions |A| and |B| are regularly varying with index p and 3
respectively.
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@ A new class of estimators for the second order parameter p,
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Links with existing estimators,

o New estimators.




Estimation of the second order parameter
Definition of the family of estimators for the second order parameter

The two main ingredients of our approach are
e a random vector T, = T,(X1,...,X,) € R?
e a function ¢ : RY — R

verifying the following assumptions :

@ There exist a random variable w, such that
wp (To =T) = £(p),
where T= *(1,...,1) € R%.
@ Invariance properties
P(x + Al) = 9(x) and ¢(Ax) = ¥(x)
for all x € R? and A € R\ {0}.




Estimation of the second order parameter

Definition of the family of estimators for the second order parameter

@ Invariance (and regularity) properties entail

Y(Ta) = $(wr (To — D) — (£ (p))

o Letting Z, :=¢(T,) and ¢ := 1 o f, one obtains Z, AN o(p).
@ Suppose there exist Jy C R~ and J C R such that ¢ is a bijection Jy — J.

The family of estimators of the second order parameter is thus defined by :

~ [ e NZ) ifZeJ,
Pr=13 o otherwise.




Asymptotic properties
Asymptotic properties

Under the invariance (and regularity) conditions,
o If wy (T, — 1) — £(p) then p, — p.

o If, moreover, v,(w, (T, — 1) — f(p)) <, Na(m(p),¥*Z) where v, — oo,
m € RY and ¥ is a regular d x d matrix then

e (M) V() T V()
volpn=p) =N ( o) DB )




Link with existing estimators

Link with existing estimators

Existing estimators

In the literature, at least two ways of estimating the second order parameter
can be found :

@ Estimators based on rescaled log-spacings j(log Xn—j+1,n — log Xn—j,n),
j=1,...,k
Hall & Welsh (Annals of Statistics, 1985),
Goegebeur et al. (JSPI, 2010),
De Wet et al. (SPL, 2012), ...
@ Estimators based on log-excesses, (log Xp—jt1,n — log Xn—k.n), j=1,...,k
Gomes et al. (Extremes, 2002),
Fraga-Alves et al. (Portugaliae Mathematica, 2003),
Ciuperca & Mercadier (Extremes, 2010), ...




Link with existing estimators

Link with existing estimators based on rescaled log-spacings

1. Estimators based on rescaled log-spacings : j(log Xn—j+1 — log Xn—;)

k .
1 J :
(1) = D2 e () g o = oa X

o H: is a kernel function indexed by a parameter 7 > 0.

@ This statistics is used for instance by Beirlant et al. (Extremes, 1999) to
estimate the extreme-value index v and by Hall & Welsh (Annals of
Statistics, 1985), Goegebeur et al. (JSPI, 2010), De Wet et al. (SPL,
2012) to estimate the second order parameter p.

@ They proved asymptotic normality of these estimators under a technical
condition on the kernel, denoted by (C1) hereafter.




Link with existing estimators

Links with existing estimators based on rescaled log-spacings

Statistics T,

Suppose the third order condition and (C1) hold. If the sequence k satisfies

k — o0, n/k — co, k?A(n/k) — oo,
K*2A%(n/k) — Aa and k/2A(n/k)B(n/k) — As,
then the random vector

T, := ((,‘?k(7',-)/'y)9"7 i=1,.. .,d)7

properly normalised in asymptotically Gaussian. More precisely,
wn = A(n/k)/v(1 + 0,(1)), va = k*'2A(n/k) and

f(p) = (a,—/ol H, (u)u™"du, i = 1,...,d).




Link with ng estimators

Link with existing estimators based on rescaled log-spacings

Statistics T,
o Let d =8, T, depends on 16 parameters 61, ...,0s,71,...,7s.
@ Suppose 601 = 0, 03 = 04, 05 = 05 and 07 = Os.

Function v

The chosen function 1 is given by :

Y(x1,...,x8) = and thus

X1 — X2 X7 — Xg
X3 — X4

)(9193)/(9597)

X5 — X6

Z, =

R (7s) — R{*(ma) \ Re*(15) — R{®(7s)

”
Asymptotic normality
In this situation, the estimator of p is asymptotically Gaussian.

@ The estimator still depends on 12 parameters.
@ The estimator is not necessarily explicit, the inverse of ¢ has to be
computed numerically.

61—6 05 —06
Ry (1) — R () <Rf7(77) Rf7(78)>(1 D/ (Es=0n)

12



Link with existing estimators

o Let H (u) = (7 + 1)u",

@ To simplify, we assume that 7 = 73, 72 = 73 and 76 = 77. There are 9
remaining parameters and ¢ is given in this case by :

©(p) = cste {u} [M] (61—63)/(65—67)

T — pP T4 — P

Three explicit estimators can be derived :

@ 01 — 03 = 05 — 07, Goegebeur et al. (JSPI, 2010), 8 free parameters,
@ 01 = 03, new estimator, 8 free parameters,

. T1Z, —cste s
P Z, — cste
@ 71 = 75, Nnew estimator, 8 free parameters,

. 7423/(671) — cstel/C-1
p =

Zf}/(éfl) _ cstel/(6-1)




Link with existing estimators

Link with existing estimators based on log-excesses

2. Estimators based on log-excesses : (log Xn—jt1,n — log Xa—k,n)

k o
1
Sk(TCY EZ Ta<k+1)(|ogx—j+1n IOan kn) ) CY>0,

o G- is a positive function.

@ This statistics is used for instance by Dekkers et al. (Annals of statistics,
1989), Gomes & Martins (JSPI, 2001), Segers (JSPI, 2001) to estimate
the extreme-value index v and by Hall & Welsh (Annals of Statistics,
1985), Peng (SPL, 1998), Fraga et al. (MMS, 2003), Ciuperca &
Mercadier (Extremes, 2010), to estimate the second order parameter p.

@ They proved the asymptotic normality under a technical condition on the
function G- ., denoted by (C2) hereafter.




Link with existing estimators

Links with existing estimators based on log-excesses

Statistics T,

Suppose the third order condition and (C2) hold. If the sequence k satisfies

k — 0o, n/k — oo, k*?A(n/k) — oo,

K*?A%(n/k) — Aa and k/2A(n/k)B(n/k) — A,

then the random vector

0;
T, — <<5k(“’_a')> Q= 1,...,d>
e

properly normalised in asymptotically Gaussian. More precisely,
wn = A(n/k)/v(1 + 0,(1)), va = k*?A(n/k) and

F(p) = (—e,a,- /01 Gr.on (1) (log(1/ )~ Ky (u)dur, i = 17...,d>7




Link with existing estimators

Link with existing estimators based on log-excesses

Statistics T,

o Let d =8, T, depends on 24 parameters 61, ...,0s,71,...,78,Q1,...,Qg.

@ Suppose 611 = Oran, O3a3 = Osau, Osas = Bsais and 707 = Ogas.

Function v

The chosen function 1 is given by :

_ _ (01001 —033) /(055 —O7x7)
P(xi, ..., x5) = - (u) and thus
X3 — Xa X5 — X6
(6101 —0303) /(0505 — 07 7)
S _Si(mo) = SE(m,2) (S (mron) = SP(m0e) Y
=
Se (73, a3) — S (74, @) \ S (75, @5) — 5% (75, 6)

v

Asymptotic normality

In this situation, the estimator of p is asymptotically Gaussian.

@ The estimator still depends on 20 parameters.
@ The estimator is not necessarily explicit, the inverse of ¢ has to be
computed numerically.



Link w X g estimators

Link with existing estimators based on log-excesses

o Let Gra(u)=(1—u")/ [5(1—x")(~logx)“dx,
o To simplify, we assumethat n === =" =T =a7 =1,
as = 3 and ag = 2. There are 11 remaining parameters.

Three explicit estimators can be recovered :
(] 01:93, a1:a2:a3:a4:1, 71:2and T4:3,
Ciuperca & Mercadier (Extremes, 2010), no free parameter
(] 91293, a1:a3:a4zland7'1:7'4:a2:2,
Ciuperca & Mercadier (Extremes, 2010), no free parameter
(] 01:03:06:08:a2:a4:a5:7—1:7'4:1, a3:04:97:2,
05 = 3 and a1 = 4, Gomes et al. (Extremes, 2002), no free parameter




Link wi X g estimators

Link with existing estimators based on log-excesses

Three new estimators can be built :

] 01—92:295—97, a1:a2:a3:a4:1, 71:a5:2and 7‘4:3,
3 free parameters
. 67,4 4 cste
P= 3Z, + 4 cste
) 01762:295797, a1:a3:a4zland T1 :T4:Oé2:Oé5:2,
3 free parameters
. _ 62, —4cste
P =57 "1 cste
e =ms=o1=1 ao =az3 =as =2 and oy = 3,
4 free parameters
_ cstel/(6+1)

3Z71/(6+1)
P= Z,}/(6+1) — cstel/(6+1)

If § = 0, we find back the estimator introduced in Fraga-Alves et al.
(Portugaliae Mathematica, 2003)




lllustration on simulations
[llustration on simulations

Estimators based on rescaled log-spacings

e Hr(u)=(mi+1)u™, i=1,..,8

@ 71,...,73 and 01,0>,03,0s,...,05 chosen as in Goegebeur et al. (JSPI,
2010) and De Wet et al. (SPL, 2012) : ; = 1.25, 7» = 73 = 1.75,
Ty = Tg = 2, T5 = 1.5, Te — T7 — 1.75, 91 = 92 = 0.01, 05 = 96 =0.02 and
07 = 0g = 0.04.

@ 03 =64 =0.01 4 0.02§ for 6 > 0.

A simple expression if obtained for ¢ :

2—p 15—p 0
= cst
#lp) = ot [125—[)] [ 2—p }
Its inverse is explicit when 6 = 0 (new explicit estimator) or § = 1 (Goegebeur

et al. (JSPI, 2010)). We shall also consider the case § = 1.5 which can be
shown to be in some sense "optimal” when p = 0 (new implicit estimator) .
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[llustration on simulations

Burr distribution

Survival distribution function :

1—F(x)=(1+x"")*

with x > 0 and p < 0.
o Extreme-value index v = 1, second order parameter p < 0.

@ The third order condition holds with 8 = p, A(x) = vx”/(1 — x*) and
B(x) = px” /(1 — x*).

v

Experimental design

@ Sample size n = 5000, 500 replications.
@ Intermediate sequence k = 1500, ...,4995.

@ Second order parameter p = —0.25 and p = —1.

\




lllustration on simulations

Asymptotic mean-squared error & empirical mean-squared error
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Left : Asymptotic mean-squared error, Right : empirical mean-squared error.



lllustration on simulations

Asymptotic mean-squared error & mean-squared error

AMSE
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lllustration on simulations

Conclusion

+ General framework for building estimators of the second order parameter.

+ Asymptotic normality of the estimators is direclty derived from the
asymptotic behavior of rescaled log-spacings or log-excesses.
+ Efficient tool for studying existing estimators or defining new ones.

— But ... How to compare in practice estimators depending on so many
parameters ?

E. Deme, L. Gardes and S. Girard. On the estimation of the second order
parameter for heavy-tailed distributions, REVSTAT - Statistical Journal, 11,
277-299, 2013.
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