Estimation of the second order parameter for heavy-tailed distributions

Stéphane Girard

Inria Grenoble Rhône-Alpes, France

joint work with El Hadji Deme (Université Gaston-Berger, Sénégal) and Laurent Gardes (Université de Strasbourg, France)

- Extreme value theory
- Estimation of the second order parameter
- Asymptotic properties
- 4 Link with existing estimators
- 5 Illustration on simulations

Extreme value theory

Let X_1, \ldots, X_n be independent copies of a real random variable X with survival function $\bar{F} = 1 - F$. The order statistics associated to this sample are denoted by : $X_{1,n} \leq \cdots \leq X_{n,n}$.

Fréchet Maximum domain of attraction

The cumulative distribution function F belongs to the Fréchet maximum domain of attraction if and only if

$$\bar{F}(x) = x^{-1/\gamma} \ell(x),$$

where $\gamma > 0$ is the extreme-value index and ℓ is a slowly varying function i.e.

$$\frac{\ell(\lambda x)}{\ell(x)} \to 1 \text{ as } x \to \infty \text{ for all } \lambda \ge 1.$$

This condition is equivalent to \bar{F} is regularly varying with index $-1/\gamma$ (heavy-tailed distribution).

The asymptotic distribution of estimators of γ is obtained under a second order condition.

Second order condition

There exist a function $A(x) \to 0$ and a second order parameter $\rho \le 0$ such that, for all $\lambda > 0$,

$$\lim_{x\to\infty}\frac{1}{A(x)}\log\left(\frac{\ell(\lambda x)}{\ell(x)}\right)=K_\rho(\lambda):=\int_1^\lambda u^{\rho-1}du.$$

- |A| is regularly varying with index ρ .
- If ρ is small, the rate of convergence of $\ell(\lambda x)/\ell(x)$ to one is high (and conversely).
- ρ controls the bias of the estimators of γ .
- \bullet ρ is of primordial importance in the adaptative choice of k which is the number of upper order statistics $X_{n-k,+1,n} < \cdots < X_{n,n}$ used in the estimation of γ .
- A third order condition is needed to deal with the asymptotic distribution of *p* estimators.

Third order condition

There exist functions $A(x) \to 0$ and $B(x) \to 0$, a second order parameter $\rho < 0$ and a third order parameter $\beta < 0$ such that, for every $\lambda > 0$,

$$\lim_{x\to\infty}\frac{\left(\log\ell(\lambda x)-\log\ell(x)\right)/A(x)-\mathcal{K}_\rho(\lambda)}{B(x)}=L_{(\rho,\beta)}(\lambda)$$

with

Extreme value theory

$$L_{(\rho,\beta)}(\lambda) = \int_1^{\lambda} s^{\rho-1} \int_1^s u^{\beta-1} du ds,$$

and where the functions |A| and |B| are regularly varying with index ρ and β respectively.

Contributions

- A new class of estimators for the second order parameter ρ ,
- Asymptotic properties,
- Links with existing estimators,
- New estimators.

Definition of the family of estimators for the second order parameter

Model

The two main ingredients of our approach are

- a random vector $T_n = T_n(X_1, \ldots, X_n) \in \mathbb{R}^d$
- ullet a function $\psi: \mathbb{R}^d o \mathbb{R}$

verifying the following assumptions:

• There exist a random variable ω_n such that

$$\omega_n^{-1}(T_n-\mathbb{I})\stackrel{\mathbb{P}}{\longrightarrow} f(\rho),$$

where
$$\mathbb{I} = {}^t(1,\ldots,1) \in \mathbb{R}^d$$
.

Invariance properties

$$\psi(x + \lambda \mathbb{I}) = \psi(x)$$
 and $\psi(\lambda x) = \psi(x)$

for all $x \in \mathbb{R}^d$ and $\lambda \in \mathbb{R} \setminus \{0\}$.

Idea

• Invariance (and regularity) properties entail

$$\psi(\mathcal{T}_n) = \psi(\omega_n^{-1}(\mathcal{T}_n - \mathbb{I})) \stackrel{\mathbb{P}}{\longrightarrow} \psi(f(
ho))$$

- Letting $Z_n := \psi(T_n)$ and $\varphi := \psi \circ f$, one obtains $Z_n \stackrel{\mathbb{P}}{\longrightarrow} \varphi(\rho)$.
- Suppose there exist $J_0 \subseteq \mathbb{R}^-$ and $J \subset \mathbb{R}$ such that φ is a bijection $J_0 \to J$.

Definition

The family of estimators of the second order parameter is thus defined by :

$$\hat{\rho}_n = \left\{ \begin{array}{ll} \varphi^{-1}(Z_n) & \text{if } Z_n \in J, \\ 0 & \text{otherwise.} \end{array} \right.$$

Theorem

Under the invariance (and regularity) conditions,

- If $\omega_n^{-1}(T_n \mathbb{I}) \stackrel{\mathbb{P}}{\longrightarrow} f(\rho)$ then $\hat{\rho}_n \stackrel{\mathbb{P}}{\longrightarrow} \rho$.
- If, moreover, $v_n(\omega_n^{-1}(T_n \mathbb{I}) f(\rho)) \xrightarrow{d} \mathcal{N}_d(m(\rho), \gamma^2 \Sigma)$ where $v_n \to \infty$, $m \in \mathbb{R}^d$ and Σ is a regular $d \times d$ matrix then

$$\nu_n(\hat{\rho}_n - \rho) \stackrel{d}{\longrightarrow} \mathcal{N}\left(\frac{{}^t m \nabla \psi(f(\rho))}{\varphi'(\rho)}, \gamma^2 \frac{{}^t \nabla \psi(f(\rho)) \; \Sigma \; \nabla \psi(f(\rho))}{(\varphi'(\rho))^2}\right).$$

Existing estimators

In the literature, at least two ways of estimating the second order parameter can be found :

- Estimators based on rescaled log-spacings $j(\log X_{n-j+1,n} \log X_{n-j,n})$, $j=1,\ldots,k$ Hall & Welsh (Annals of Statistics, 1985), Goegebeur *et al.* (JSPI, 2010), De Wet *et al.* (SPL, 2012), ...
- Estimators based on log-excesses, ($\log X_{n-j+1,n} \log X_{n-k,n}$), $j=1,\ldots,k$ Gomes *et al.* (Extremes, 2002), Fraga-Alves *et al.* (Portugaliae Mathematica, 2003), Ciuperca & Mercadier (Extremes, 2010), ...

Link with existing estimators based on rescaled log-spacings

1. Estimators based on rescaled log-spacings : $j(\log X_{n-i+1} - \log X_{n-i})$

$$R_k(au) = rac{1}{k} \sum_{i=1}^k H_{ au}\left(rac{j}{k+1}
ight) j(\log X_{n-j+1,n} - \log X_{n-j,n}),$$

- H_{τ} is a kernel function indexed by a parameter $\tau > 0$.
- This statistics is used for instance by Beirlant et al. (Extremes, 1999) to estimate the extreme-value index γ and by Hall & Welsh (Annals of Statistics, 1985), Goegebeur et al. (JSPI, 2010), De Wet et al. (SPL, 2012) to estimate the second order parameter ρ .
- They proved asymptotic normality of these estimators under a technical condition on the kernel, denoted by (C1) hereafter.

Links with existing estimators based on rescaled log-spacings

Statistics T_n

Suppose the third order condition and (C1) hold. If the sequence k satisfies

$$k \to \infty$$
, $n/k \to \infty$, $k^{1/2}A(n/k) \to \infty$,

$$k^{1/2}A^2(n/k) \rightarrow \lambda_A$$
 and $k^{1/2}A(n/k)B(n/k) \rightarrow \lambda_B$,

then the random vector

$$T_n := \left((R_k(\tau_i)/\gamma)^{\theta_i}, \ i = 1, \ldots, d \right),$$

properly normalised in asymptotically Gaussian. More precisely,

$$\omega_n = A(n/k)/\gamma(1+o_p(1)), \ v_n = k^{1/2}A(n/k)$$
 and

$$f(\rho) = \left(\theta_i \int_0^1 H_{\tau_i}(u) u^{-\rho} du, \ i = 1, \dots, d\right).$$

Statistics T_n

- Let d = 8, T_n depends on 16 parameters $\theta_1, \ldots, \theta_8, \tau_1, \ldots, \tau_8$.
- Suppose $\theta_1 = \theta_2$, $\theta_3 = \theta_4$, $\theta_5 = \theta_6$ and $\theta_7 = \theta_8$.

Function ψ

The chosen function ψ is given by :

$$\psi(x_1,\ldots,x_8) = \frac{x_1 - x_2}{x_3 - x_4} \left(\frac{x_7 - x_8}{x_5 - x_6}\right)^{(\theta_1 - \theta_3)/(\theta_5 - \theta_7)} \text{ and thus}$$

$$Z_n = \frac{R_k^{\theta_1}(\tau_1) - R_k^{\theta_1}(\tau_2)}{R_k^{\theta_3}(\tau_3) - R_k^{\theta_3}(\tau_4)} \left(\frac{R_k^{\theta_7}(\tau_7) - R_k^{\theta_7}(\tau_8)}{R_k^{\theta_5}(\tau_5) - R_k^{\theta_5}(\tau_6)} \right)^{(\theta_1 - \theta_3)/(\theta_5 - \theta_7)}$$

Asymptotic normality

In this situation, the estimator of ρ is asymptotically Gaussian.

- The estimator still depends on 12 parameters.
- The estimator is not necessarily explicit, the inverse of φ has to be computed numerically.

• Let $H_{\tau}(u) = (\tau + 1)u^{\tau}$,

• To simplify, we assume that $\tau_2 = \tau_3$, $\tau_4 = \tau_8$ and $\tau_6 = \tau_7$. There are 9 remaining parameters and φ is given in this case by :

$$\varphi(\rho) = \operatorname{cste}\left[\frac{\tau_4 - \rho}{\tau_1 - \rho}\right] \left[\frac{\tau_5 - \rho}{\tau_4 - \rho}\right]^{(\theta_1 - \theta_3)/(\theta_5 - \theta_7)}$$

Three explicit estimators can be derived:

- $\theta_1 \theta_3 = \theta_5 \theta_7$, Goegebeur et al. (JSPI, 2010), 8 free parameters,
- $\theta_1 = \theta_3$, new estimator, 8 free parameters,

$$\hat{\rho} = \frac{\tau_1 Z_n - \text{cste } \tau_4}{Z_n - \text{cste}}$$

• $\tau_1 = \tau_5$, new estimator, 8 free parameters,

$$\hat{\rho} = \frac{\tau_4 Z_n^{1/(\delta - 1)} - \mathsf{cste}^{1/(\delta - 1)} \, \tau_1}{Z_n^{1/(\delta - 1)} - \mathsf{cste}^{1/(\delta - 1)}}$$

Link with existing estimators

Link with existing estimators based on log-excesses

2. Estimators based on log-excesses : $(\log X_{n-j+1,n} - \log X_{n-k,n})$

$$S_k(\tau,\alpha) = \frac{1}{k} \sum_{i=1}^k G_{\tau,\alpha}\left(\frac{j}{k+1}\right) \left(\log X_{n-j+1,n} - \log X_{n-k,n}\right)^{\alpha}, \ \alpha > 0,$$

- $G_{\tau,\alpha}$ is a positive function.
- This statistics is used for instance by Dekkers et al. (Annals of statistics, 1989), Gomes & Martins (JSPI, 2001), Segers (JSPI, 2001) to estimate the extreme-value index γ and by Hall & Welsh (Annals of Statistics, 1985), Peng (SPL, 1998), Fraga et al. (MMS, 2003), Ciuperca & Mercadier (Extremes, 2010), to estimate the second order parameter ρ .
- They proved the asymptotic normality under a technical condition on the function $G_{\tau,\alpha}$, denoted by **(C2)** hereafter.

Links with existing estimators based on log-excesses

Statistics T_n

Suppose the third order condition and (C2) hold. If the sequence k satisfies

$$k \to \infty$$
, $n/k \to \infty$, $k^{1/2}A(n/k) \to \infty$,

$$k^{1/2}A^2(n/k) \rightarrow \lambda_A$$
 and $k^{1/2}A(n/k)B(n/k) \rightarrow \lambda_B$,

then the random vector

$$\mathcal{T}_n = \left(\left(\frac{\mathcal{S}_k(au_i, lpha_i)}{\gamma^{lpha_i}} \right)^{ heta_i}, \ i = 1, \ldots, d \right)$$

properly normalised in asymptotically Gaussian. More precisely, $\omega_n = A(n/k)/\gamma(1+o_n(1)), v_n = k^{1/2}A(n/k)$ and

$$f(\rho) = \left(-\theta_i \alpha_i \int_0^1 G_{\tau_i,\alpha_i}(u) (\log(1/u))^{\alpha_i-1} K_{-\rho}(u) du, \ i=1,\ldots,d\right),$$

Statistics T_n

- Let d = 8, T_n depends on 24 parameters $\theta_1, \ldots, \theta_8, \tau_1, \ldots, \tau_8, \alpha_1, \ldots, \alpha_8$.
- Suppose $\theta_1\alpha_1=\theta_2\alpha_2$, $\theta_3\alpha_3=\theta_4\alpha_4$, $\theta_5\alpha_5=\theta_6\alpha_6$ and $\theta_7\alpha_7=\theta_8\alpha_8$.

Function ψ

The chosen function ψ is given by :

$$\psi(x_1,\dots,x_8) = \frac{x_1 - x_2}{x_3 - x_4} \left(\frac{x_7 - x_8}{x_5 - x_6}\right)^{(\theta_1\alpha_1 - \theta_3\alpha_3)/(\theta_5\alpha_5 - \theta_7\alpha_7)} \text{ and thus}$$

$$Z_{n} = \frac{S_{k}^{\theta_{1}}(\tau_{1}, \alpha_{1}) - S_{k}^{\theta_{2}}(\tau_{2}, \alpha_{2})}{S_{k}^{\theta_{3}}(\tau_{3}, \alpha_{3}) - S_{k}^{\theta_{4}}(\tau_{4}, \alpha_{4})} \left(\frac{S_{k}^{\theta_{7}}(\tau_{7}, \alpha_{7}) - S_{k}^{\theta_{8}}(\tau_{8}, \alpha_{8})}{S_{k}^{\theta_{5}}(\tau_{5}, \alpha_{5}) - S_{k}^{\theta_{6}}(\tau_{6}, \alpha_{6})}\right)^{(\theta_{1}\alpha_{1} - \theta_{3}\alpha_{3})/(\theta_{5}\alpha_{5} - \theta_{7}\alpha_{7})}$$

Asymptotic normality

In this situation, the estimator of ρ is asymptotically Gaussian.

- The estimator still depends on 20 parameters.
- The estimator is not necessarily explicit, the inverse of φ has to be computed numerically.

Link with existing estimators based on log-excesses

Examples

- Let $G_{\tau,\alpha}(u) = (1 u^{\tau}) / \int_0^1 (1 x^{\tau}) (-\log x)^{\alpha} dx$,
- To simplify, we assume that $\tau_2 = \tau_3 = \tau_5 = \tau_6 = \tau_7 = \tau_8 = \alpha_7 = 1$, $\alpha_6 = 3$ and $\alpha_8 = 2$. There are 11 remaining parameters.

Three explicit estimators can be recovered :

- $\theta_1 = \theta_3$, $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 1$, $\tau_1 = 2$ and $\tau_4 = 3$. Ciuperca & Mercadier (Extremes, 2010), no free parameter
- $\theta_1 = \theta_3$, $\alpha_1 = \alpha_3 = \alpha_4 = 1$ and $\tau_1 = \tau_4 = \alpha_2 = 2$, Ciuperca & Mercadier (Extremes, 2010), no free parameter
- $\theta_1 = \theta_3 = \theta_6 = \theta_8 = \alpha_2 = \alpha_4 = \alpha_5 = \tau_1 = \tau_4 = 1, \ \alpha_3 = \theta_4 = \theta_7 = 2,$ $\theta_5 = 3$ and $\alpha_1 = 4$, Gomes et al. (Extremes, 2002), no free parameter

Link with existing estimators based on log-excesses

Examples

Three new estimators can be built :

• $\theta_1 - \theta_2 = 2\theta_5 - \theta_7$, $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 1$, $\tau_1 = \alpha_5 = 2$ and $\tau_4 = 3$, 3 free parameters

$$\hat{\rho} = \frac{6Z_n + 4 \text{ cste}}{3Z_n + 4 \text{ cste}}$$

• $\theta_1 - \theta_2 = 2\theta_5 - \theta_7$, $\alpha_1 = \alpha_3 = \alpha_4 = 1$ and $\tau_1 = \tau_4 = \alpha_2 = \alpha_5 = 2$, 3 free parameters

$$\hat{\rho} = \frac{6Z_n - 4 \text{ cste}}{2Z_n - 1 \text{ cste}}$$

• $\tau_1 = \tau_4 = \alpha_1 = 1$, $\alpha_2 = \alpha_3 = \alpha_5 = 2$ and $\alpha_4 = 3$, 4 free parameters

$$\hat{\rho} = \frac{3Z_n^{1/(\delta+1)} - \mathsf{cste}^{1/(\delta+1)}}{Z_n^{1/(\delta+1)} - \mathsf{cste}^{1/(\delta+1)}}$$

If $\delta = 0$, we find back the estimator introduced in Fraga-Alves *et al.* (Portugaliae Mathematica, 2003)

Illustration on simulations

Estimators based on rescaled log-spacings

- \bullet $H_{\tau_i}(u) = (\tau_i + 1)u^{\tau_i}, i = 1, ..., 8$
- $\tau_1, ..., \tau_8$ and $\theta_1, \theta_2, \theta_3, \theta_5, ..., \theta_8$ chosen as in Goegebeur et al. (JSPI, 2010) and De Wet *et al.* (SPL, 2012) : $\tau_1 = 1.25$, $\tau_2 = \tau_3 = 1.75$, $au_4 = au_8 = 2$, $au_5 = 1.5$, $au_6 = au_7 = 1.75$, $heta_1 = heta_2 = 0.01$, $heta_5 = heta_6 = 0.02$ and $\theta_7 = \theta_8 = 0.04$.
- $\theta_3 = \theta_4 = 0.01 + 0.02\delta$ for $\delta > 0$.

A simple expression if obtained for φ :

$$\varphi(\rho) = \operatorname{cste}\left[\frac{2-\rho}{1.25-\rho}\right] \left[\frac{1.5-\rho}{2-\rho}\right]^{\delta}$$

Its inverse is explicit when $\delta = 0$ (new explicit estimator) or $\delta = 1$ (Goegebeur et al. (JSPI, 2010)). We shall also consider the case $\delta=1.5$ which can be shown to be in some sense "optimal" when $\rho = 0$ (new implicit estimator).

Duit distribution

Survival distribution function:

$$1 - F(x) = (1 + x^{-\rho})^{1/\rho}$$

with x > 0 and $\rho < 0$.

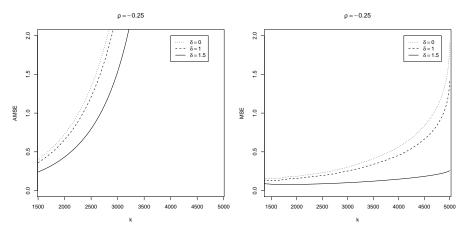
- Extreme-value index $\gamma = 1$, second order parameter $\rho < 0$.
- The third order condition holds with $\beta = \rho$, $A(x) = \gamma x^{\rho}/(1 x^{\rho})$ and $B(x) = \rho x^{\rho}/(1 x^{\rho})$.

Experimental design

- Sample size n = 5000, 500 replications.
- Intermediate sequence k = 1500, ..., 4995.
- Second order parameter $\rho = -0.25$ and $\rho = -1$.

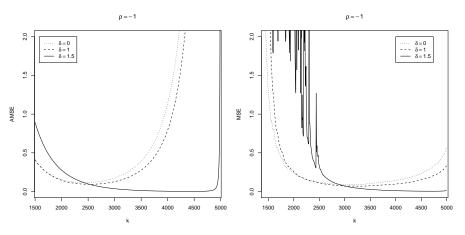
Illustration on simulations

Asymptotic mean-squared error & empirical mean-squared error



Left: Asymptotic mean-squared error, Right: empirical mean-squared error.

Asymptotic mean-squared error & mean-squared error



Left: Asymptotic mean-squared error, Right: empirical mean-squared error.

Conclusion

- + General framework for building estimators of the second order parameter.
- + Asymptotic normality of the estimators is directly derived from the asymptotic behavior of rescaled log-spacings or log-excesses.
- + Efficient tool for studying existing estimators or defining new ones.
- But ... How to compare in practice estimators depending on so many parameters?

E. Deme, L. Gardes and S. Girard. On the estimation of the second order parameter for heavy-tailed distributions, *REVSTAT - Statistical Journal*, **11**, 277–299, 2013.