A unified statistical model for Pareto and Weibull tail- distributions

Stéphane Girard

INRIA Rhône-Alpes, Team Mistis http://mistis.inrialpes.fr/people/girard/

June, 2009

Joint work with Laurent Gardes (Mistis, INRIA Rhône-Alpes) and Armelle Guillou (Université de Strasbourg) 1 Motivation: Weibull tail- distributions

 \bigcirc φ - tail distributions

3 Further work

Definition. Let $X_1, X_2, ..., X_n$ be a sequence of independent and identically distributed random variables with cumulative distribution function F such that

$$1 - F(x) = \exp(-H(x)), \ H^{\leftarrow}(t) = \inf\{x, \ H(x) \ge t\} = t^{\theta} \ell(t),$$

where

- $\theta > 0$ is the Weibull tail- index,
- ℓ is a slowly varying function *i.e.*

$$\ell(\lambda x)/\ell(x) \to 1$$
 as $x \to \infty$ for all $\lambda > 0$.

The inverse failure rate function H^{\leftarrow} is said to be regularly varying at infinity with index θ and this property is denoted by $H^{\leftarrow} \in \mathcal{R}_{\theta}$.

Remarks.

- Weibull tail- distributions are included in the Gumbel Maximum Domain of Attraction.
- **Second order condition:** There exist $\rho \leq 0$ and $b(x) \to 0$ such that uniformly locally on $\lambda \geq 1$

$$\log\left(\frac{\ell(\lambda x)}{\ell(x)}\right) \sim b(x)K_{\rho}(\lambda), \text{ when } x \to \infty,$$

with
$$K_{\rho}(\lambda) = \int_{1}^{\lambda} u^{\rho-1} du$$
.

Examples.

	θ	$\ell(x)$	<i>b</i> (<i>x</i>)	ρ
$Gaussian(\mu,\sigma^2)$	1/2	$2^{1/2}\sigma - \frac{\sigma}{2^{3/2}}\frac{\log x}{x} + O\left(\frac{1}{x}\right)$	$\frac{1}{4} \frac{\log x}{x}$	-1
$Gamma(\alpha,\beta)$	1	$\frac{1}{\beta} + \frac{\alpha - 1}{\beta} \frac{\log x}{x} + O\left(\frac{1}{x}\right)$	$(1-\alpha)\frac{\log x}{x}$	-1
$Weibull(\alpha,\lambda)$	$1/\alpha$	λ	0	$-\infty$

Estimation of the Weibull tail- index.

1. [Beirlant et al, 1996] proposed an estimator based on the Hill statistics:

$$\hat{\theta}_n = \frac{\frac{1}{k_n} \sum_{i=1}^{k_n} (\log X_{n-i+1,n} - \log X_{n-k_n+1,n})}{\frac{1}{k_n} \sum_{i=1}^{k_n} (\log \log (n/i) - \log \log (n/k_n))},$$

where (k_n) is an intermediate sequence, *i.e.* a sequence such that $k_n \to \infty$ and $k_n/n \to 0$ as $n \to \infty$.

Estimation of the Weibull tail- index.

2. [Gardes & Girard, 2006] proposed different normalizing sequences:

$$\hat{\theta}_n = \frac{1}{T_n} \frac{1}{k_n} \sum_{i=1}^{k_n} (\log X_{n-i+1,n} - \log X_{n-k_n+1,n})$$

where (T_n) is such that $T_n \log(n/k_n) \to 1$ as $n \to \infty$.

3. Introduction of weights [Gardes & Girard, 2008]:

$$\hat{\theta}_n = \frac{\displaystyle\sum_{i=1}^{k_n} \alpha_{i,n} \left(\log X_{n-i+1,n} - \log X_{n-k_n+1,n}\right)}{\displaystyle\sum_{k_n} \alpha_{i,n} \left(\log \log (n/i) - \log \log (n/k_n)\right)},$$

Estimation of the Weibull tail- index.

4. Other propositions: Mean residual life function [Beirlant *et al*, 1995], Bias correction [Diebolt *et al*, 2008], Mean excess function [Dierckx *et al*, 2009], ...

Remarks

- Most of the proposed estimators are based on linear combinations of log-spacings between upper order statistics.
- How to explain this similarity with the Hill estimator (dedicated to the Fréchet Maximum Domain of Attraction)?

1 Motivation: Weibull tail- distributions

2 φ - tail distributions

3 Further work

Definition. The cumulative distribution function is such that

$$1 - F(x) = \exp(-\varphi^{\leftarrow}(\log H(x))), \text{ for } x \ge x_*,$$

with

- $H^{\leftarrow} \in \mathcal{R}_{\theta}$,
- $\varphi(x) \to \infty$ as $x \to \infty$,
- $\bullet \varphi$ is continuously differentiable,
- $\varphi' \in \mathcal{R}_{\tau}$, with $\tau \in [-1, 0]$,
- there exists M > 0 such that $0 \le \varphi'(.) \le M$.

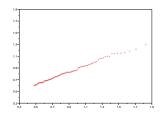
Examples.

- $\varphi(t) = t$: Pareto type distributions (Fréchet Maximum Domain of Attraction), $\tau = 0$,
- $\varphi(t) = \log t$: Weibull tail- distributions, $\tau = -1$.

The log-spacings between two quantiles x_u and x_v of 1 - F

$$\begin{aligned} \log x_u - \log x_v &= \theta \left(\varphi(\log 1/u) - \varphi(\log 1/v) \right) \\ &+ \log \left(\frac{\ell(\exp \varphi(\log 1/u))}{\ell(\exp \varphi(\log 1/v))} \right) \\ &\simeq \theta \left(\varphi(\log 1/u) - \varphi(\log 1/v) \right) \end{aligned}$$

are approximately proportional to θ (if the orders u and v of the quantiles are small enough).



Pairs $(\varphi(\log n/i), \log (X_{n-i+1,n}))$ for $i=1,\ldots,100$ from a Gaussian sample with size n=500.

Inference. The following estimator of θ is introduced:

$$\widehat{\theta}_n = \frac{1}{\mu(\log(n/k_n))} \frac{1}{k_n} \sum_{i=1}^{k_n} (\log(X_{n-i+1,n}) - \log(X_{n-k_n+1,n})),$$

where
$$\mu(t) = \int_0^\infty (\varphi(x+t) - \varphi(t)) e^{-x} dx$$
.

- Pareto type distributions: $\mu(t) = 1 \longrightarrow \text{Hill estimator}$
- Weibull tail- distributions:

i)
$$\mu(t) = \int_0^1 \log\left(1 - \frac{\log y}{t}\right) dy \longrightarrow [\text{Gardes \& Girard, 2006}]$$

- ii) Approximation by a Riemann sum [Beirlant et al, 1996]
- iii) $\mu(t) \sim \varphi'(t) = 1/t \longrightarrow [Gardes \& Girard, 2006]$

Theorem 1: Asymptotic normality of $\widehat{\theta}_n$

Let (k_n) be an intermediate sequence such that $k_n^{1/2}b(\exp\varphi(\log(n/k_n)))\to 0$. Then,

$$k_n^{1/2}(\widehat{\theta}_n - \theta) \stackrel{d}{\rightarrow} \mathcal{N}(0, \theta^2).$$

Estimation of extreme quantiles. Recall that an extreme quantile x_{p_n} of order p_n is defined by the equation $1 - F(x_{p_n}) = p_n$ with $0 < p_n < 1/n$. An estimator of x_{p_n} can be deduced from $\widehat{\theta}_n$ by:

$$\widehat{x}_{p_n} = X_{n-k_n+1,n} \exp \left(\widehat{\theta}_n \left(\varphi(\log(1/p_n)) - \varphi(\log(n/k_n)) \right) \right).$$

- Pareto type distributions: $\varphi(t) = t \longrightarrow \text{Weissman estimator}$
- Weibull tail- distributions: $\varphi(t) = \log t \to [\mathsf{Gardes} \ \& \ \mathsf{Girard}, \ 2005]$

Theorem 2: Asymptotic distribution of $\widehat{\chi}_{p_n}$

Suppose the assumptions of Theorem 1 hold with ρ < 0. If, moreover,

$$k_n^{1/2} \frac{b(\exp \varphi(\log(n/k_n)))}{\log(n/k_n)\varphi'(\log(n/k_n))} \to 0$$

and there exists c > 1 such that

$$\frac{\log(1/p_n)}{\log(n/k_n)}\to c$$

then,

$$\frac{k_n^{1/2}}{\log(n/k_n)\varphi'(\log(n/k_n))}\left(\frac{\widehat{x}_{p_n}}{x_{p_n}}-1\right)\stackrel{d}{\to} \mathcal{N}(0,\theta^2K_{\tau+1}^2(c)).$$

1 Motivation: Weibull tail- distributions

 \bigcirc φ - tail distributions

3 Further work

Further work

The φ - tail model could help to discriminate between Pareto type and Weibull tail- distributions.

Either by building a test based on the Hill statistics

$$\widehat{H}_n := \frac{1}{k_n} \sum_{i=1}^{k_n} (\log(X_{n-i+1,n}) - \log(X_{n-k_n+1,n}))$$

since $H_n \stackrel{P}{\longrightarrow} \theta$ for Pareto type distributions and $H_n \stackrel{P}{\longrightarrow} 0$ for Weibull tail- distributions.

• Or by estimating τ ($\tau=0$ for Pareto type distributions and $\tau=-1$ for Weibull tail- distributions).

References

- Beirlant, J., Broniatowski, M., Teugels, J. & Vynckier, P. (1995)
 The mean residual life function at great age: Applications to tail estimation, JSPI, 45, 21–48.
- Beirlant, J., Teugels, J. & Vynckier, P. (1996) Practical analysis of extreme values, Leuven university press.
- Diebolt, J., Gardes, L., Girard, S. & Guillou, A. (2008) Bias-reduced estimators of the Weibull tail-coefficient, *Test*, 17, 311–331.
- Dierckx, G., Beirlant, J., De Waal, D. & Guillou, A. (2009) A new estimation method for Weibull-type tails based on the mean excess function, JSPI, 139, 1905–1920.
- Gardes, L. & Girard, S. (2005) Estimating extreme quantiles of Weibull tail distributions, Comm. Stat., 34, 1065–1080.
- _____ (2006) Comparison of Weibull tail-coefficient estimators, *REVSTAT*, **4**, 163–188.
- _____ (2008) Estimation of the Weibull tail-coefficient with linear combination of upper order statistics, JSPI, 138, 1416–1427.