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Multivariate regression

Let Y ∈ R and X ∈ Rp. The goal is to estimate G : Rp → R such
that

Y = G(X) + ξ where ξ is independent of X.

Unrealistic when p is large (curse of dimensionality).
Dimension reduction : Replace X by its projection on a
subspace of lower dimension without loss of information on
the distribution of Y given X.
Central subspace : smallest subspace S such that,
conditionally on the projection of X on S, Y and X are
independent.
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Dimension reduction

Assume (for the sake of simplicity) that dim(S) = 1 i.e.
S =span(b), with b ∈ Rp =⇒ Single index model :

Y = g(btX) + ξ

where ξ is independent of X.
The estimation of the p-variate function G is replaced by the
estimation of the univariate function g and of the direction b.
Goal of SIR [Li, 1991] : Estimate a basis of the central
subspace. (i.e. b in this particular case.)
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Reminder (1/2)
Let X1, . . . Xn be n points in Rp divided into h classes Cj ,
j = 1, . . . , h.

Empirical covariance matrix

Σ̂ = 1
n

n∑
i=1

(Xi − X̄)(Xi − X̄)t, where X̄ = 1
n

n∑
i=1

Xi.

Within-class covariance matrix “mean of covariances”

Ŵ =
h∑
j=1

nj
n

Σ̂j ,

where Σ̂j is the empirical covariance matrix of class j and
nj =card(Cj).
Between-class covariance matrix “covariance of means”

B̂ =
n∑
i=1

nj
n

(X̄j − X̄)(X̄j − X̄)t, where X̄j = 1
nj

∑
Xi∈Cj

Xi.
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Reminder (2/2)

Σ̂ = B̂ + Ŵ

Let btX the projection of the random vector on the axis b.
Then, var(btX) = btcov(X)b.
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SIR

Idea :
Find the direction b such that btX best explains Y .
Conversely, when Y is fixed, btX should not vary.
Find the direction b minimizing the variations of btX given Y .

In practice :
The support of Y is divided into h slices Sj .
Minimization of the within-slice variance of btX under the
constraint var(btX) = 1.
Equivalent to maximizing the between-slice variance under the
same constraint.
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Illustration
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Estimation procedure

Given a sample {(X1, Y1), . . . , (Xn, Yn)}, the direction b is
estimated by

b̂ = argmax
b

btΓ̂b such that btΣ̂b = 1. (1)

where Σ̂ is the empirical covariance matrix and Γ̂ is the
between-slice covariance matrix defined by

Γ̂ =
h∑
j=1

nj
n

(X̄j − X̄)(X̄j − X̄)t, X̄j = 1
nj

∑
Yi∈Sj

Xi,

where nj is the number of observations in the slice Sj .
The optimization problem (1) has a closed-form solution : b̂ is the
eigenvector of Σ̂−1Γ̂ associated to the largest eigenvalue.
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Illustration

Simulated data.
Sample {(X1, Y1), . . . , (Xn, Yn)} of size n = 100 with
Xi ∈ Rp and Yi ∈ R, i = 1, . . . , n.
Xi ∼ Np(0,Σ) where Σ = Q∆Qt with

∆ =diag(pθ, . . . , 2θ, 1θ),
θ controls the decreasing rate of the eigenvalue screeplot,
Q is an orientation matrix drawn from the uniform distribution
on the set of orthogonal matrices.

Yi = g(btXi) + ξ where
g is the link function g(t) = sin(πt/2),
b is the true direction b = 5−1/2Q(1, 1, 1, 1, 1, 0, . . . , 0)t,
ξ ∼ N1(0, 9.10−4)
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Results with θ = 2, dimension p = 10

Blue : Yi versus the projec-
tions btXi on the true direc-
tion b,
Red : Yi versus the projections
b̂tXi on the estimated direc-
tion b̂,
Green : b̂tXi versus btXi.
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Results with θ = 2, dimension p = 50

Blue : Yi versus the projec-
tions btXi on the true direc-
tion b,
Red : Yi versus the projections
b̂tXi on the estimated direc-
tion b̂,
Green : b̂tXi versus btXi.
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Explanation

Problem : Σ̂ may be singular or at least ill-conditioned in several
situations.

Since rank(Σ̂) ≤ min(n− 1, p), if n ≤ p then Σ̂ is singular.
Even if n and p are of the same order, Σ̂ is ill-conditioned,
and its inversion yields numerical problems in the estimation
of the central subspace.
The same phenomenon occurs if the coordinates of X are
strongly correlated.

In the previous example, the condition number of Σ was pθ.
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Regularized SIR

We propose to compute b̂ as the eigenvector associated to the
largest eigenvalue of (ΩΣ̂ + Ip)−1ΩΓ̂.
Ω describes which directions in Rp are more likely to contain b.

=⇒ The inversion of Σ̂ is replaced by the inversion of ΩΣ̂ + Ip.
=⇒ For a well-chosen a priori matrix Ω, numerical problems
disappear.
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Links with existing methods

Ridge [Zhong et al, 2005] : Ω = τ−1Ip. No privileged direction
for b in Rp. τ > 0 is a regularization parameter.
PCA+SIR [Chiaromonte et al, 2002] :

Ω =
d∑
j=1

1
δ̂j
q̂j q̂

t
j ,

where d ∈ {1, . . . , p} is fixed, δ̂1 ≥ · · · ≥ δ̂d are the d largest
eigenvalues of Σ̂ and q̂1, . . . , q̂d are the associated
eigenvectors.
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Three new methods

PCA+ridge :

Ω = 1
τ

d∑
j=1

q̂j q̂
t
j .

In the eigenspace of dimension d, all the directions are a
priori equivalent.
Tikhonov : Ω = τ−1Σ̂. The directions with large variance are
the most likely to contain b.
PCA+Tikhonov :

Ω = 1
τ

d∑
j=1

δ̂j q̂j q̂
t
j .

In the eigenspace of dimension d, the directions with large
variance are the most likely to contain b.



19

Recall of SIR results with θ = 2 and p = 50

Blue : Projections btXi on the
true direction b versus Yi,
Red : Projections b̂tXi on
the estimated direction b̂ ver-
sus Yi,
Green : btXi versus b̂tXi.
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Regularized SIR results (PCA+Ridge)

Blue : Projections btXi on the
true direction b versus Yi,
Red : Projections b̂tXi on
the estimated direction b̂ ver-
sus Yi,
Green : btXi versus b̂tXi.
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Validation on simulations

Proximity criterion between the true direction b and the
estimated ones b̂(r) on N = 100 replications :

PC = 1
N

N∑
r=1

cos2(b, b̂(r))

0 ≤ PC≤ 1,
a value close to 0 implies a low proximity : The b̂(r) are nearly
orthogonal to b,
a value close to 1 implies a high proximity : The b̂(r) are
approximately collinear with b.
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Influence of the regularization parameter

log τ versus PC. The “cut-off” dimension and the condition
number are fixed (d = 20 and θ = 2).

Ridge and Tikhonov : significant improvement if τ is large,
PCA+SIR : reasonable results compared to SIR,
PCA+ridge and PCA+Tikhonov : small sensitivity to τ .
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Sensitivity with respect to the condition number of
the covariance matrix

θ versus PC. The “cut-off” dimension is fixed to d = 20. The
optimal regularization parameter is used for each value of θ.

Only SIR is very sensitive to the ill-conditioning,
ridge and Tikhonov : similar results,
PCA+ridge and PCA+Tikhonov : similar results.
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Sensitivity with respect to the “cut-off” dimension

d versus PC. The condition number is fixed (θ = 2) The optimal
regularization parameter is used for each value of d.

PCA+SIR : very sensitive to d.
PCA+ridge and PCA+Tikhonov : stable as d increases.
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Estimation of Mars surface physical properties from
hyperspectral images

Context :
Observation of the south pole of Mars at the end of summer,
collected during orbit 61 by the French imaging spectrometer
OMEGA on board Mars Express Mission.
3D image : On each pixel, a spectra containing p = 184
wavelengths is recorded.
This portion of Mars mainly contains water ice, CO2 and dust.

Goal : For each spectra X ∈ Rp, estimate the corresponding
physical parameter Y ∈ R (grain size of CO2).
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An inverse problem

Forward problem.
Physical modeling of individual spectra with a surface
reflectance model.
Starting from a physical parameter Y , simulate X = F (Y ).
Generation of n = 12, 000 synthetic spectra with the
corresponding parameters.

=⇒ Learning database.

Inverse problem.
Estimate the functional relationship Y = G(X).
Dimension reduction assumption G(X) = g(btX).
b is estimated by (regularized) SIR, g is estimated by a
nonparametric one-dimensional regression.
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Estimated function g

Estimated function g between the projected spectra b̂tX on the
first axis of regularized SIR (PCA+ridge) and Y , the grain size of
CO2.
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Estimated CO2 maps

Grain size of CO2 estimated with SIR (left) and regularized SIR
(right) on a hyperspectral image of Mars.
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Extensions

Kernel SIR. The usual dot product btX is replaced by a
kernel.
Wu, H. M. (2008). Kernel Sliced Inverse Regression with
Applications to Classification, Journal of Computational and
Graphical Statistics, 17(3), 590–610.
http ://www.hmwu.idv.tw/KSIR/

Sparse SIR. Introduction of a L1 penalty on b to obtain
sparse axes.
Li, L. and Nachtsheim, C. (2006). Sparse Sliced Inverse
Regression, Technometrics, 48(4), 503–510.



31

References on this work

Bernard-Michel, C., Douté, S., Fauvel, M., Gardes, L. and
Girard, S. (2009). Retrieval of Mars surface physical properties
from OMEGA hyperspectral images using Regularized Sliced
Inverse Regression. Journal of Geophysical Research - Planets,
114, E06005
Bernard-Michel, C., Gardes, L. and Girard, S. (2009).
Gaussian Regularized Sliced Inverse Regression, Statistics and
Computing, 19, 85–98.



32

References on SIR

[Li, 1991] Li, K.C. (1991). Sliced inverse regression for
dimension reduction. Journal of the American Statistical
Association, 86, 316–327.
[Cook, 2007]. Cook, R.D. (2007). Fisher lecture : Dimension
reduction in regression. Statistical Science, 22(1), 1–26.
[Zhong et al, 2005] : Zhong, W., Zeng, P., Ma, P., Liu, J.S.
and Zhu, Y. (2005). RSIR : Regularized Sliced Inverse
Regression for motif discovery. Bioinformatics, 21(22),
4169–4175.
[Chiaromonte et al, 2002] : Chiaromonte, F. and Martinelli, J.
(2002). Dimension reduction strategies for analyzing global
gene expression data with a response. Mathematical
Biosciences, 176, 123–144.


	Outline
	Sliced Inverse Regression (SIR)
	Regularization of SIR
	Application to real data

