AND GENERALIZED PRINCIPAL COMPONENT ANALYSIS AUTO-ASSOCIATIVE MODELS

Stéphane Girard

* INRIA, Université Grenoble 1

Joint work with Serge Iovleff, Université Lille 1

1. Principal Component Analysis, 2 points of view,

- 2. Generalized PCA, theoretical aspects,
- 3. Implementation aspects,
- 4. Illustration on simulated datasets,
- 5. Illustration on real datasets.

. Principal Component Analysis

- **Background**: Multidimensional data analysis (n observations in a p- dimensional space)
- Goal: Dimension reduction.
- o Data visualization (dimension less than 3),
- o To find which variables are important,
- o Compression.
- **Method**: Projection on low d- dimensional linear subspaces.

Stéphane Girard

PCA: Geometrical interpretation

Problem

- Let X be a centered random vector in \mathbb{R}^p .
- Estimate the d- dimensional linear subspace $d \in \{0,\ldots,p\}$ minimizing the mean distance to X.
- Minimize with respect to a^1, \ldots, a^d (orthonormal):

$$\mathbb{E}\left[\left\|X - \sum_{k=1}^{d} \left\langle X, a^k \right\rangle a^k \right\|^2\right].$$

Explicit solution

- \bullet a^1,\ldots,a^d are the eigenvectors associated to the d largest eigenvalues of $\mathbb{E}[X^tX]$, the covariance matrix of X.
- The a^k 's are called principal axes, the $Y^k = \langle X, a^k \rangle$ the principal variables.
- The associated residual is defined by

$$R^d = X - \sum_{k=1}^d \left\langle X, a^k \right\rangle a^k,$$
 $< \|R^{d-1}\|$

and it can be shown that $||R^d|| \le ||R^{d-1}||$.

Auto-Associative models and generalized Principal Component Analysis

August 2006

PCA: Projection Pursuit interpretation

Equivalent problem

- Estimate the d- dimensional linear subspace $d \in \{0, \ldots, p\}$ maximizing the projected variance.
- Maximize iteratively with respect to a^1, \ldots, a^d (orthonormal): $\operatorname{Var}\left[\left\langle X, a^{1}\right\rangle\right], \dots, \operatorname{Var}\left[\left\langle X, a^{d}\right\rangle\right].$

Stéphane Girard

${f Algorithm}$

- For j = 0, let $R^0 = X$.
- For j = 1, ..., d:
- [A] Estimation of a projection axis
- [P] Projection. Determine $a^j = \arg\max_{x \in \mathbb{R}^p} \mathbb{E}\left[\left\langle x, R^{j-1} \right\rangle^2\right]$ such that $\left\|a^j\right\| = 1$ and $\left\langle a^j, a^k \right\rangle = 0, 1 \le k < j$. Compute the principal variable $Y^j = \langle a^j, R^{j-1} \rangle$.
- [R] Linear regression. Determine $b^j = \arg\min_{x \in \mathbb{R}^p} \mathbb{E}\left[\left\|R^{j-1} - Y^j x\right\|^2\right]$ such that $\left\langle b^j, a^j \right\rangle = 1$ and $\left\langle b^j, a^k \right\rangle = 0$, $1 \le k < j$. The solution is $b^j = a^j$, and let the regression function be $s^j(t) = ta^j$.
- [U] Residual update. Compute $R^{j} = R^{j-1} - s^{j}(Y^{j})$.

Algorithm output. After d iterations, we have the following expansion:

$$X = \sum_{k=1}^{d} s^k (Y^k) + R^d, \tag{1}$$

with $s^k(t) = ta^k$ and $Y^k = \langle a^k, X \rangle$, or equivalently

$$X = \sum_{k=1}^{d} \langle a^k, X \rangle a^k + R^d.$$

This equation can be rewritten as

$$F(X) = R^d$$

2

where we have defined

$$F(x) = x - \sum_{k=1}^d \left\langle a^k, x \right\rangle a^k.$$

Equation (2) defines a d— dimensional linear auto-associative model for X. The equation F(x) = 0 defines a d-dimensional linear subspace, spanned by a^1, \ldots, a^d

Goals of a generalized PCA

1. To keep an expansion similar to (2):

$$F(X) = R^d,$$

general subspaces. but with a non necessarily linear function F, such that the equation F(x) = 0 could model more

2. To keep an expansion "principal variables + residual" similar to (1):

$$X = \sum_{k=1}^{d} s^k(Y^k) + R^d,$$

but with non necessarily linear functions s^k .

- 3. To benefit from the "nice" theoretical properties of PCA.
- 4. To keep a simple iterative algorithm.

2. Generalized PCA, theoretical aspects

We adopt the Projection Pursuit point of view. The steps [A] and [R] are generalized:

[A] Estimation of a projection axis

Introduction of an index I which measures the quality of the projection axis. For instance:

- Dispersion,
- Deviation from normality,
- Clusters detection,
- Outliers detection,...

[R] Regression.

Estimation of the regression function from \mathbb{R} to \mathbb{R}^p in a given set:

- Linear functions,
- Splines, kernels,...

Stéphane Girard

New algorithm.

- For j = 0, let $R^0 = X$.
- For j = 1, ..., d:
- [A] Estimation of a projection axis.

Determine $a^j = \arg\max_{x \in \mathbb{R}^p} I(\langle x, R^{j-1} \rangle)$ such that $||a^j|| = 1$ and $\langle a^j, a^k \rangle = 0$, $1 \le k < j$.

[P] Projection.

Compute the principal variable $Y^{j} = \langle a^{j}, R^{j-1} \rangle$.

[R] Regression.

 $1 \le k < j.$ Determine $s^j = \arg\min_{s \in \mathcal{S}(\mathbb{R}, \mathbb{R}^p)} \mathbb{E}\left[\left\|R^{j-1} - s(Y^j)\right\|^2\right]$ such that $P_{a^j} \circ s^j = \operatorname{Id}_{\mathbb{R}}$ and $P_{a^k} \circ s^j = 0$,

[U] Residual update

Compute $R^j = R^{j-1} - s^j(Y^j)$.

Remark: At the end of iteration j, the residual is given by

$$R^{j} = R^{j-1} - s^{j} (Y^{j})$$

$$= R^{j-1} - s^{j} (\langle a^{j}, R^{j-1} \rangle)$$

$$= R^{j-1} - s^{j} \circ P_{a,j} (R^{j-1})$$

$$= (\operatorname{Id}_{\mathbb{R}^{p}} - s^{j} \circ P_{a,j}) (R^{j-1})$$

$$= (\operatorname{Id}_{\mathbb{R}^{p}} - s^{j} \circ P_{a,j}) \circ (\operatorname{Id}_{\mathbb{R}^{p}} - s^{j-1} \circ P_{a,j-1}) (R^{j-2})$$

$$= \dots$$

$$= (\operatorname{Id}_{\mathbb{R}^{p}} - s^{j} \circ P_{a,j}) \circ \dots \circ (\operatorname{Id}_{\mathbb{R}^{p}} - s^{1} \circ P_{a,1}) (R^{0})$$

$$= (\operatorname{Id}_{\mathbb{R}^{p}} - s^{j} \circ P_{a,j}) \circ \dots \circ (\operatorname{Id}_{\mathbb{R}^{p}} - s^{1} \circ P_{a,1}) (X).$$

Auto-associative composite model.

Remark: The constraint $P_{aj} \circ s^j = \operatorname{Id}_{\mathbb{R}}$.

• Natural constraint.

Important consequence: At the end of iteration j, the residual is given by $R^{j} = \left(\operatorname{Id}_{\mathbb{R}^{p}} - s^{j} \circ P_{a^{j}} \right) \left(R^{j-1} \right)$, and thus is projection on a^{j} is

$$P_{aj}R^{j} = (P_{aj} - P_{aj} \circ s^{j} \circ P_{aj}) (R^{j-1})$$

= $(P_{aj} - P_{aj}) (R^{j-1})$
= 0.

which is of dimension (p-j). Thus, iteration (j+1) can be performed on the linear subspace orthogonal to (a^1,\ldots,a^j) ,

August 2006

Goal 1. After d iterations:

• One always has an auto-associative model

$$F(X) = R^d,$$

with

$$F = \left(\operatorname{Id}_{\mathbb{R}^p} - s^d \circ P_{a^d} \right) \circ \ldots \circ \left(\operatorname{Id}_{\mathbb{R}^p} - s^1 \circ P_{a^1} \right) = \coprod_{k=d}^1 \left(\operatorname{Id}_{\mathbb{R}^p} - s^k \circ P_{a^k} \right),$$

and $P_{aj}(x) = \langle a^j, x \rangle$.

• The equation F(x) = 0 defines a d- dimensional manifold.

August 2006

Goal 2. After d iterations:

• One always as the expansion "principal variables + residual" similar to (1):

$$X = \sum_{k=1}^{d} s^k(Y^k) + R^d,$$

and the functions s^k are non necessarily linear.

- For d = p, the expansion is exact: $R^p = 0$.
- We can still define principal axes a^k and principal variables Y^k .
- The residuals are centered: $\mathbb{E}\left[R^k\right] = 0, k = 0, \ldots, d$.

Goal 3. After d iterations, we have:

• Some orthogonality properties

$$\langle a^k, a^j \rangle = 0, \ 1 \le k < j \le d,$$

 $\langle a^k, R^j \rangle = 0, \ 1 \le k \le j \le d,$
 $\langle a^k, s^j(Y^j) \rangle = 0, \ 1 \le k < j \le d.$

Since the norm of the residuals is decreasing, we can define, similarly to the PCA case, the information ratio represented by the d- dimensional model as

$$Q_d = 1 - \mathbb{E}\left[\left\|R^d\right\|^2\right] / \text{Var}\left[\left\|X\right\|^2\right].$$

One can show that $Q_0 = 0$, $Q_p = 1$ and (Q_d) is increasing.

Remark. Except in particular cases, the non-correlation of the principal variables is lost:

$$\mathbb{E}\left[Y^k Y^j\right] \neq 0, \ 1 \leq k < j \leq d.$$

August 2006

Goal 4.

- ullet We still have an iterative algorithm. It converges at most in p steps
- Its complexity depends on the two steps [A] et [R].

[A] Estimation of a projection axis. Determine $a^j = \arg\max_{x \in \mathbb{R}^p} I(\langle x, R^{j-1} \rangle)$ such that $||a^j|| = 1$ and $\langle a^j, a^k \rangle = 0$, $1 \le k < j$.

[R] Regression.

 $\text{Determine } s^j = \arg\min_{s \in \mathcal{S}(\mathbb{R}, \mathbb{R}^p)} \mathbb{E}\left[\left\|R^{j-1} - s(Y^j)\right\|^2\right] \text{ such that } P_{a^j} \circ s^j = \operatorname{Id}_{\mathbb{R}} \text{ and } P_{a^k} \circ s^j = 0,$

 $1 \le k < j.$

Note that the above theoretical properties do not depend on these steps.

3. Implementation aspects, step [A]

Contiguity index. Measure of the neighborhood preservation. Points which are neighbor in \mathbb{R}^p should stay neighbor on the axis

$$I(\left\langle x,R^{j-1}\right\rangle) = \sum_{i=1}^{n} \left\langle x,R_{i}^{j-1}\right\rangle^{2} / \sum_{k=1}^{n} \sum_{\ell=1}^{n} m_{k\ell} \left\langle x,R_{k}^{j-1} - R_{\ell}^{j-1}\right\rangle^{2},$$

 $m_{k\ell} = 1$ if R_{ℓ}^{j-1} is the closest neighbor of R_k^{j-1} , $m_{k\ell} = 0$ otherwise. where $M = (m_{k\ell})$ is the contiguity matrix defined by

Optimization. Explicit solution.

[A] a^j is the eigenvector associated to the largest eigenvalue of $V_j^*V_j^{-1}$, where

$$V_j = \sum_{k=1}^n {}^tR_k^{j-1}R_k^{j-1}, \ V_j^\star = \sum_{k=1}^n \sum_{\ell=1}^n m_{k\ell}{}^t(R_k^{j-1} - R_\ell^{j-1})(R_k^{j-1} - R_\ell^{j-1})$$

are proportional to the covariance and local covariance matrices of \mathbb{R}^{j-1} .

Implementation aspects, step [R]

• Set of L^2 functions. The regression step reduces to estimating the conditional expectation:

$$[\mathbb{R}]\ s^j(Y_j) = \mathbb{E}\left[R^{j-1}|Y_j\right].$$

- Estimation of the conditional expectation
- o Classical problem since the constraints $P_{aj} \circ s^j = \operatorname{Id}$ and $P_{ak} \circ s^j = \operatorname{Id}$, $1 \leq k < j$ are easily taken into account in the a^k 's basis. Step [R] reduces to (p-j) independent regressions from
- o Numerous estimates are available: splines, local polynomials, kernel estimates, ...
- o For instance, for the coordinate $k \in \{j+1,\ldots,p\}$, the kernel estimate of $s^j(u)$ can be

$$\tilde{s}_k^j(u) = \sum_{i=1}^n \tilde{R}_{i,k}^{j-1} K_h(u - Y_i^j) / \sum_{i=1}^n K_h(u - Y_i^j) ,$$

where h is a smoothing parameter (the bandwidth).

4. First illustration on a simulated dataset

- n = 100 points in \mathbb{R}^3 randomly chosen on the curve $x \to (x, \sin x, \cos x)$.
- One iteration $h = 0.3 \rightarrow Q_1 = 99.97\%$.

Theoretical curve

Estimated 1— dimensional manifold

August 2006

Second illustration on a simulated dataset

- n = 1000 points in \mathbb{R}^3 randomly chosen on the surface $(x,y) \to (x,y,\cos(\pi\sqrt{x^2+y^2})(1-\exp\{-64(x^2+y^2)\})).$
- Two iterations: $Q_1 = 84.1\%$ et $Q_2 = 97.6\%$.

Theoretical surface

Simulated points

Estimated 2— dimensional manifold

 s^1 (blue) and s^2 (red)

Residuals R_i^1

Residuals R_i^2

5. First illustration on a real dataset

• Set of n = 45 images of size 256×256 .

- Interpretation : n = 45 points in dimension $p = 256^2$.
- Rotation : n = 45 points in dimension p = 44.

• Information ratio Q_d as a function of d (blue: classical PCA, green: generalized PCA).

• Projection on the 3 first PCA axes of the estimated manifolds (dimension 1 & dimension 2).

Stéphane Girard

Second illustration on a real datase

- Dataset I, five types of breast cancer.
- Set of n = 286 samples in dimension p = 17816.
- Rotation : n = 286 points in dimension p = 285.
- ullet Forgetting the labels, information ratio Q_d as a function of d (blue: classical PCA, green:

generalized PCA).

Estimated 1— dimensional manifold projected on the principal plane.

Stéphane Girard

25

Estimated 1— dimensional manifolds projected on the principal plane, for each type of cancer.

References

- S. Girard and S. Iovleff. Auto-associative models, nonlinear Principal component analysis, manifolds and projection pursuit. In A. Gorban et al (eds) Principal Manifolds for Data Visualisation and Dimension Reduction, vol. 28, p. 205–222, LNCSE, Springer-Verlag, 2007.
- S. Girard and S. Iovleff. Auto-Associative Models and Generalized Principal Component Analysis, Journal of Multivariate Analysis, 93, 21–39, 2005.
- S. Girard. A nonlinear PCA based on manifold approximation, Computational Statistics, 15, 145–167, 2000.
- B. Chalmond and S. Girard. Nonlinear modeling of scattered multivariate data and its application to shape change, IEEE Pattern Analysis and Machine Intelligence, 21, 422–432,
- S. Girard, B. Chalmond and J-M. Dinten. Position of principal component analysis among auto-associative composite models, Comptes-Rendus de l'Académie des Sciences, t. 326, Série 1, 763–768, 1998
- S. Girard, B. Chalmond and J-M. Dinten. Designing non linear models for flexible curves. In Schumaker (eds.), 135–142, 1997 Curves and Surfaces with Application in CAGD, A. Le Méhauté, C. Rabut, and L.L.

Stéphane Girard