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Auto-Associative models and generalized Principal Component Analysis
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1. Principal Component >5@Qm5_

e Background: Multidimensional data analysis
(n observations in a p— dimensional space)

e (Goal: Dimension reduction.

o Data visualization (dimension less than 3),
o To find which variables are important,

o Compression.

e Method: Projection on low d— dimensional linear subspaces.
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PCA: Geometrical Edmagmgio:_

Problem
e Let X be a centered random vector in R?.
e Estimate the d— dimensional linear subspace d € {0, ..., p} minimizing the mean distance to X.
e Minimize with respect to a', ..., a? (orthonormal):
p 2
E||IX-) (X,d"d"
k=1

Explicit solution

e al, ... a? are the eigenvectors associated to the d largest eigenvalues of E [X*X], the covariance

matrix of X.
e The a* ’s are called principal axes, the Y* = AN : @\Av the principal variables.

e The associated residual is defined by

d
NQHNIMANE\AV@\A“
k=1
and it can be shown that :mg: < :mgL:.
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PCA: Projection Pursuit interpretation

Equivalent problem
e Estimate the d— dimensional linear subspace d € {0, ..., p} maximizing the projected variance.

e Maximize iteratively with respect to a', ..., a? (orthonormal):

Var Tuﬁ @i ..., Var Tuﬁ @@i :
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Algorithm
e For j =0, let R = X.
elkorj=1,....d:

|A] Estimation of a projection axis.
Determine a’/ = arg maxE Tﬁ m.THvﬁ such that :%.: = 1 and A@ﬁ@wv =0,1<k<y.

z€RP
[P| Projection.
Compute the principal variable Y/ = A@.w. R Lv.
[R] Linear regression.
Determine &’ = arg min [E TT&.L — M&.&'E such that @ﬁ%v =1 and @ﬁ@wv =0,

reRP
1 <k < j. The solution is & = a’, and let the regression function be s/(t) = ta’.

U] Residual update.
Compute R/ = R/~ — s/(Y7).
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Algorithm output. After d iterations, we have the following expansion:

d
MU (Y") + RY,
k=1

with s(t) = ta* and Y* = A@\w X Y or equivalently

This equation can be rewritten as

where we have defined

E
H
M@“
@
E%

The equation F'(z) = 0 defines a d— %BQ@OB& :bmmw subspace, spanned by a',

Equation (2) defines a d— dimensional linear auto-associative model for X.
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Goals of a generalized PCA

1. To keep an expansion similar to (2):

F(X) =R

but with a non necessarily linear function F’, such that the equation F(x) = 0 could model more
general subspaces.

2. To keep an expansion “principal variables + residual” similar to (1):
d
X =) s"(v"+ R
k=1

but with non necessarily linear functions s*.

3. To benefit from the “nice” theoretical properties of PCA.

4. To keep a simple iterative algorithm.
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2. Generalized PCA, theoretical @%@odm_

We adopt the Projection Pursuit point of view. The steps [A] and |[R] are generalized:

A] Estimation of a projection axis.
Introduction of an index I which measures the quality of the projection axis. For instance:
e Dispersion,
e Deviation from normality,
e Clusters detection,
e Outliers detection,...
R] Regression.
Estimation of the regression function from R to R? in a given set:
e Linear functions,

e Splines, kernels....
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New algorithm.
e For j=0,let R = X.
eforj=1,....d:

A| Estimation of a projection axis.
| proj
Determine o/ = @meQxNAAﬁm,THvV such that :%: =1 and A@ﬁ@wv =0,1<k<7y.

r€RP
[P| Projection.
Compute the principal variable Y/ = A@,w. R Lv.
'R| Regression.
Determine s/ = arg min [E TTQL — mﬁdv:i such that P os/ = Idg and P os’ =0,
seS(R,RP)
1<k <y.
U] Residual update
Compute R/ = R/~ — s/(Y7).
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Remark: At the end of iteration j, the residual is given by

R = Ri-1_g G\.Q
= R (@R )
— Rl _gio g C&TJ
= (dgp — 57 0 P;) (R
= (Idge — 8’ 0 Pj) o (Idge — s 1o P,) Am.va

Qa

al

GQ%% — m.w. o mi.v 0...0 GQ%% — mH O W@Hv Avmv .

= (Idgp — 8’ 0 Pj) o...0 (Idge — s' o P1) (R")

Auto-associative composite model.
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Remark: The constraint P, o s/ = Idg.

e Natural constraint.

e Important consequence: At the end of iteration 7, the residual is given by
R = AE%@ — s/ o %v C@.Lv . and thus is projection on a’ is
w&.mu - Aw%. — LIy © MQA © i.v Ammle
= (Py—Py) (R
= 0.
Thus, iteration (5 + 1) can be performed on the linear subspace orthogonal to (a', ..., a’),
which is of dimension (p — j).
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Goal 1. After d iterations:

e One always has an auto-associative model

with
1

NUHAHQ%@|mgowagvo...oGQ%%|%~O@@HVH._]_‘GQ%@|mwow%v“
k=d

and Pj(z) = (a/, ).

e The equation F'(z) = 0 defines a d— dimensional manifold.
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Goal 2. After d iterations:

e One always as the expansion “principal variables + residual” similar to (1):
d
X =) svH+ R,
k=1

¥ are non necessarily linear.

and the functions s
e For d = p, the expansion is exact: RP = 0.

e We can still define principal axes a* and principal variables Y*.

e The residuals are centered: |E T@ﬁ =0,k=0,....d.
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Goal 3. After d iterations, we have:
e Some orthogonality properties
(a*
(a" R7)=0,1<k<j<d
A@ﬁm\ﬁlvv =0, 1<k<j<d.

al)y =0, 1<k<j<d,
, R

e Since the norm of the residuals is decreasing, we can define, similarly to the PCA case, the
information ratio represented by the d— dimensional model as

2
Qu=1-E||[R|] /var [IX7].
One can show that Qy =0, @, = 1 and (@) is increasing.

Remark. Except in particular cases, the non-correlation of the principal variables is lost:

E[Y*Y7] 40, 1<k <j<d.
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Goal 4.

e We still have an iterative algorithm. It converges at most in p steps.
e [ts complexity depends on the two steps [A] et [R].

|A] Estimation of a projection axis.

Determine o/ = @wmw%wiAﬁm,THvV such that :%: =1 and A@ﬁ@wv =0,1<k<7y.

[R] Regression.

Determine s/ = arg min E

TT&L — mﬁlv:i such that Pjos/ = Idg and Pro s’ =0,
seS(R,RP)

1 <k<jy.

e Note that the above theoretical properties do not depend on these steps.
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3. Implementation aspects, step [A]

e Contiguity index. Measure of the neighborhood preservation. Points which are neighbor in
R? should stay neighbor on the axis.

n

NAAﬁmTJV _ M Aﬁmﬁng WWSQ Aa“m.\mL _ @.Lvﬁ

i=1 k=1 (=1
where M = ASiv is the contiguity matrix defined by
mye = 1 if m,ML is the closest neighbor of m,\wL“ mye = 0 otherwise.

e Optimization. Explicit solution.

[A] @’ is the eigenvector associated to the largest eigenvalue of S*SLV where

n

n n
I Lo i -
Vi=D 'RURCLVE=D ) mid (R - RUD(R - R
k=1 k=1 (=1
are proportional to the covariance and local covariance matrices of R/,
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Implementation aspects, step i&_

e Set of L? functions. The regression step reduces to estimating the conditional expectation:
R $/(v;) = E [R]Y]].
e Estimation of the conditional expectation.

o Classical problem since the constraints P, o s/ = Id and P o s/ =1d,1 < k < j are easily

taken into account in the a” ’s basis. Step [R] reduces to (p — j) independent regressions from
R to R.

o Numerous estimates are available: splines, local polynomials, kernel estimates, .

o For instance, for the coordinate k € {j +1,...,p}, the kernel estimate of s/(u) can be
written as
n n
y . ) .
Splu) = MU R, Ky(u =Y} MU Ky(u—=Y/),
i=1 i=1

where h is a smoothing parameter (the bandwidth).
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4. First illustration on a simulated dataset

e n = 100 points in R? randomly chosen on the curve & — (z,sinx, cos x).

e One iteration h = 0.3 — Q1 = 99.97%.

-0

-1

Theoretical curve Estimated 1— dimensional manifold
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Second illustration on a simulated dataset]

e 1. = 1000 points in R? randomly chosen on the surface
(2, y) — (2,y, cos(my/2? + y?)(1 — exp{—64(2* + y°)
e Two iterations: ()1 = 84.1% et Q9 = 97.6%.

1)-

e
&#ﬁilhl.ihl“ll

Estimated 2— dimensional manifold

Simulated points

Theoretical surface
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5. First illustration on a real dataset]

e Set of n = 45 images of size 256 x 256.

e Interpretation : n = 45 points in dimension p = 2562

e Rotation : n = 45 points in dimension p = 44.
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e Information ratio Q4 as a function of d (blue: classical PCA, green: generalized PCA),

100

Stéphane Girard 22




Auto-Associative models and generalized Principal Component Analysis August 2006

e Projection on the 3 first PCA axes of the estimated manifolds

(dimension 1 & dimension 2).
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Second 1llustration on a real dataset

e Dataset I, five types of breast cancer.

e Set of n = 286 samples in dimension p = 17816.

e Rotation : n = 286 points in dimension p = 285.

August 2006

e Forgetting the labels, information ratio Q4 as a function of d (blue: classical PCA, green:

generalized PCA).
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Estimated 1— dimensional manifold projected on the principal plane.
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Estimated 1— dimensional manifolds projected on the principal plane, for each type of cancer.
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