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@ Sliced Inverse Regression (SIR)



Multivariate regression

Let Y € R and X € RP. The goal is to estimate G : R? — R such
that

Y = G(X)+ £ where € is independent of X.

@ Unrealistic when p is large (curse of dimensionality).

@ Dimension reduction : Replace X by its projection on a
subspace of lower dimension without loss of information on
the distribution of Y given X.

e Central subspace : smallest subspace S such that,
conditionally on the projection of X on S, Y and X are
independent.



Dimension reduction

@ Assume (for the sake of simplicity) that dim(S) =1 i.e.
S =span(b), with b € RP = Single index model :
Y=g(<bX>)+¢
where £ is independent of X.
@ The estimation of the p-variate function G is replaced by the
estimation of the univariate function g and of the direction b.

e Goal of SIR [Li, 1991] : Estimate a basis of the central
subspace. (i.e. b in this particular case.)



SIR

Idea :
@ Find the direction b such that < b, X > best explains Y.
o Conversely, when Y is fixed, < b, X > should not vary.

o Find the direction b minimizing the variations of < b, X >
given Y.

In practice :
@ The support of Y is divided into h slices Sj.
@ Minimization of the within-slice variance of < b, X > under
the constraint var(< b, X >) = 1.
e Equivalent to maximizing the between-slice variance under the
same constraint.
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Estimation procedure

Given a sample {(X1,Y7),...,(X,,Yy,)}, the direction b is
estimated by

b = argmax b'T'b such that b'Sb = 1. (1)
b

where Y is the empirical covariance matrix and I' is the
between-slice covariance matrix defined by

where n; is the number of observations in the slice S;.
The optimization problem (1) has a closed-form solution : b is the
eigenvector of X7 !T" associated to the largest eigenvalue.



[[lustration

Simulated data.
e Sample {(X1,Y1),...,(Xn,Yn)} of size n = 100 with
X; € RP, dimensionp=10and V; e R, i=1,...,n.
e X; ~N,(0,X) where ¥ = QAQ' with
o A =diag(p?,...,22,12),
e () is an orientation matrix drawn from the uniform distribution
on the set of orthogonal matrices.

o YV, =g(< b, X; >)+ & where
e g is the link function g(t) = sin(nt/2),
e b is the true direction b = 5-1/2Q(1,1,1,1,1,0,...,0),
o £~ N (0,9.1074)
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© SIR for data streams



@ We consider data arriving sequentially by blocks in a stream.
e Each data block t =1,...,T is an i.i.d. sample (X;,Y;),
i=1,...,n from the regression model Y = g(< b, X >) + &.

@ Goal : Update the estimation of the direction b at each arrival
of a new block of observations.



o Compute the individual directions Et on each block
t=1,...,T using SIR.

@ Compute a common direction as

T
b = argmax Z cos?(by, b) cos?(by, br).
llpll=1 =1

Idea : If Bt is close to BT then b should be close to lA)t.
Explicit solution : b is the eigenvector associated to the largest
eigenvalue of

T
Mg = Zl;ti)é cos?(by, br).
t=1



Advantages of SIRdatastream

e Computational complexity O(Tnp?) v.s. O(T?np?) for the
brute-force method which would consist in applying regularized
SIR on the union of the ¢ first blocks fort =1,... 7.

e Data storage O(np) v.s. O(Tnp) for the brute-force method.
(under the assumption n >> max(T, p)).

o Interpretation of the weights cos?(by, br).



[llustration on simulations

Scenario 1 : A common direction in all the 60 blocks.

quality measure
0.0

number of bocs.

Left : 0052(5, b) for SIRdatastream, SIR brute-force and SIR
estimators at each time ¢. Right : cosz(gt, ET) The lighter (yellow)
is the color, the larger is the weight. Red color stands for very
small squared cosines.




[llustration on simulations

Scenario 2 : The 10th block is different from the other ones.

quality measure
oe

number of bocs.

Left : 0052(5, b) for SIRdatastream, SIR brute-force and SIR
estimators at each time ¢. Right : cosz(gt, ET) The lighter (yellow)
is the color, the larger is the weight. Red color stands for very
small squared cosines.



[llustration on simulations

Scenario 3 : A drift occurs from the 10th block (b to b)

b atks Otk

Left : cos?(b,b) for SIRdatastream, SIR brute-force and SIR
estimators at each time t. Right : cos?(by, br). The lighter (yellow)
is the color, the larger is the weight. Red color stands for very
small squared cosines.



[llustration on simulations

Scenario 3 (cont’d) :A drift occurs from the 10th block (b to b)

quality measure

number of blocks

Gt

Left .'AC(BSz(lA), b) for SIRdatastream and SIR brute-force. Right :
cos?(b, b)



[llustration on simulations

Scenario 4 : From the 10th block to the last one, there is no
common direction.

aquallty me:
04

number ofbocs.

Left : cos?(b, b) for SIRdatastream, SIR brute-force and SIR
estimators at each time ¢. Right : cosQ(Z)t, ET). The lighter (yellow)
is the color, the larger is the weight. Red color stands for very
small squared cosines.



© Application to real data



Estimation of Mars surface physical properties from

hyperspectral images

Context :

@ Observation of the south pole of Mars at the end of summer,
collected during orbit 61 by the French imaging spectrometer
OMEGA on board Mars Express Mission.

@ 3D image : On each pixel, a spectra containing p = 184
wavelengths is recorded.

@ This portion of Mars mainly contains water ice, COs and dust.

Goal : For each spectra X € RP, estimate the corresponding
physical parameter Y € R (grain size of CO3).



An inverse problem

Forward problem.
@ Physical modeling of individual spectra with a surface
reflectance model.

@ Starting from a physical parameter Y, simulate X = F(Y).

@ Generation of n = 12,000 synthetic spectra with the
corresponding parameters.

= Learning database.

Inverse problem.
e Estimate the functional relationship Y = G(X).
@ Dimension reduction assumption G(X) = g(< b, X >).

@ b is estimated by SIR, g is estimated by a nonparametric
one-dimensional regression.



Estimated function g
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Estimated function g between the projected spectra < b,X > on
the first axis of SIR and Y, the grain size of COs.



Estimated CO5 maps

Grain size of CO5 estimated with SIR on a hyperspectral image of
Mars.
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