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Multivariate regression

Let Y ∈ R and X ∈ Rp. The goal is to estimate G : Rp → R such
that

Y = G(X) + ξ where ξ is independent of X.

Unrealistic when p is large (curse of dimensionality).
Dimension reduction : Replace X by its projection on a
subspace of lower dimension without loss of information on
the distribution of Y given X.
Central subspace : smallest subspace S such that,
conditionally on the projection of X on S, Y and X are
independent.
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Dimension reduction

Assume (for the sake of simplicity) that dim(S) = 1 i.e.
S =span(b), with b ∈ Rp =⇒ Single index model :

Y = g(< b,X >) + ξ

where ξ is independent of X.
The estimation of the p-variate function G is replaced by the
estimation of the univariate function g and of the direction b.
Goal of SIR [Li, 1991] : Estimate a basis of the central
subspace. (i.e. b in this particular case.)
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SIR

Idea :
Find the direction b such that < b,X > best explains Y .
Conversely, when Y is fixed, < b,X > should not vary.
Find the direction b minimizing the variations of < b,X >
given Y .

In practice :
The support of Y is divided into h slices Sj .
Minimization of the within-slice variance of < b,X > under
the constraint var(< b,X >) = 1.
Equivalent to maximizing the between-slice variance under the
same constraint.
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Illustration
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Estimation procedure

Given a sample {(X1, Y1), . . . , (Xn, Yn)}, the direction b is
estimated by

b̂ = argmax
b

b′Γ̂b such that b′Σ̂b = 1. (1)

where Σ̂ is the empirical covariance matrix and Γ̂ is the
between-slice covariance matrix defined by

Γ̂ =
h∑

j=1

nj

n
(X̄j − X̄)(X̄j − X̄)′, X̄j = 1

nj

∑
Yi∈Sj

Xi,

where nj is the number of observations in the slice Sj .
The optimization problem (1) has a closed-form solution : b̂ is the
eigenvector of Σ̂−1Γ̂ associated to the largest eigenvalue.
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Illustration

Simulated data.
Sample {(X1, Y1), . . . , (Xn, Yn)} of size n = 100 with
Xi ∈ Rp, dimension p = 10 and Yi ∈ R, i = 1, . . . , n.
Xi ∼ Np(0,Σ) where Σ = Q∆Q′ with

∆ =diag(p2, . . . , 22, 12),
Q is an orientation matrix drawn from the uniform distribution
on the set of orthogonal matrices.

Yi = g(< b,Xi >) + ξi where
g is the link function g(t) = sin(πt/2),
b is the true direction b = 5−1/2Q(1, 1, 1, 1, 1, 0, . . . , 0)′,
ξ ∼ N1(0, 9.10−4)
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Results

Blue : Yi versus the projec-
tions < b,Xi > on the true
direction b,
Red : Yi versus the projections
< b̂,Xi> on the estimated di-
rection b̂,
Green : < b̂,Xi > versus
< b,Xi >.
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Context

We consider data arriving sequentially by blocks in a stream.
Each data block t = 1, . . . , T is an i.i.d. sample (Xi, Yi),
i = 1, . . . , n from the regression model Y = g(< b,X >) + ξ.
Goal : Update the estimation of the direction b at each arrival
of a new block of observations.
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Method

Compute the individual directions b̂t on each block
t = 1, . . . , T using SIR.
Compute a common direction as

b̂ = argmax
||b||=1

T∑
t=1

cos2(b̂t, b) cos2(b̂t, b̂T ).

Idea : If b̂t is close to b̂T then b̂ should be close to b̂t.
Explicit solution : b̂ is the eigenvector associated to the largest
eigenvalue of

MT =
T∑

t=1
b̂tb̂
′
t cos2(b̂t, b̂T ).
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Advantages of SIRdatastream

Computational complexity O(Tnp2) v.s. O(T 2np2) for the
brute-force method which would consist in applying regularized
SIR on the union of the t first blocks for t = 1, . . . , T .
Data storage O(np) v.s. O(Tnp) for the brute-force method.

(under the assumption n >> max(T, p)).
Interpretation of the weights cos2(b̂t, b̂T ).
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Illustration on simulations

Scenario 1 : A common direction in all the 60 blocks.
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Left : cos2(b̂, b) for SIRdatastream, SIR brute-force and SIR
estimators at each time t. Right : cos2(b̂t, b̂T ). The lighter (yellow)
is the color, the larger is the weight. Red color stands for very
small squared cosines.
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Illustration on simulations

Scenario 2 : The 10th block is different from the other ones.
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Left : cos2(b̂, b) for SIRdatastream, SIR brute-force and SIR
estimators at each time t. Right : cos2(b̂t, b̂T ). The lighter (yellow)
is the color, the larger is the weight. Red color stands for very
small squared cosines.
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Illustration on simulations

Scenario 3 : A drift occurs from the 10th block (b to b̃)
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Left : cos2(b̂, b) for SIRdatastream, SIR brute-force and SIR
estimators at each time t. Right : cos2(b̂t, b̂T ). The lighter (yellow)
is the color, the larger is the weight. Red color stands for very
small squared cosines.
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Illustration on simulations

Scenario 3 (cont’d) :A drift occurs from the 10th block (b to b̃)
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Left : cos2(b̂, b̃) for SIRdatastream and SIR brute-force. Right :
cos2(b̂, b̃)
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Illustration on simulations

Scenario 4 : From the 10th block to the last one, there is no
common direction.
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Left : cos2(b̂, b) for SIRdatastream, SIR brute-force and SIR
estimators at each time t. Right : cos2(b̂t, b̂T ). The lighter (yellow)
is the color, the larger is the weight. Red color stands for very
small squared cosines.
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Estimation of Mars surface physical properties from
hyperspectral images

Context :
Observation of the south pole of Mars at the end of summer,
collected during orbit 61 by the French imaging spectrometer
OMEGA on board Mars Express Mission.
3D image : On each pixel, a spectra containing p = 184
wavelengths is recorded.
This portion of Mars mainly contains water ice, CO2 and dust.

Goal : For each spectra X ∈ Rp, estimate the corresponding
physical parameter Y ∈ R (grain size of CO2).
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An inverse problem

Forward problem.
Physical modeling of individual spectra with a surface
reflectance model.
Starting from a physical parameter Y , simulate X = F (Y ).
Generation of n = 12, 000 synthetic spectra with the
corresponding parameters.

=⇒ Learning database.

Inverse problem.
Estimate the functional relationship Y = G(X).
Dimension reduction assumption G(X) = g(< b,X >).
b is estimated by SIR, g is estimated by a nonparametric
one-dimensional regression.
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Estimated function g

Estimated function g between the projected spectra < b̂,X > on
the first axis of SIR and Y , the grain size of CO2.
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Estimated CO2 maps

Grain size of CO2 estimated with SIR on a hyperspectral image of
Mars.
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