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1. Definition and basic properties. _

Definition. Let I be the unit interval. The family is defined for all (u,v) € I* by,
Coolut, 0) = v + Blmax(u, 0] (w)$(v).

where ¢ and 6 are differentiable I — IR functions (vanishing at most on isolated points).

Theorem. Cjy, is a copula if and only if ¢ and 6 satisty the following conditions:
e boundary conditions: ¢(0) =0 and (¢0)(1) = 0,
e ( is non increasing on 1,

o ¢ (u)(0p)(v) > —1forall 0 <u<wv<1.

Remark. The family can be split in two sub-families according to (1) = 0 or ¢(1) = 0.
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Measure of association.

Let (X,Y) a random pair with joint distribution H(z,y) = C(F(x),G(y)). Spearman’s
Rho: probability of concordance minus the probability of discordance of two random pairs
with respective joint cumulative law C'(F, G) and FG.

bIB\\ (u, v)dudv — 3.

In the case of €' = Cy 4, we have
1
po.o =12 |D*(1)0(1) — \ O ()0 (t)dt |,
0
where ®(¢ %o

Remark.
o If (1) =0, then py, > 0.
e If 0 is a constant function, then py, = 120*(1).
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Upper tail dependence.

The upper tail dependence coefficient is defined as

A = I P(F(X) > {{G(Y) > ) = lim 2%

t—1 u—1 1 —u’

where C is the survival copula, i.e. C(u,v) =1—u— v+ C(u,v).

In the case where C' = Cj 4, we have

Moo =—¢*(1)0'(1).
Remark.
o [f ﬂﬁv = Ou then vév@ = 0.

e [f 0 is a constant function, then \g 4 = 0.
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2. First sub-family, the case 6(1) = 0. _

Examples.

e Fréchet upper bound. Choosing ¢(z) = z and 0(z) = (1 — x)/x yields
Cop(u,v) = M(u,v) = min(u, v).

e Independent copula. f(x) = 0 yields Cy 4(u,v) = (u, v) = uv.
e Cuadras-Augé family: ¢(z) =x and 8(z) =27 — 1,0 < a < 1 yields
Cp.s(u,v) = min(u, v)* (uv)' ™ = M*(u, v)IT""*(u,v),
which is the weighted geometric mean of M and II.
Remark.
e /(1) =0and 0'(u) <0 imply O(u) > 0 for all u € I.
o ) < pgy <1 — Modelling of positive dependences.

e Lower (0) and upper bounds (1) of pg 4 and Ag 4 are reached respectively by the IT and
M copulas.
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Dependence properties: definitions.

Assume X and Y are exchangeable. X and Y are

e Positively Quadrant Dependent (PQD) if P(X < z,Y <vy) > P(X < 2)P(Y <y)
for all (z,y).

o Left Tail Decreasing (LTD) if P(Y < y[X < x) is non-increasing in z for all y.
e Right Tail Increasing (RTI) if P(Y > y|X > x) is nondecreasing in x for all .
e Stochastically Increasing (SI) if P(Y > y|X = x) is nondecreasing in x for all .

e Left Corner Set Decreasing (LCSD) if P(X < z,Y <y|X <2V <) is
non-increasing in " and g’ for all (z,y).

e Right Corner Set Increasing (RCSI) if P(X > z,Y > y| X > 2", Y > ¢/) is
nondecreasing in 2’ and y' for all (z,y).
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Theorem. X and Y are:
e PQD iff ¢p(u) has a constant sign on I.

e LTD or LCSD iff either {¢(u)/u is non increasing and Vu € I, ¢(u) > 0} or {¢(u)/u
is non decreasing and Vu € I, ¢(u) < 0}.

e RTT or RCSLiff ¢(u)/(1 — u) and O(u)p(u)/(1 — u) are monotone.

e S iff either {¢ and 8¢ are concave and Vu € I, ¢(u) > 0} or {¢ and O¢ are convex
and Yu € I, ¢(u) < 0}.

LCSD — LOSD < LTD
. D~ \\ /
ST PQD S PQD
el i A
RCST <> RTI
RCST — . RCSI <> RITI:
Implications in the general case Implications in the sub-family
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3. Second sub-family, the case ¢(1) = 0. _

In this case, we restrict ourselves to a constant function 6, i.e. 6(z) =60 € [—1,1].

Theorem. Cj, is a copula if and only if ¢ and 6 satisty the following conditions:
e boundary conditions: ¢(0) =0 and ¢(1) = 0,
o |¢(x)| <1lforallzel,
o |p(x)| <min(z,1 —z), forall x € I.
Examples.
e ¢(x) = min(x, 1 — x): upper bound of the above theorem,

o () = x(1 — x): Farlie-Gumbel-Morgenstern family of copulas (Morgenstern, 1956),
which contains all copulas with both horizontal and vertical quadratic sections
(Quesada-Molina, Rodriguez-Lallena, 1995)

o ¢(r) =x(l —x)(1 — 2x): symmetric copulas with cubic sections (Nelsen et al, 1997),

o ¢(x) = 7 tsin(mx).
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Upper bound, Farlie-Gumbel-Morgenstern, cubic sections, sinus.
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Measure of association. The Spearman’s Rho can be rewritten as:
2

po.s = 120 \@AS&: :
I

and it follows that —3/4 < pg 4 < 3/4 for all § € [—1,1]. Similar bounds hold for the
Kendall’s Tau: —1/2 <7y 4 < 1/2.

Upper tail dependence. pg 4 = 0.

Dependence properties. Similar to the previous family in the case 8 > 0.
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Symmetry properties: definitions.
e X is symmetric about a if (X — a) and (a — X)) are identically distributed (id).
e X and Y are exchangeable if (X,Y) and (Y, X) are id.

e (X,Y) is marginally symmetric about (a, b) if X and Y are symmetric about a and b
respectively.

e (X,Y) is radially symmetric about (a, b) if (X —a,Y —b) and (a — X, b —Y") are id.

e (X,Y) is jointly symmetric about (a, ) if the pairs (X —a,Y —b), (a — X,b—Y),
(X —a,b—Y)and (a — X,Y — b) are id.

Theorem. In the Gy, family:
o If X and Y are id then X and Y are exchangeable.
Besides, if (X,Y) is marginally symmetric about (a, b) then:
e (X,Y) is radially symmetric about (a, b) if and only if
cither Vu € I, ¢p(u) = ¢(1 —u) or Vu € I, ¢(u) = —¢p(1 — u).

e (X,Y) is jointly symmetric about (a,b) if and only if Vu € I, ¢(u) = —o(1 — u).
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4. Inference procedures. _

Assumptions.

e We restrict ourselves to the second sub-family, with constant function :

C(u,v) = uv + 0p(u)p(v).

— Estimation of 6 (scalar) and ¢ (univariate function).
— Identifiability problem: (6, ¢) and (af, ¢/+/«) yield the same copula for all o > 0.

e We focus on the PQD case: 8 > 0 and ¢ has a constant sign.

Under these assumptions, the family can be rewritten

Clu,v) = uv + P(u)(v),
where 9 (z) = VO|g(x)]

— The estimation of C' reduces to the estimation of ¢ (positive univariate function).
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Estimation of 1

1) Preprocessing:
o {(x;,y:),i=1,...,n} asample of (X,Y) from the cdf H(z,y) = C(F(x),G(y)).

e Rank transformations: u; = rank(x;)/n and v; = rank(y;)/n.
{(uj,v;),i =1,...,n} an approximate sample from the copula C'(u, v).

e Pseudo-observations {w; = max(u;, v;),i = 1,...,n} from C(w,w) = w? + Y (w).

2) Projection estimate: linear combination of basis functions: {ex, k > 1}

Y(w) = MUSA@%SV“ w e I.

k>1
Choice of the set of functions:

e no orthogonality condition,

e boundary conditions e;(0) = e;,(1) = 0 for all k& > 1 so that $(0) = $(1) = 0.
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3) Optimization problem: Define

o W, < - < w,,, the ordered pseudo-observations,

e M and M’ two matrices M, = ep(w; ), i&\\ﬂ =e(win), k>1,1€{l,...,n},

e a and b two vectors b; = (i/(n + 1) — w?,)"/?, a; unknown, i € {1,...,n}.
Definition of the estimator.

° %ASSV = C(Wjp,win) —w?, ~if/(n+1) — Sw: fori=1,...,n can be rewritten

Z,

min ||Ma — b|)?,
a
o %ASSV > () can be rewritten Ma > 0,

o [{)(w;,)| <1 can be rewritten —1 < M’a < 1.

—— Constrained least-square problem.
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Estimation of the Spearman’s rho

Recall that , ,
po.s = 120 \@A:v&: =12 \%?E: :
I I

Replacing ¢ by % yields the following semi-parametric estimator:
2

o =12 arB |

k>1

where we have introduced f; = [, ex(u)du.

Another solution: adapt the nonparametric estimator of the Kendall’s Tau introduced in
(Genest, Rivest, 1993) to obtain

> 6 n n 3
Pr = nn—1) M M Huj <ui, v <wif— 57

i=1 j=1
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Estimation of high probability regions

Definition. The a-quantile of the copula C'is defined by
Qo = inf{A\(S) :P(S)>a, SCI*}, 0<a<],

where )\ is the Lebesgue measure on 1.
Partitions. {I;, k= 1,..., N} be the equidistant N-partition of I,
Ko = I x I, the associated N x N grid. Denote oy, € {0,1}, (k,¢) € {1,..., N}*.

Estimator: Q, = C Ky 1{dp o = 1}.
kel
Optimization problem. The 0; ¢ are defined by

N N
min M M %\ﬁ?
k=1 (=1
N N
under the constraints o, € {0, 1} and MU M 9&%@3&8 > «,
k=1 (=1
where P(K k.¢) is an estimation of the probability P(Kj ).
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Algorithm.

e [irst step: sort the WQA k.¢) in decreasing order to obtain the sequence P.,
T=1,...,N?

e Second step: Computation of the number of subsets of the partition:

J
J = min < 7, MN&NQ

T=1

e Third step: selection of the J first subsets: o, = 1if 1 < 7(k, () < J,
Estimation of P(Kj ). Two solutions:

e Semi-parametric estimate based on mw/

. 1 ~(k ~(k—1 ~ (Y ~ (0 —1
P.(Kpy) =— — | — S — ) = -
) =\ Ay ) Y e U\v) v N
e Nonparametric estimate
. H n
P.(Kp,) =— 1{(us,v;) € Kipj-
(Kp) :WH” {(ui, vi) € Ky}
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5. Simulation results. |

Numerical experiments on the family of copulas C}. generated by the set of functions

Vi > 1, gp(z)=1— (@ +(1—2)")" zel

e When k£ = 1, C}: uniform distribution on I?. Spearman’s Rho p; = 0.

e When k — 00, () — Yo(r) = min(x, 1 — x) for all z € I.
C: mixture of two uniform distributions on the squares [0, 1/2]* and [1/2, 1]* with
mixing parameter 1/2. Spearman’s Rho py = 3/4 (the maximum value in the
sub-family).

e When 1 < k£ < o0, bivariate distribution “interpolating” between the two previous ones.
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Chosen basis of functions:
s

es(r) = sin Aw

s is a scale parameter, ¢ is a location parameter.

(2l - ) 1{2 e € 4,0 +2)),
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A semiparametric family of bivariate copulas

k| pr x 1072 | mean(p,,) x 1072 | mean(p,,) x 1072
1 0 0.81 0.18
2 42.5 43.0 41.2
4 66.4 65.8 64.3
6 71.2 70.6 68.8
8| 728 72.1 70.2

Estimation of the generating function and of the Spearman’s Rho (px). The mean value of

the estimates p,, and p,, are evaluated on 100 repetitions.
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6. Real data.

n = 225 countries, two variables: X | the life expectancy at birth (years) in 2002 of the
total population and Y, the difference between the life expectancy at birth of women and
men. http://www.odci.gov/cia/publications/factbook/.

According to the PQD test proposed in (Scaillet, 2004), these data are PQD.
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Further work |

e Goodness of fit test.

e Study of the sub-family ¢(1) = 0 without the assumption that € is a constant function.
(what is the lower bound of pg,?)

e Eistimation of the function 6 in the general case.
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