A semiparametric family of bivariate copulas: dependence properties and estimation procedures

joint work with Cécile Amblard.

Stéphane Girard, Université Grenoble I.
Outline

1. Definition and basic properties.

2. First sub-family, the case $\phi(1) = 0$.

3. Second sub-family, the case $\theta(1) = 0$.

4. Inference procedures.

5. Simulation results.

6. Real data.
Definition. Let I be the unit interval. The family is defined for all $(u,v) \in I^2$ by,

$$C_{\theta,\phi}(u,v) = uv + \theta \max(u,v) \phi(u) \phi(v).$$

where ϕ and θ are differentiable $I \to I$ functions (vanishing at most on isolated points).

Theorem. Let I be the unit interval. The family is defined for all $(u,n) \in I \times \mathbb{R}$. If

$$0 = (1)\phi(\phi^{-1}(n)) \phi([\max(u,n)] \theta + vn = (u,n)\phi(\theta)$$

for all $u \in I$. Then the family is a copula if and only if ϕ and θ satisfy the following conditions:

- boundary conditions: $\phi(0) = 0$ and $(\phi(\theta))^2 = 0$,
- ϕ is non-increasing on I.
- θ is non-increasing on I.
- ϕ' is a copula if and only if ϕ and θ satisfy the following conditions:

Remark. The family can be split in two sub-families according to $\theta(1) = 0$ or $\phi(1) = 0$.
Let \((X,Y)\) a random pair with joint distribution \(H(x,y) = C(F(x),G(y))\).

Spearman's Rho: probability of concordance minus the probability of discordance of two random pairs with respective joint cumulative law \(C\) and \(FG\).

\[\rho = \frac{\int_0^1 \int_0^1 C(u,v) \, du \, dv - \int_0^1 \theta(1) \, du}{\int_0^1 \theta(1) \, du}\]

Remark.

- If \(\theta(1) = 0\), then \(\rho \geq 0\).
- If \(\theta\) is a constant function, then \(\rho = \theta \Phi(1)\).

Measure of association.
Upper tail dependence.

The upper tail dependence coefficient is defined as

\[\lambda = \lim_{t \to 1} P(F(X) > t | G(Y) > t) = \lim_{u \to 1} \bar{C}(u, u) = 1 - u, \]

where \(\bar{C} \) is the survival copula, i.e., \(\bar{C}(u, v) = 1 - C(u, v) \).

In the case where \(C = \theta C_{\phi} \), we have

\[\lambda_{\theta, \phi} = \phi' \theta' (1) \]

Remark.

- If \(\phi(1) = 0 \), then \(\lambda_{\theta, \phi} = 0 \).
- If \(\theta \) is a constant function, then \(\lambda_{\theta, \phi} = 0 \).

Remark.

\[(I, \theta)(I, \phi) = \phi' \theta' \]

where \(C = C_{\phi} \phi' \theta' \).

The upper tail dependence coefficient is defined as

Upper tail dependence.
First sub-family, the case $\theta(1) = 0$.

Examples.

- **Fréchet upper bound.** Choosing $\phi(x) = x$ and $\theta(x) = (1 - x)/x$ yields $C_{\theta,\phi}(u,v) = M(u,v) = \min(u,v)$.

- **Independent copula.** $\theta(x) = 0$ yields $C_{\theta,\phi}(u,v) = \Pi(u,v) = uv$.

- **Cuadras-Augé family:** $\phi(x) = x$ and $\theta(x) = x - \alpha - 1$, $0 \leq \alpha \leq 1$ yields $C_{\theta,\phi}(u,v) = \min(u,v) \alpha(uv) 1 - \alpha = M_{\alpha}(u,v) \Pi_{1 - \alpha}(u,v)$, which is the weighted geometric mean of M and Π.

Remark.

- $\theta(1) = 0$ and $\theta'(u) \leq 0$ imply $\theta(u) \geq 0$ for all $u \in I$.

- $0 \leq \rho_{\theta,\phi} \leq 1 \rightarrow$ Modelling of positive dependences.

- Lower (0) and upper bounds (1) of $\rho_{\theta,\phi}$ and $\lambda_{\theta,\phi}$ are reached respectively by the Π and $\Pi I_{\theta,\phi}$ copulas.

Which is the weighted geometric mean of M and Π.

\[
(a',n)_{\Pi - 1} \Pi (a',n)_{\phi} I_{\theta,\phi} = (a',n)_{\Pi - 1} (a',n)_{\phi} \Pi = (a',n)_{\phi} \theta C
\]

Examples.

- **Fréchet-upper bound.** Choosing $\phi(x) = x$ and $x = (x)\theta$ yields $x/(x - 1) = (x)\theta$ and $x = (x)\phi$.

- **Fréchet-upper bound.** Choosing $\phi(x) = x$ and $x = (x)\phi$.

- **Independent copula.** $\phi(x) = x$ and $x = (x)\phi$.

- **Cuadras-Augé family:** $\phi(x) = x$ and $x = (x)\phi$.

- **Cuadras-Augé family:** $\phi(x) = x$ and $x = (x)\phi$.
Dependence properties: definitions.

Assume X and Y are exchangeable. X and Y are exchangeable.

A semiparametric family of bivariate copulas

\[(f, x) \quad \text{non-decreasing in } x \text{ and for all } f, \quad (f > x | f < X < x) \text{ if RI} \]

\[(f < X, x < X | f < X < x) \text{ if RCSI} \]

\[(f > X, x > X | f > X > x) \text{ if LCSD} \]

\[(f > x | f < X < x) \text{ if non-decreasing in } x \text{ for all } f. \]

\[(f < x | f < X < x) \text{ if non-decreasing in } x \text{ for all } f. \]

\[(f > x | f > X < x) \text{ if non-decreasing in } x \text{ for all } f. \]

\[(f < x | f < X < x) \text{ if non-decreasing in } x \text{ for all } f. \]

\[(f > X, x > X | f > X > x) \text{ if RCSI} \]

Positive quadrant dependent (PQD) •

\[(f > x, x > X | f > x, x > X) \text{ if RI} \]

\[(f > x, x > X | f > x, x > X) \text{ if PDI} \]

\[(f > x, x > X | f > x, x > X) \text{ if PDD} \]
Theorem. \(X \) and \(Y \) are:

- PQD iff \(\varphi(u) \) has a constant sign on \(I \).
- L TD or LCSD iff either \(\{ \frac{\varphi(u)}{u} \text{ is non increasing and } \forall u \in I, \varphi(u) \geq 0 \} \) or \(\{ \frac{\varphi(u)}{u} \text{ is non decreasing and } \forall u \in I, \varphi(u) \leq 0 \} \).
- R TI or RCSI iff \(\frac{\varphi(u)}{1 - u} \) and \(\theta(u) \frac{\varphi(u)}{1 - u} \) are monotone.
- SI iff either \(\{ \frac{\varphi(u)}{u} \text{ and } \theta \text{ are concave and } \forall u \in I, \varphi(u) \geq 0 \} \) or \(\{ \frac{\varphi(u)}{u} \text{ and } \theta \text{ are convex and } \forall u \in I, \varphi(u) \leq 0 \} \).

Implications in the sub-family

Implications in the general case

- \(\{ 0 \geq \frac{\varphi(n)}{n} \text{ and } A_n \in I \} \) or \(\{ 0 \leq (n-1) \frac{\varphi(n)}{n} \text{ and } (n-1) \frac{\varphi(n)}{n} \text{ and } \forall u \in I, n \frac{\varphi(n)}{n} \leq 0 \} \).

\(RTI \) or \(RCSI \) iff \(SI \) •

\(LTI \) or \(LCSI \) iff \(SI \) or \(RSI \) •

\(LCSI \) or \(LCSF \) iff \(SI \) or \(LCSI \) •

\(PD \) iff \(\{ \frac{\varphi(n)}{n} \text{ has a constant sign on } I \} \) •

A semiparametric family of bivariate copulas
A semiparametric family of bivariate copulas

In this case, we restrict ourselves to a constant function \(\theta \) and only it.\(\theta \) satisfies the following conditions:

3. Second sub-family: the case \(\phi(1) = 0 \).

\[C_{\theta, \phi} \text{ is a copula if and only if } \theta \text{ and } \phi \text{ satisfy the following conditions:} \]

- Boundary conditions: \(0 = (1)\phi \) and \(0 = (0)\phi \).
- For all \(x \in I \): \(x - \min(x, 1) \leq |(x)\phi| \).
- For all \(x \in I \): \(x \leq |(x)\phi| \).

\(\phi(x) = \min(x, 1 - x) \): upper bound of the above theorem.

\(\phi(x) = x(1 - x) \): Farlie-Gumbel-Morgenstern family of copulas (Morgenstern, 1966).

\(\phi(x) = x(1 - x)(1 - 2x) \): symmetric copulas with cubic sections (Quesada-Aliaga and Rodríguez-Lallena, 1992).

\(\phi(x) = \pi - 1 \sin(\pi x) \).

\(x(1 - x) \): symmetric copulas with cubic sections (Nelsen et al., 1997).

\(x(1 - x) \): copula with both horizontal and vertical quadratic sections (Quesada-Aliaga and Rodríguez-Lallena, 1992).

\(\phi(x) = \phi(1) = 0 \).

\(\theta(x) = (x)\theta \).

\(\theta(1) = 0 \).

In this case, we restrict ourselves to a constant function \(\theta \), i.e., \(\theta \) is a copula if and only if \(\theta \) satisfies the following conditions:

\(\phi(x) \) is a copula if and only if \(\phi \) satisfies the following conditions:

\(\theta(x) = (x)\theta \).

\(\theta(1) = 0 \).

Theorem 3. Second sub-family: the case \(\phi(1) = 0 \).

Examples:

- \(\phi(x) = \min(x, 1 - x) \): upper bound of the above theorem.
- \(\phi(x) = x(1 - x) \): Farlie-Gumbel-Morgenstern family of copulas (Morgenstern, 1966).
- \(\phi(x) = x(1 - x)(1 - 2x) \): symmetric copulas with cubic sections (Nelsen et al., 1997).
- \(\phi(x) = \pi - 1 \sin(\pi x) \).

In this case, we restrict ourselves to a constant function \(\theta \), i.e., \(\theta \) is a copula if and only if \(\theta \) satisfies the following conditions:

3. Second sub-family: the case \(\phi(1) = 0 \).

\(\theta(x) = (x)\theta \).

\(\theta(1) = 0 \).

\(\phi(x) \) is a copula if and only if \(\phi \) satisfies the following conditions:

- Boundary conditions: \(0 = (1)\phi \) and \(0 = (0)\phi \).
- For all \(x \in I \): \(x - \min(x, 1) \leq |(x)\phi| \).
- For all \(x \in I \): \(x \leq |(x)\phi| \).

\(\phi(x) = \min(x, 1 - x) \): upper bound of the above theorem.

\(\phi(x) = x(1 - x) \): Farlie-Gumbel-Morgenstern family of copulas (Morgenstern, 1966).

\(\phi(x) = x(1 - x)(1 - 2x) \): symmetric copulas with cubic sections (Nelsen et al., 1997).

\(\phi(x) = \pi - 1 \sin(\pi x) \).
A semiparametric family of bivariate copulas

Upper bound, Farlie-Gumbel-Morgenstern, cubic sections, sinus.
Similar to the previous family in the case $\theta < 0$.

Dependence properties.

Upper tail dependence.

$$\rho_{\theta,\phi} = \phi \theta d$$

Kendall's Tau:

$$\tau_{\theta,\phi} = \frac{\phi \theta d}{1 - \frac{3}{4} \int_0^1 \phi \theta d}$$

and it follows that $-\frac{1}{2} \leq \tau_{\theta,\phi} \leq \frac{1}{2}$ for all $\theta \in [-1, 1]$. Similar bounds hold for the measure of association. The Spearman's Rho can be rewritten as:

$$\rho_{\theta,\phi} = \phi \theta d$$
Se miparametric family of bivariate copulas

Symmetry properties: definitions.

- X is symmetric about a if $(X - a)$ and $(a - X)$ are identically distributed (id).
- X and Y are exchangeable if (X, Y) and (Y, X) are id.
- (X, Y) is marginally symmetric about (a, b) if X and Y are symmetric about a and b respectively.
- (X, Y) is radially symmetric about (a, b) if $(X - a, Y - b)$ and $(a - X, b - Y)$ are id.
- (X, Y) is jointly symmetric about (a, b) if the pairs $(X - a, Y - b)$, $(a - X, b - Y)$, $(X - a, b - Y)$, and $(a - X, Y - b)$ are id.

Theorem. In the C_θ, ϕ family:

- If X and Y are id then X and Y are exchangeable.
- Besides, if (X, Y) is marginally symmetric about (a, b) then:
 - (X, Y) is radially symmetric about (a, b) if and only if

 $$\forall u \in I, \quad \phi(u) = \phi(1 - u) \quad \text{or} \quad \forall u \in I, \quad \phi(u) = -\phi(1 - u).$$
 - (X, Y) is jointly symmetric about (a, b) if and only if
 $$\forall u \in I, \quad \phi(u) = -\phi(1 - u).$$
We restrict ourselves to the second sub-family, with constant function θ:

$$C(u,v) = uv + \theta \phi(u) \phi(v).$$

The estimation of θ (scalar) and ϕ (univariate function).

Under these assumptions, the family can be rewritten

$$C(a\phi(n) + \alpha n = (a,n).$$

We focus on the PQD case: $\theta > 0$ and ϕ has a constant sign.

Identification problem: (ϕ, θ) yield the same copula for all $\alpha > 0$.

Estimation of θ (scalar) and ϕ (univariate function).

We restrict ourselves to the second sub-family, with constant function θ.

Assumptions.

Inference procedures.
Estimation of ψ

Preprocessing:

1. $\{ (x_i, y_i), i = 1, ..., n \}$ a sample of (X, Y) from the cdf $H(x, y) = C(F(x), G(y))$.
2. Rank transformations:
 - $u_i = \text{rank}(x_i)/n$ and $v_i = \text{rank}(y_i)/n$.
 - $\{ (u_i, v_i), i = 1, ..., n \}$ an approximate sample from the copula C.
3. Pseudo-observations $\{ w_i = \max(u_i, v_i), i = 1, ..., n \}$ from $C(w, w) = w^2 + \psi(w)$.

Projection estimate: linear combination of basis functions:

$\hat{\psi}(w) = \sum_{k \geq 1} a_k e_k(w), w \in I.$

Choice of the set of functions:

- No orthogonality condition.
- Boundary conditions $e_k(0) = e_k(1) = 0$ for all $k \geq 1$ so that $0 = (1) \varphi(0) = (1) \hat{\psi}$.

Cécile Amblard & Stéphane Girard 14
A semiparametric family of bivariate copulas

Optimization problem:

1. \(\psi \) can be rewritten as \(\| q - M \| \) in

2. \(\psi \) can be rewritten

\(\frac{u_i}{m} - \frac{(1 + u)}{i} \approx \frac{u_i}{m} - (\frac{w_i}{m}) \varphi = (\frac{w_i}{m}) \varphi \)

3. Optimizeation problem: Define
Recall that
\[\rho_{\theta, \phi} = \frac{1}{2} \left(\int \frac{I(1-u)}{u} \, du \right)^2 \]

Replacing \(\psi \) by \(\hat{\psi} \) yields the following semi-parametric estimator:
\[\hat{\rho}_{SP} = \frac{1}{2} \left(\sum_{k \geq 1} a_k \beta_k \right)^2, \]
where we have introduced \(\beta_k = \int \frac{I(e_k(u))}{u} \, du \).

Another solution: adapt the nonparametric estimator of the Kendall's Tau introduced in (Genest, Rivest, 1993) to obtain
\[\hat{\rho}_{NP} = \frac{6}{n(n-1)} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{1}(u_j < u_i, v_j < v_i) - \frac{3}{2}. \]

Rephrasing by \(\phi \) yields the following semi-parametric estimator:
\[\hat{\rho}_{SP} = \int \left(\int \frac{I(z)}{z} \, dz \right) \theta \, d \theta = \phi \theta \, d \theta \]

Recall that
\[\text{Estimation of the Spearman's Rho} \]

A semi-parametric family of bivariate copulas
A semiparametric family of bivariate copulas

Definition. The α-quantile of the copula C is defined by

$$Q_\alpha = \inf \left\{ \lambda(S) : P(S) \geq \alpha, S \subset \mathbb{I}^2 \right\},$$

where λ is the Lebesgue measure on \mathbb{I}^2.

Partitions. Let $\{I_k, k = 1, \ldots, N\}$ be the equidistant N-partition of \mathbb{I}, $I_{k,\ell} = I_k \times I_\ell$ the associated $N \times N$ grid. Denote $\delta_{k,\ell} \in \{0, 1\}$, $(k, \ell) \in \{1, \ldots, N\}^2$.

Estimator: Q_α are defined by

$$\hat{Q}_\alpha = \bigcup_{k,\ell} (I_k \cap I_\ell) \{I_k \cap I_\ell, \delta_{k,\ell} = 1\}.$$

Optimization problem. The $\delta_{k,\ell}$ are defined by

$$\min_{\delta_{k,\ell} \in \{0, 1\}, \{(k, \ell) \in \{1, \ldots, N\}^2\}} \sum_{k=1}^N \sum_{\ell=1}^N \delta_{k,\ell},$$

under the constraints $\delta_{k,\ell} \in \{0, 1\}$ and

$$\sum_{k=1}^N \sum_{\ell=1}^N \delta_{k,\ell} \hat{P}(I_k \cap I_\ell) \geq \alpha,$$

where $\hat{P}(I_k \cap I_\ell)$ is an estimation of the probability $P(I_k \cap I_\ell)$.

Estimation of high probability regions. The quantile Q_α is defined by

$$\{\alpha > 0, \exists S \subset \mathbb{I}^2 : Q_\alpha \geq (S) \| \{\alpha > 0, \exists S \subset \mathbb{I}^2 : Q_\alpha \geq (S) \| \} \cap = \alpha \mathbb{C}.$$
IMS Annual Meeting and X Brazilian School of Probability

A semiparametric family of bivariate copulas

Algorithm.

1. First step: sort the \(\hat{P}(k, \ell) \) in decreasing order to obtain the sequence \(\tilde{P}_\tau, \tau = 1, \ldots, N_2 \).
2. Second step: Computation of the number of subsets of the partition:

\[
J = \min \left\{ j, \sum_{\tau=1}^j \tilde{P}_\tau \geq \alpha \right\}
\]

3. Third step: selection of the \(J \) first subsets:

\[
\delta_{k, \ell} = 1 \text{ if } 1 \leq \tau(k, \ell) \leq J,
\]

Estimation of \(P(K_{k, \ell}) \):

- Two solutions:
 - Semi-parametric estimate based on \(\hat{\psi} \):
 \[
 \hat{P}_{SP}(K_{k, \ell}) = \frac{1}{N_2} \left(\frac{N}{I - j} \right) \hat{\phi} - \left(\frac{N}{j} \right) \phi \left(\frac{N}{I - y} \right) \hat{\phi} - \left(\frac{N}{y} \right) \phi + \frac{\alpha N}{I} = (\hat{\theta}_Y \phi, \hat{\theta}_Y \phi)
 \]
 - Nonparametric estimate \(\hat{P}_{NP}(K_{k, \ell}) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(u_i, v_i) \in K_{k, \ell} \).

Theorem of Selection of the first subsets:

\[
\{ \psi \geq (\hat{\theta}_Y \phi, \hat{\theta}_Y \phi) \} \quad \text{min = } \psi
\]

- Second step: Computation of the number of subsets of the partition:

\[
\tilde{N}_2 \cdot I = \tilde{T} \quad \text{such that } \tilde{T} = \tilde{N}_2 \cdot I
\]

- First step: sort the sequence in decreasing order to obtain the sequence

\[
\{ \hat{P}(k, \ell) \}
\]
When $1 < k < \infty$, a bivariate distribution "interpolating" between the two previous ones.

$\forall k \geq 1$, $\psi_k(x) = 1 - (x^k + (1-x)^k)^{1/k}$, $x \in I$.

- When $k = 1$, C_1: uniform distribution on I^2. Spearman's Rho $\rho_1 = 0$.
- When $k \to \infty$, $\psi_k(x) \to \psi_\infty(x) = \min(x, 1-x)$ for all $x \in I$. C_∞: mixture of two uniform distributions on the squares $[0, 1/2]^2$ and $[1/2, 1]^2$ with mixing parameter $1/2$. Spearman's Rho $\rho_\infty = \infty \leftrightarrow (x)_{1/2} \leftrightarrow (x)_{\infty}$ finite, the maximum value in the sub-family.
- When $1 < k < \infty$, bivariate distribution "interpolating" between the two previous ones.

Simulation results

Numerical experiments on the family of copulas C generated by the set of functions $\theta(x) = \gamma (x - 1) + \gamma x - 1 = (x)_{\gamma/1} - I \geq (x)_{\gamma/1}$ for all $x \in I$. $\forall \gamma \in \mathbb{R}$.
A semiparametric family of bivariate copulas

\[
\begin{align*}
\{[z + \gamma, \gamma] \ni x_{1+z} \} & \left(\frac{z}{\gamma} \right) \sin \left((x - x_{1+z}) \frac{z}{\gamma} \right) = (x)^{\gamma/s}
\end{align*}
\]

\[
\text{Chosen basis of functions:}
\]

\[
\text{IMS Annual Meeting x Brazilian School of Probability}
\]
A semiparametric family of bivariate copulas

True functions $\psi_k(x)$, $k \in \{2, 4, 8\}$ – Estimated functions $\hat{\psi}_k(x)$, $k \in \{2, 4, 8\}$, $n = 100.$
the estimates \(\hat{\rho}_{SP} \) and \(\hat{\rho}_{NP} \) are evaluated on 100 repetitions.

Estimation of the generating function and of the Spearman's Rho (\(\rho \)). The mean value of

<table>
<thead>
<tr>
<th>(\hat{\rho}_{SP})</th>
<th>(\hat{\rho}_{NP})</th>
<th>(\rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70.2</td>
<td>72.1</td>
<td>8</td>
</tr>
<tr>
<td>68.8</td>
<td>70.6</td>
<td>6</td>
</tr>
<tr>
<td>64.3</td>
<td>67.8</td>
<td>4</td>
</tr>
<tr>
<td>41.2</td>
<td>43.0</td>
<td>2</td>
</tr>
<tr>
<td>1.8</td>
<td>0.8</td>
<td>1</td>
</tr>
</tbody>
</table>

mean(\(\hat{\rho}_{SP} \)) \times 10^{-2} \times (\text{d}) \text{mean}(\(\hat{\rho}_{NP} \)) \times 10^{-2} \times (\text{d}) \text{mean}(\(\rho \)) \times 10^{-2} \times (\text{d})
Estimation of high probability regions $\phi^{-1}(u) \cap C^2$. Red: $\alpha = 0.25$, green: $\alpha = 0.75$. Yellow: $\alpha = 0.5$. Top left: simulated sample, top right: nonparametric estimate, bottom left: semiparametric estimate, bottom right: semiparametric estimate with the true function ψ. $n = 500$.
Estimation of high probability regions from \(C_u \). Red: \(\alpha = 0.25 \), green: \(\alpha = 0.75 \), yellow: \(\alpha = 0.5 \). Top left: simulated sample, top right: nonparametric estimate, bottom left: semiparametric estimate, bottom right: semiparametric estimate with the true function \(\psi \).
Estimation of high probability regions $\phi(u)$ from $C\alpha$. Red: $\alpha = 0.25$, green: $\alpha = 0.75$, yellow: $\alpha = 0.5$. Top left: simulated sample, top right: nonparametric estimate, bottom left: semiparametric estimate, bottom right: semiparametric estimate with the true function ψ. A semiparametric family of bivariate copulas.
A semiparametric family of bivariate copulas

According to the PQD test proposed in (Scaillet, 2004), these data are PQD.

\[
\hat{\rho}_{NP} = 52.7\%
\]

\[
\hat{\rho}_{SP} = 40.7\%
\]

Real data.

\(n = 225 \) countries, two variables \(X \), the life expectancy at birth (years) in 2002 of the total population and \(Y \), the difference between the life expectancy at birth of women and men.
Estimation of high probability regions Q from real data. Red: $\alpha = 0.25$, green: $\alpha = 0.5$, yellow: $\alpha = 0.75$. Top left: real data, top right: real data after rank transformation, bottom left: nonparametric estimate, bottom right: semiparametric estimate.
Further work:

- Estimation of the function in the general case.

(What is the lower bound of \(\phi' \)?

- Study of the sub-family \(\phi(1) = 0 \) without the assumption that \(\theta \) is a constant function.

- Goodness of fit test.

A semiparametric family of bivariate copulas
References.

