A SEMIPARAMETRIC FAMILY OF BIVARIATE COPULAS: DEPENDENCE PROPERTIES AND ESTIMATION PROCEDURES

Stéphane Girard, Université Grenoble 1.

Joint work with Cécile Amblard.

Outline

- 1. Definition and basic properties.
- 2. First sub-family, the case $\theta(1) = 0$.
- 3. Second sub-family, the case $\phi(1) = 0$.
- 4. Inference procedures.
- 5. Simulation results.
- 6. Real data.

1. Definition and basic properties.

Definition. Let I be the unit interval. The family is defined for all $(u, v) \in I^2$ by,

$$C_{\theta,\phi}(u,v) = uv + \theta[\max(u,v)]\phi(u)\phi(v).$$

where ϕ and θ are differentiable $I \to \mathbb{R}$ functions (vanishing at most on isolated points).

Theorem. $C_{\theta,\phi}$ is a copula if and only if ϕ and θ satisfy the following conditions: • boundary conditions: $\phi(0) = 0$ and $(\phi\theta)(1) = 0$,

- θ is non increasing on I,
- $\phi'(u)(\theta\phi)'(v) \ge -1$ for all $0 \le u \le v \le 1$.

Remark. The family can be split in two sub-families according to $\theta(1) = 0$ or $\phi(1) = 0$.

Measure of association.

Let (X,Y) a random pair with joint distribution H(x,y) = C(F(x),G(y)). Spearman's with respective joint cumulative law C(F,G) and FGRho: probability of concordance minus the probability of discordance of two random pairs

$$\rho = 12 \int_0^1 \int_0^1 C(u, v) du dv - 3.$$

In the case of $C = C_{\theta,\phi}$, we have

$$\rho_{\theta,\phi} = 12 \left[\Phi^2(1)\theta(1) - \int_0^1 \Phi^2(t)\theta'(t)dt \right],$$

where $\Phi(t) = \int_0^t \phi(u) du$.

Remark.

- If $\theta(1) = 0$, then $\rho_{\theta,\phi} \geq 0$.
- If θ is a constant function, then $\rho_{\theta,\phi} = 12\theta\Phi^2(1)$.

Upper tail dependence.

The upper tail dependence coefficient is defined as

$$\lambda = \lim_{t \to 1} \mathbb{P}(F(X) > t | G(Y) > t) = \lim_{u \to 1} \frac{\bar{C}(u, u)}{1 - u}$$

where \bar{C} is the survival copula, i.e. $\bar{C}(u,v)=1-u-v+C(u,v)$.

In the case where $C = C_{\theta,\phi}$, we have

$$\lambda_{\theta,\phi} = -\phi^2(1)\theta'(1).$$

Remark.

- If $\phi(1) = 0$, then $\lambda_{\theta,\phi} = 0$.
- If θ is a constant function, then $\lambda_{\theta,\phi} = 0$.

2. First sub-family, the case $\theta(1) = 0$.

Examples.

- Fréchet upper bound. Choosing $\phi(x) = x$ and $\theta(x) = (1-x)/x$ yields $C_{\theta,\phi}(u,v) = M(u,v) = \min(u,v).$
- Independent copula. $\theta(x) = 0$ yields $C_{\theta,\phi}(u,v) = \Pi(u,v) = uv$.
- Cuadras-Augé family: $\phi(x) = x$ and $\theta(x) = x^{-\alpha} 1$, $0 \le \alpha \le 1$ yields

$$C_{\theta,\phi}(u,v) = \min(u,v)^{\alpha}(uv)^{1-\alpha} = M^{\alpha}(u,v)\Pi^{1-\alpha}(u,v),$$

which is the weighted geometric mean of M and Π .

Remark.

- $\theta(1) = 0$ and $\theta'(u) \le 0$ imply $\theta(u) \ge 0$ for all $u \in I$.
- $0 \le \rho_{\theta,\phi} \le 1 \longrightarrow \text{Modelling of positive dependences}$
- Lower (0) and upper bounds (1) of $\rho_{\theta,\phi}$ and $\lambda_{\theta,\phi}$ are reached respectively by the II and M copulas.

Dependence properties: definitions.

Assume X and Y are exchangeable. X and Y are

for all (x, y).

- Positively Quadrant Dependent (PQD) if $\mathbb{P}(X \leq x, Y \leq y) \geq \mathbb{P}(X \leq x)\mathbb{P}(Y \leq y)$
- Left Tail Decreasing (LTD) if $\mathbb{P}(Y \leq y | X \leq x)$ is non-increasing in x for all y.
- Right Tail Increasing (RTI) if $\mathbb{P}(Y > y | X > x)$ is nondecreasing in x for all y.
- Stochastically Increasing (SI) if $\mathbb{P}(Y > y | X = x)$ is nondecreasing in x for all y.
- Left Corner Set Decreasing (LCSD) if $\mathbb{P}(X \leq x, Y \leq y | X \leq x', Y \leq y')$ is non-increasing in x' and y' for all (x, y).
- Right Corner Set Increasing (RCSI) if $\mathbb{P}(X > x, Y > y | X > x', Y > y')$ is nondecreasing in x' and y' for all (x, y).

Theorem. X and Y are:

- PQD iff $\phi(u)$ has a constant sign on I.
- LTD or LCSD iff either $\{\phi(u)/u \text{ is non increasing and } \forall u \in I, \ \phi(u) \geq 0\}$ or $\{\phi(u)/u\}$ is non decreasing and $\forall u \in I, \ \phi(u) \leq 0$.
- RTI or RCSI iff $\phi(u)/(1-u)$ and $\theta(u)\phi(u)/(1-u)$ are monotone.
- SI iff either $\{\phi \text{ and } \theta \phi \text{ are concave and } \forall u \in I, \ \phi(u) \geq 0\}$ or $\{\phi \text{ and } \theta \phi \text{ are convex } \phi \in I\}$ and $\forall u \in I, \ \phi(u) \leq 0$.

Implications in the general case

Implications in the sub-family

3. Second sub-family, the case $\phi(1) = 0$.

In this case, we restrict ourselves to a constant function θ , i.e. $\theta(x) = \theta \in [-1, 1]$.

Theorem. $C_{\theta,\phi}$ is a copula if and only if ϕ and θ satisfy the following conditions:

- boundary conditions: $\phi(0) = 0$ and $\phi(1) = 0$,
- $|\phi'(x)| \le 1$ for all $x \in I$,
- $|\phi(x)| \le \min(x, 1-x)$, for all $x \in I$.

Examples.

- $\phi(x) = \min(x, 1-x)$: upper bound of the above theorem,
- $\phi(x) = x(1-x)$: Farlie-Gumbel-Morgenstern family of copulas (Morgenstern, 1956), which contains all copulas with both horizontal and vertical quadratic sections (Quesada-Molina, Rodríguez-Lallena, 1995)
- $\phi(x) = x(1-x)(1-2x)$: symmetric copulas with cubic sections (Nelsen *et al*, 1997).
- $\bullet \ \phi(x) = \pi^{-1} \sin(\pi x).$

Upper bound, Farlie-Gumbel-Morgenstern, cubic sections, sinus.

Measure of association. The Spearman's Rho can be rewritten as:

$$\rho_{\theta,\phi} = 12\theta \left(\int_I \phi(u) du \right)^2,$$

Kendall's Tau: $-1/2 \le \tau_{\theta,\phi} \le 1/2$. and it follows that $-3/4 \le \rho_{\theta,\phi} \le 3/4$ for all $\theta \in [-1,1]$. Similar bounds hold for the

Upper tail dependence. $\rho_{\theta,\phi} = 0$.

Dependence properties. Similar to the previous family in the case $\theta > 0$.

Symmetry properties: definitions.

- X is symmetric about a if (X-a) and (a-X) are identically distributed (id).
- X and Y are exchangeable if (X,Y) and (Y,X) are id
- \bullet (X,Y) is marginally symmetric about (a,b) if X and Y are symmetric about a and brespectively.
- (X,Y) is radially symmetric about (a,b) if (X-a,Y-b) and (a-X,b-Y) are id.
- (X,Y) is jointly symmetric about (a,b) if the pairs (X-a,Y-b), (a-X,b-Y), (X-a,b-Y) and (a-X,Y-b) are id.

Theorem. In the $C_{\theta,\phi}$ family:

 \bullet If X and Y are id then X and Y are exchangeable.

Besides, if (X,Y) is marginally symmetric about (a,b) then:

• (X,Y) is radially symmetric about (a,b) if and only if

either
$$\forall u \in I$$
, $\phi(u) = \phi(1-u)$ or $\forall u \in I$, $\phi(u) = -\phi(1-u)$.

• (X,Y) is jointly symmetric about (a,b) if and only if $\forall u \in I, \ \phi(u) = -\phi(1-u)$.

4. Inference procedures.

Assumptions.

• We restrict ourselves to the second sub-family, with constant function θ :

$$C(u, v) = uv + \theta\phi(u)\phi(v).$$

 \longrightarrow Estimation of θ (scalar) and ϕ (univariate function).

 \rightarrow Identifiability problem: (θ, ϕ) and $(\alpha \theta, \phi/\sqrt{\alpha})$ yield the same copula for all $\alpha > 0$.

• We focus on the PQD case: $\theta > 0$ and ϕ has a constant sign.

Under these assumptions, the family can be rewritten

$$C(u, v) = uv + \psi(u)\psi(v),$$

where $\psi(x) = \sqrt{\theta} |\phi(x)|$.

 \longrightarrow The estimation of C reduces to the estimation of ψ (positive univariate function).

Estimation of ψ

1) Preprocessing:

- $\{(x_i, y_i), i = 1, ..., n\}$ a sample of (X, Y) from the cdf H(x, y) = C(F(x), G(y)).
- Rank transformations: $u_i = \text{rank}(x_i)/n$ and $v_i = \text{rank}(y_i)/n$.
- $\{(u_i, v_i), i = 1, \ldots, n\}$ an approximate sample from the copula C(u, v).

2) **Projection estimate:** linear combination of basis functions: $\{e_k, k \ge 1\}$

• Pseudo-observations $\{w_i = \max(u_i, v_i), i = 1, \dots, n\}$ from $C(w, w) = w^2 + \psi(w)$.

$$\widehat{\psi}(w) = \sum_{k \ge 1} a_k e_k(w), \ w \in I.$$

Choice of the set of functions:

- no orthogonality condition,
- boundary conditions $e_k(0) = e_k(1) = 0$ for all $k \ge 1$ so that $\psi(0) = \psi(1) = 0$.

3) Optimization problem: Define

- $w_{1,n} \leq \cdots \leq w_{n,n}$, the ordered pseudo-observations,

• M and M' two matrices $M_{i,k} = e_k(w_{i,n}), M'_{i,k} = e'_k(w_{i,n}), k \ge 1, i \in \{1, \ldots, n\},$

• a and b two vectors $b_i = (i/(n+1) - w_{i,n}^2)^{1/2}$, a_i unknown, $i \in \{1, ..., n\}$.

Definition of the estimator.

•
$$\hat{\psi}(w_{i,n}) = C(w_{i,n}, w_{i,n}) - w_{i,n}^2 \simeq i/(n+1) - w_{i,n}^2$$
 for $i = 1, \dots, n$ can be rewritten
$$\min_{a} \|Ma - b\|^2,$$

- $\hat{\psi}(w_{i,n}) \ge 0$ can be rewritten $Ma \ge 0$,
- $|\psi(w_{i,n})| \le 1$ can be rewritten $-1 \le M'a \le 1$.
- Constrained least-square problem.

Estimation of the Spearman's rho

Recall that

$$\rho_{\theta,\phi} = 12\theta \left(\int_{I} \phi(u) du \right)^{2} = 12 \left(\int_{I} \psi(u) du \right)^{2}.$$

Replacing ψ by $\hat{\psi}$ yields the following semi-parametric estimator:

$$\hat{\rho}_{\text{sp}} = 12 \left(\sum_{k \ge 1} a_k \beta_k \right)^2,$$

where we have introduced $\beta_k = \int_I e_k(u) du$.

Another solution: adapt the nonparametric estimator of the Kendall's Tau introduced in (Genest, Rivest, 1993) to obtain

$$\hat{\rho}_{\text{\tiny NP}} = \frac{6}{n(n-1)} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{1} \{ u_j < u_i, \ v_j < v_i \} - \frac{3}{2},$$

Estimation of high probability regions

Definition. The α -quantile of the copula C is defined by

$$Q_{\alpha} = \inf\{\lambda(S) : \mathbb{P}(S) \ge \alpha, \ S \subset I^2\}, \ 0 < \alpha \le 1,$$

where λ is the Lebesgue measure on I^2 .

Partitions. $\{I_k, k = 1, ..., N\}$ be the equidistant N-partition of I, $K_{k,\ell} = I_k \times I_\ell$ the associated $N \times N$ grid. Denote $\delta_{k,\ell} \in \{0,1\}, (k,\ell) \in \{1,...,N\}^2$.

Estimator: $\hat{Q}_{\alpha} = \bigcup K_{k,\ell} \mathbf{1} \{ \delta_{k,\ell} = 1 \}.$

Optimization problem. The $\delta_{k,\ell}$ are defined by

$$\min \sum_{k=1}^N \sum_{\ell=1}^N \delta_{k,\ell},$$

under the constraints $\delta_{k,\ell} \in \{0,1\}$ and $\sum_{k=1}^{N} \sum_{\ell=1}^{N} \delta_{k,\ell} \widehat{P}(K_{k,\ell}) \geq \alpha$,

where $P(K_{k,\ell})$ is an estimation of the probability $P(K_{k,\ell})$.

Algorithm.

- First step: sort the $\widehat{P}(K_{k,\ell})$ in decreasing order to obtain the sequence \widetilde{P}_{τ} , $au=1,\ldots,N^2.$
- Second step: Computation of the number of subsets of the partition:

$$J = \min \left\{ j, \sum_{\tau=1}^{j} \tilde{P}_{\tau} \ge \alpha \right\}.$$

• Third step: selection of the J first subsets: $\delta_{k,\ell} = 1$ if $1 \leq \tau(k,\ell) \leq J$,

Estimation of $P(K_{k,\ell})$. Two solutions:

ullet Semi-parametric estimate based on $\widehat{\psi}$

$$\hat{P}_{\text{\tiny SP}}(K_{k,\ell}) = \frac{1}{N^2} + \left(\widehat{\psi}\left(\frac{k}{N}\right) - \widehat{\psi}\left(\frac{k-1}{N}\right)\right) \left(\widehat{\psi}\left(\frac{\ell}{N}\right) - \widehat{\psi}\left(\frac{\ell-1}{N}\right)\right)$$

• Nonparametric estimate

$$\widehat{P}_{_{
m NP}}(K_{k,\ell}) = rac{1}{n} \sum_{i=1}^{n} {f 1}\{(u_i,v_i) \in K_{k,\ell}\}.$$

5. Simulation results.

Numerical experiments on the family of copulas C_k generated by the set of functions

$$\forall k \ge 1, \quad \psi_k(x) = 1 - \left(x^k + (1-x)^k\right)^{1/k}, \ x \in I.$$

- When $k=1, C_1$: uniform distribution on I^2 . Spearman's Rho $\rho_1=0$.
- When $k \to \infty$, $\psi_k(x) \to \psi_\infty(x) = \min(x, 1-x)$ for all $x \in I$. sub-family). mixing parameter 1/2. Spearman's Rho $\rho_{\infty} = 3/4$ (the maximum value in the C_{∞} : mixture of two uniform distributions on the squares $[0,1/2]^2$ and $[1/2,1]^2$ with
- When $1 < k < \infty$, bivariate distribution "interpolating" between the two previous ones.

Chosen basis of functions:

$$e_{s,\ell}(x) = \sin\left(\frac{\pi}{2}(2^{s+1}x - \ell)\right) \mathbf{1}\{2^{s+1}x \in [\ell, \ell+2]\},$$

s is a scale parameter, ℓ is a location parameter.

	72.1	72.8	∞
	70.6	71.2	6
	65.8	66.4	4
	43.0	42.5	2
	0.81	0	\vdash
$\operatorname{mean}(\hat{\rho}_{\scriptscriptstyle NP}) \times 10^{-2}$	$\operatorname{mean}(\hat{\rho}_{\scriptscriptstyle \mathrm{SP}}) \times 10^{-2}$	$\rho_k \times 10^{-2}$	k

the estimates $\hat{\rho}_{sp}$ and $\hat{\rho}_{Np}$ are evaluated on 100 repetitions. Estimation of the generating function and of the Spearman's Rho (ρ_k) . The mean value of

function ψ , (n = 500). left: semiparametric estimate, bottom right: semiparametric estimate with the true yellow: $\alpha = 0.75$. Top left: simulated sample, top right: nonparametric estimate, bottom Estimation of high probability regions Q_{α} from C_2 . Red: $\alpha = 0.25$, green: $\alpha = 0.5$,

Cécile Amblard & Stéphane Girard

function ψ , (n = 500). left: semiparametric estimate, bottom right: semiparametric estimate with the true yellow: $\alpha = 0.75$. Top left: simulated sample, top right: nonparametric estimate, bottom Estimation of high probability regions Q_{α} from C_4 . Red: $\alpha = 0.25$, green: $\alpha = 0.5$,

Cécile Amblard & Stéphane Girard

function ψ , (n = 500). left: semiparametric estimate, bottom right: semiparametric estimate with the true yellow: $\alpha = 0.75$. Top left: simulated sample, top right: nonparametric estimate, bottom Estimation of high probability regions Q_{α} from C_8 . Red: $\alpha = 0.25$, green: $\alpha = 0.5$,

Cécile Amblard & Stéphane Girard

6. Real data.

n=225 countries, two variables: X, the life expectancy at birth (years) in 2002 of the men. http://www.odci.gov/cia/publications/factbook/. total population and Y, the difference between the life expectancy at birth of women and

According to the PQD test proposed in (Scaillet, 2004), these data are PQD.

$$\hat{\rho}_{\text{NP}} = 52.4\%$$
 $\hat{\rho}_{\text{SP}} = 40.7\%$

yellow: $\alpha = 0.75$. Top left: real data, top right: real data after rank transformation, bottom left: nonparametric estimate, bottom right: semiparametric estimate. Estimation of high probability regions Q_{α} from real data. Red: $\alpha = 0.25$, green: $\alpha = 0.5$,

Further work.

- Goodness of fit test.
- Study of the sub-family $\phi(1) = 0$ without the assumption that θ is a constant function. (what is the lower bound of $\rho_{\theta,\phi}$?)
- \bullet Estimation of the function θ in the general case.

References.

- C. Amblard and S. Girard. A new bivariate extension of FGM copulas, Metrika, 70, 1-17, 2009.
- C. Amblard and S. Girard. Estimation procedures for a semiparametric family of bivariate copulas, Journal of Computational and Graphical Statistics, 14, 1–15, 2005.
- C. Amblard and S. Girard. Symmetry and dependence properties within a semiparametric family of bivariate copulas, Nonparametric Statistics, 14, 715–727,
- C. Amblard and S. Girard. A semiparametric family of symmetric bivariate copulas, Comptes-Rendus de l'Académie des Sciences, t. 333, Série I:129–132, 2001