Nonparametric extremal quantile regression

Stéphane Girard

INRIA Rhéne-Alpes & LJK
http://mistis.inrialpes.fr/people/girard/

July, 2013

Joint work with Abdelaati Daouia (Catholic University of Louvain) and
Laurent Gardes (Université de Strasbourg)



© Introduction



Nonparametric quantile regression

o Conditional quantiles: Given a vector of regressors X € RP
and a response variable Y € R, define

qalx) = F~(alx) =infly, F(y|x) < a}
for a € (0,1), where F(y|x) = P(Y > y|X = x).

e Nonparametric estimators: Let (Xj, Y;), i=1,...,n beiid
copies of (X, Y).

dn(alx) = Fi(alx) =infly, Fa(ylx) < o}

n

where the kernel K is a bounded pdf on RP with support
included in the unit ball, and h, — 0 is the window-width.



Extremal quantile regression

Objective: Extending the asymptotics further into the tails of the
conditional distribution by considering & = a, — 0 as n — oc.

@ Is it still reasonable to use §,(a,|x) for estimating g(a|x)
when o, — 07

@ If not, how can we adapt §,(«,|x) to this situation?



Extremal quantile regression

Motivating example 1: American electric utility companies
(p=1,n=123).

log(production)

0 ?
log(total cost)

Goal: Identification of the set of the most efficient firms.



Extremal quantile regression

Motivating example 2: Extreme rainfall as a function of the
geographical location (p = 3), south of France.

X = {longitude, lattitude, altitude}, Y =rainfall (mm).
Goal: Estimation of the 100-year return level.



Extremal quantile regression

Related works:

@ Parametric models for exceedances over high thresholds:
Davison and Smith (1990), Smith (1989)

@ Semi-parametric approaches:
Hall and Tajvidi (2000), Beirlant and Goegebeur (2003)

@ Extreme quantiles in the linear regression model:
Chernozhukov (2005), Jureckovd (2007), Wang et al. (2012)

@ Local polynomial fitting of the GEV distribution:
Davison and Ramesh (2000)

@ Local polynomial fitting of a Generalized Pareto Distribution:
Beirlant and Goegebeur (2004)

@ Spline estimators fitted by maximum penalized likelihood:
Chavez-Demoulin and Davison (2005)



© Extremal quantile regression without extrapolation



Assumption: von-Mises condition

The function F(-|x) is twice differentiable and

F(y|x)F"(y|x)

Sy (PR T

where
e yr(x) = q(0|x) € (—o0, 0] is the endpoint of Y given X = x,

@ 7(x) is the conditional extreme-value index,

o F'(-|x) and l:_”_(-|x) are respectively the first and the second
derivatives of F(:|x).

This condition implies the existence of an auxiliary function a(-|x)
such that, for all t > 0 as o« — 0:

q(talx) — q(alx)

1/t
— v1)=1gy,.
Aala)p) /D= / T




Regularity assumptions

Notations
@ g is the probability density function of X,
@ d(x,x’) is the Euclidean distance between x and x’ in RP,
@ B(x, hp) is the ball centered at x with radius h,.

The oscillation of the conditional survival function is controlled by

AH(X, Oé,,) = sup w

-1
(x",B)EB(x,hn) X [ank,cn] ﬁ

where x € (0, 1).

Assumption: [g(x) — g(x")| < cgd(x,x"), where ¢; > 0.



Asymptotic normality of §,(a,|x)

Llet0< 1y <+ <7 <7 <1where J >0 and let x € RP such
that g(x) > 0.
If v, — 0 and there exists x € (0, 7,) such that

nhbay, — 00, nhPan(hy V Dg(x, @n)) — 0,

then

{f(q(an|x)\x>\/ nhEo? (Gn(rjanlx) — q(rjan|x))}

is asymptotically Gaussian, centered, with covariance matrix

1K13/8(x)Z(x) where X;(x) = (rj7) X715,

j=1,....J

Analog of Berlinet et al.(2001), Theorem 6.4.



Conditions on the sequences «, and h,

nhfc, — oo: Necessary and sufficient condition for the almost
sure presence of at least one point in the region
B(x, hp) % [g(cn|x), +00) of RP x R.

quantile(x)

nhPa,(hV A.(x, a,))? — 0: The biais induced by the smoothing
in negligible compared to the variance.



Asymptotic normality of §,(a,|x)

Corollary

1) Under the assumptions of Theorem 1,

{ o dlanx) (an<nan|x> B 1)}
a(g(anlx)[x) \ q(7jcrn|x) =l

is asymptotically GaussiNan, centered, with covariance matrix

IK113/(x)E(x) where 5 i (x) = (7j7;:) =007 778,

2) If, moreover, v(x) > 0, then

Gn(Ticn|x
{ = <qn( jCn] )_1>}
q(7joun|x) j=1,....J
is asymptotically Gaussian, centered, with covariance matrix

IK11372(x)/g(x)(x) where 5 ju(x) = 7.}




© Extremal quantile regression with extrapolation



Regression quantiles of higher order

e Goal: Estimate q((3,|x) with 8,/a, — 0 and nhPa,, — cc.
@ Idea: The von-Mises condition implies that

q(talx) — q(alx)

bt alx) = = )X

— Kﬁ/(x)(l/t) — 0

forall t >0asa— 0.
This allows to build a new estimator of g(8,|x):
dn(Bnlx) = Gn(cun|x) + K%(x)(an/ﬁn) an(x).

where 4,(x) and 3,(x) are two estimators of y(x) and
a(g(an|x)|x) respectively.



Asymptotic normality of §,(5,|x)

Let o, — 0, 3,/c, — 0 and suppose there exists A, — 0 such that
Anlog(an/Bn) — 0, Ny b(Bn/tn, cn|x) /Ky (ctn/Br) — 0 and

3n(X) é\ln(05n|x) - q(an|X)>t

1 Ap(x) = y(x), —2L
A (”"() M el aalan®)))

converges in distribution to ¢(x) a R3 random vector. Then,

=il an(ﬂn|x) — q(ﬂn\x) i> Vel
A, (a(Q(an|X)X)K;(X)(a,,/ﬁn)> (x)°¢(x)

where ¢(x)! = (1, —(7(x) A 0), (v(x) A 0)?).

Analog of de Haan and Ferreira (2006), Theorem 4.3.1.



[llustration: Refined Pickands estimators

Estimators of v(x) and a(qg(«an|x)|x) adapted from Drees (1995):

. dn(Tjan|x) — Gn(Tjr1000]x)
RP x — T |0 < J J
i (<) |0gr Z ’ n(Tj+100n|x) — Gn(Tj20n|x)

1 J=-2

ARP - JARP (x)
H) = e 2 @n(enl) ~ dlrysaanbo)

where
o7i=r"1 j=1,...,J, with J >3 and r € (0,1).

@ () is a sequence of weights summing to one.

Theorem 2 holds with A, L — /nhPay,,.



@ Simulations



Comparison of 3 estimators

o Kernel estimator without extrapolation §,(5,|x),

o Kernel estimator with extrapolation §i' (/3,|x) based on
Refined Pickands estimators (J = 3 and r = 1/3).

~ 1 Gn(an|x) — qn(ran|x
) = g sk “lraa)
ogr

Gn(ran|x) — gn(r2an|x)

AP ()

a, (X) = W(an(an|x) - é\ln(rO‘n‘X))

@ Local polynomial fitting of a Generalized Pareto Distribution
(GPD): Beirlant and Goegebeur (2004)



Local polynomial fitting of a GPD

Let x € RP, let h be bandwidth and k., a number of exceedances.

o Compute Y7, <--- <Yy . the order statistics
corresponding to the ny, values Y; for which X; € B(x, h).

° .Compute the exceedances Z* = Y,fh itlng Y:xrkxmnxh'
/:17---7kxh-

e Fit a GPD density g(.,0,7) by maximizing

Zlogg z Zﬁlj %) Zﬁzj K(X"h‘x>

w.rt (810, 5 Bipr> B0, -+ P2p,) to get the estimates

R Bro | (n Nxh Bn o
GPD(ﬁn|X) ”xh KxhsNxh + = " s -1

Bao Kxh




Practical issues

Tuning parameters
@ Number of upper order statistics kyp, in §5°°(3,|x) and
tp i= K/ Ny in Gy (Bnlx).
@ Smoothing parameter h for all the considered estimators
Gn(Bnlx). @y" (Bnlx) and §57°(Ba|x).
For all the considered estimators:
@ The tuning parameters h and k,; were selected by minimizing
the MSE estimated on 400 replications.
@ The kernel function was chosen to be
35

1— 231 <t<1).
32( t){-1<t<1}

K(t) =



Simulated model

Simulations from the model of Ruppert et al. (2003):
\/,:/L(X,)‘FO'(X,)U,, i:17"'an'

where
e n=200
@ The X; are i.i.d standard uniform (p = 1).

e The U; given X; = x are independent standard Gaussian,
Beta(v(x),v(x)) or Student [, (,)+1 with

2m(1 +27/5)>

u(x) = Vx(1—x) sin( PR

o(x) = (1+x)/10 1
(x) = { <110 + sin(wx)) G(l) - %exp{—64(x - 1/2)2}> }_



Typical realization in case Y |X is Gaussian and (3, = 0.005

Red: true quantile g((3,|x), Black: @& (Bn|x), Green: §57°(3,|x),
Magenta: Gn(05n|x).



Bn = 0.05
MSE Bias
GEPP (Balx) | G (Bnlx) | @n(Balx) || 85"°(Balx) | R (Balx) | @n(Balx)
Gaussian 0.018 0.011 0.011 0.097 0.000 0.006
Student 0.135 0.031 0.077 0.153 -0.013 0.087
Beta 0.036 0.009 0.002 0.158 0.050 0.013
Bn = 0.01
MSE Bias
GEPP(Balx) [ &R (Balx) [ @n(Balx) || @SPP(Balx) | &X° (Balx) [ &n(Bnlx)
Gaussian 0.028 0.026 0.016 0.095 -0.078 -0.036
Student 0.692 0.111 0.682 0.089 -0.089 -0.096
Beta 0.066 0.014 0.003 0.207 0.052 0.021
Bn = 0.005
MSE Bias
a5 P (Balx) | an” (Balx) | a@n(Balx) a5 P(Balx) | @n" (Balx) | @n(Bnlx)
Gaussian 0.031 0.035 0.020 0.086 -0.098 -0.052
Student 1.023 0.292 0.978 -0.045 -0.162 -0.260
Beta 0.079 0.016 0.004 0.224 0.054 0.024




Tuning parameters selection in practice

A heuristical approach for gi°(3,|x).
Step 1. Foreach he Hand k=1,...,n}, —1:

o Compute the estimator gr¥ (8,|x; h, k),
o Compute the standard deviation of the estimates over a small
window of successive values of k.

Select the value of k,; as the minimizer of the standard
deviation.

Step 2. For each h € H:

o Compute the estimator Gr¥ (8,]x; h, kxn),
e Compute the standard deviation of the estimates over a small
window of successive values of h.

Select the value of h, as the minimizer of the standard
deviation.

The same approach is adopted for §5°°(3,|x).



Typical realization in case Y |X is Gaussian and (3, = 0.005

02 0.4 0.6 0.8 1

Red: true quantile g((3,|x), Black: @i (Bn|x), Green: §57°(3,|x),
Magenta: Gn(05n|x)-



© Real data examples



American electric utility companies

Data : Y = log(Q) with Q being the firm production output,
X =log(C), with C being the total cost involved in the
production. n = 123 firms.

Objective: Identification of the most efficient firms (5, = 1/n).

e
g
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o
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o
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Black: G (8n|x), , Magenta: §,(5n|x).



Extreme rainfall as a function of the geographical location

Data. Y: Daily rainfalls (mm) measured at 523 raingauge stations
from 1958 to 2000, X: Three dimensional geographical location
(longitude, latitude and altitude).

Objective. Estimation of the 100-year return level.




@ Conclusion



Conclusion

+ Extremal quantile regression with fully nonparametric (kernel)
methods,

+ Theoretical properties similar to the one-dimensional
extreme-value theory,

— Selection of tuning parameters is a difficult issue,

— Curse of dimensionality when p is large.
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