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Multivariate quantiles?

The natural order on R induces a universal definition of quantiles for
univariate distribution functions.

This is not true in Rd , d ≥ 2: no natural order exists in this case.

Many definitions of multivariate quantiles have been suggested:

Depth-based quantiles: Liu et al. (1999), Zuo and Serfling (2000);

Convex optimisation: Abdous and Theodorescu (1992), Chaudhuri
(1996), Koltchinskii (1997).

These are generalisations of univariate quantiles (see Serfling, 2002).

Recent developments include the DOQR paradigm of Serfling (2010), the
directional quantiles of Kong and Mizera (2012) linked to the Tukey
depth, and level sets-based quantiles (Cousin and Di Bernardino, 2013).
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Geometric quantiles

The univariate τ–th quantile of a real-valued random variable X is

q(τ) = inf{t ∈ R |P(X ≤ t) ≥ τ}.

This can also be obtained by solving the L1–optimisation problem

arg min
q∈R

E(ϕτ (X − q)− ϕτ (X ))

where ϕτ is the quantile check function (Koenker and Bassett, 1978):

ϕτ (x) = |τ − 1l{x ≤ 0}| |x |.

A technical trick shows that this optimisation problem is exactly

arg min
q∈R

E(|X − q| − |X |)− (2τ − 1)q.
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In Rd , d ≥ 2, analogues of the absolute value and product are given by
the Euclidean norm ‖ · ‖ and Euclidean inner product 〈·, ·〉.

Note also that τ ∈ (0, 1)⇒ 2τ − 1 ∈ (−1, 1), the unit ball in R.

This leads to the following notion of geometric quantiles of X :

Definition (Chaudhuri 1996)

If u ∈ Rd is an arbitrary vector then a geometric u–th quantile of X , if it
exists, is a solution of the optimisation problem

arg min
q∈Rd

E(‖X − q‖ − ‖X‖)− 〈u, q〉. (Pu)

Geometric quantiles have good, known central properties (uniqueness,
orthogonal equivariance, characterisation of the underlying distribution...)

Our focus here is rather to investigate extreme geometric quantiles.
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A first step

From now on, assume that the distribution of X is not concentrated on a
single straight line in Rd , and (for simplicity) that it is non-atomic.

Proposition (Chaudhuri 1996; Koltchinskii 1997; Girard and S. 2017)

The optimisation problem (Pu) has a solution if and only if ‖u‖ < 1.

Interesting asymptotics are therefore those of a geometric quantile q(u)
when ‖u‖ ↑ 1.

This is exactly an “extreme geometric quantile” as in Chaudhuri (1996).
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Theorem (Girard and S. 2017)

Let Sd−1 be the unit sphere of Rd .

(i) The magnitude of extreme geometric quantiles diverges to infinity:

‖q(u)‖ → ∞ as ‖u‖ ↑ 1.

(ii) The extreme geometric quantile in the direction u ∈ Sd−1 has
asymptotic direction u:

q(αu)

‖q(αu)‖
→ u as α ↑ 1.

♦ A consequence of (i) is that the norm of extreme geometric
quantiles tends to infinity even if X has a compact support!

♦ Related point: sample geometric quantiles do not necessarily lie
within the convex hull of the sample, see Breckling et al. (2001).
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Asymptotic behaviour of extreme geometric quantiles

Our next result examines rates of convergence in the previous theorem.

Theorem (Girard and S. 2017)

Let u ∈ Sd−1. Define Πu(x) = x − 〈x , u〉u to be the projection on u>.

(i) If E‖X‖ <∞ then

‖q(αu)‖
(

q(αu)

‖q(αu)‖
− u

)
→ E(Πu(X )) as α ↑ 1.

(ii) If E‖X‖2 <∞ and Σ denotes the covariance matrix of X then

‖q(αu)‖2(1− α)→ 1

2

(
tr Σ− u′Σu

)
> 0 as α ↑ 1.
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Consequences of Theorem 2

If ‖X‖ has a finite second moment, then the magnitude of an extreme
geometric quantile in the direction u is, asymptotically, fully determined
by u and the covariance matrix Σ, which is a central parameter.

Moreover, the global maximum of the function u 7→ tr Σ− u′Σu on Sd−1

is reached at a unit eigenvector of Σ for its smallest eigenvalue. Thus:

♦ The norm of an extreme geometric quantile is the largest in the
direction where the variance is the smallest;

♦ For elliptically contoured distributions, the shapes of extreme
geometric quantile contours and iso-density surfaces are orthogonal.

In general, no reliable information about the extremes of a multivariate
distribution can be obtained from its extreme geometric quantiles.
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Figure: Full line: iso-quantile curve of level α, dashed line: iso-density curve
Cfα = {x ∈ Rd | f /‖f ‖∞ = (1− α)}, for the Gaussian N2(02, diag(2, 1)). The
level α is 0.9 (blue), 0.99 (green), 0.995 (red).
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Illustration on the Pima Indians Diabetes dataset

Two-dimensional data set extracted from the Pima Indians Diabetes
Database, downloadable at

ftp.ics.uci.edu/pub/machine-learning-databases

The data set is n = 392 pairs (Xi ,Yi ), where Xi is the body mass
index of the i-th individual and Yi is its diastolic blood pressure.

Already considered in Chaouch and Goga (2010) in the context of
outlier detection using precisely geometric quantiles.

We center the data and, recalling Theorem 2, we estimate extreme
geometric quantile contours via

q̂n(αu) = (1− α)−1/2
[

1

2

(
tr Σ̂n − u′Σ̂nu

)]1/2
u,

for any u ∈ Sd−1, where Σ̂n is the sample covariance matrix.
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Figure: Pima Indians Diabetes data set: Estimated geometric iso-quantile curve
at level ‖u‖ = 0.95. Estimator based on the sample covariance matrix.
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What about extreme geometric expectiles?

The τ–expectile of a real-valued random variable X is obtained via an
L2–version of the optimisation problem for quantiles:

arg min
q∈R

E(ητ (X − q)− ητ (X ))

where ητ is the expectile check function (Newey and Powell, 1987):

ητ (x) = |τ − 1l{x ≤ 0}| x2.

The technical trick used to rewrite the quantile optimisation problem still
applies, and shows that the expectile optimisation problem is exactly

arg min
q∈R

E(ψτ (X − q)− ψτ (X ))

with ψτ (x) = |x | (|x |+ (2τ − 1)x).
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Replace again absolute value and product by Euclidean norm ‖ · ‖ and
Euclidean inner product 〈·, ·〉 to generate the loss function

Ψu(x) = ‖x‖(‖x‖+ 〈u, x〉).

This leads to the following notion of geometric expectiles:

Definition (Herrmann, Hofert and Mailhot 2017)

If u ∈ Rd is an arbitrary vector then a geometric u–th expectile of X , if it
exists, is a solution of the optimisation problem

arg min
q∈Rd

E(Ψu(X − q)−Ψu(X )). (Su)
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Our results so far on extreme geometric expectiles

Proposition (Herrmann, Hofert and Mailhot 2017; Girard and S. 2017)

The optimisation problem (Su) has a solution if and only if ‖u‖ < 1.

This means that, as for geometric quantiles q(u), interesting asymptotics
are those of a geometric expectile e(u) when ‖u‖ ↑ 1.

Theorem (Girard and S. 2017)

The magnitude of extreme geometric expectiles diverges to infinity:

‖e(u)‖ → ∞ as ‖u‖ ↑ 1.

In addition: for any u ∈ Sd−1,

e(αu)

‖e(αu)‖
→ u as α ↑ 1.
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Discussion

Extreme geometric quantiles in the direction u are asymptotically
equal for two distributions which have the same finite covariance
matrix. This is not satisfying from the extreme value perspective.

The shape of the iso-geometric quantile curves may be totally
different from the shape of the density contour plots. Outlier
detection with this notion should be conducted with great care.

Our work so far shows that extreme geometric expectiles potentially
suffer from the same kind of issues.
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The part on geometric quantiles is based on the following paper:

Girard, S. and Stupfler, G. (2017). Intriguing properties of extreme
geometric quantiles, REVSTAT: Statistical Journal 15(1): 107–139.

The references for this part of the presentation can be found therein.

Results in the case of an undefined covariance matrix can be found in

Girard, S., Stupfler, G. (2015). Extreme geometric quantiles in a
multivariate regular variation framework, Extremes 18(4): 629–663.

The part on geometric expectiles is recent ongoing work.

Thank you for your attention!
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