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Multivariate quantiles

The natural order on R induces a universal definition of
quantiles for univariate distribution functions.

This is not true in R
d , d ≥ 2, since no natural order exists in

this case.

Many definitions of multivariate quantiles have thus been suggested
in the literature:

Generalizations of univariate quantiles:

♦ Depth-based quantiles: Liu et al. (1999), Zuo and Serfling
(2000) ;

♦ Norm minimisation: Abdous and Theodorescu (1992), Chaudhuri
(1996).

A review is Serfling (2002).

Recent developments: DOQR paradigm of Serfling (2010),
directional quantiles of Kong and Mizera (2012).
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Geometric quantiles

If X is a real-valued random variable, its univariate p–th quantile

q(p) := inf{t ∈ R |P(X ≤ t) ≥ p}

can be obtained by solving the optimisation problem

argmin
q∈R

E(|X − q| − |X |)− (2p − 1)q.

When E|X | < ∞, this problem can be simplified as

argmin
q∈R

E|X − q| − (2p − 1)q.

In particular, the median q(1/2) of X is obtained by minimising
E|X − q| with respect to q.

Subtracting E|X | makes the cost function well-defined even
when E|X | = ∞.
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In R
d , d ≥ 2, analogues of the absolute value and product are given

by the Euclidean norm ‖ · ‖ and Euclidean inner product 〈·, ·〉.
When X is a multivariate random vector, the geometric quantiles of
X , introduced by Chaudhuri (1996), are thus obtained by adapting
the aforementioned problem in the multivariate context:

Definition 1 (Chaudhuri 1996)

If u ∈ R
d is an arbitrary vector, a geometric u–th quantile of X , if it

exists, is a solution of the optimisation problem

arg min
q∈Rd

E(‖X − q‖ − ‖X‖)− 〈u, q〉. (Pu)
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Known properties

Central properties:

For all u ∈ R
d such that ‖u‖ < 1, there exists a unique

geometric u–th quantile whenever the distribution of X is not
concentrated on a single straight line in R

d (Chaudhuri, 1996).

Geometric quantiles are equivariant under any orthogonal
transformation (Chaudhuri, 1996).

The geometric quantile function characterises the associated
distribution (Koltchinskii, 1997).

These central properties make geometric quantiles reasonable
candidates when trying to define multivariate quantiles.

Extreme properties? Our focus here is to define a notion of extreme
geometric quantiles and investigate their properties.
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A first step

From now on, we assume that the distribution of X is not
concentrated on a single straight line in R

d and non-atomic.

Proposition 1 (Chaudhuri 1996; Koltchinskii 1997; Girard & S. 2015a)

The optimisation problem (Pu) has a solution if and only if ‖u‖ < 1.

We cannot compute a geometric quantile with unit index vector,
unlike in the univariate case when the distribution has a finite
(left or right) endpoint.

We may nevertheless study the asymptotics of a geometric
quantile q(u) when ‖u‖ ↑ 1: such quantiles will be referred to as
extreme geometric quantiles.

The phrase “extreme geometric quantiles” had already been used in
the pioneering paper of Chaudhuri (1996).
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Theorem 1 (Girard & S. 2015a)

Let Sd−1 be the unit sphere of Rd .

(i) The magnitude of extreme geometric quantiles diverges to

infinity:

‖q(u)‖ → ∞ as ‖u‖ ↑ 1.

(ii) The extreme geometric quantile in the direction u ∈ Sd−1 has

asymptotic direction u:

q(λu)

‖q(λu)‖ → u as λ ↑ 1.

♦ Point (i) is rather intriguing: it holds true even if the distribution
of X has a compact support;

♦ Related point: sample geometric quantiles do not necessarily lie
within the convex hull of the sample, see Breckling et al. (2001).

The next results specify rates of the convergence in Theorem 1 under
further assumptions.
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When there are finite moments

Our first result is obtained in the case when ‖X‖ satisfies certain
moment conditions.

Theorem 2 (Girard & S. 2015a)

Let u ∈ Sd−1. Define Πu(x) = x − 〈x , u〉u.
(i) If E‖X‖ < ∞ then

‖q(λu)‖
(

q(λu)

‖q(λu)‖ − u

)
→ E(Πu(X )) as λ ↑ 1.

(ii) If E‖X‖2 < ∞ and Σ denotes the covariance matrix of X then

‖q(λu)‖2(1− λ) → 1

2

(
tr Σ− u′Σu

)
> 0 as λ ↑ 1.
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Consequences of Theorem 2

If ‖X‖ has a finite second moment, then the magnitude of an
extreme geometric quantile in the direction u is asymptotically
determined by u and the covariance matrix Σ.

In particular, the extreme geometric quantiles of two probability
distributions with the same finite covariance matrices are
asymptotically equivalent.

⇒ When there is a finite second moment, no information can be
recovered on the behaviour of the distribution far from the origin
basing solely on extreme geometric quantiles.
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Further consequences of Theorem 2

If ‖X‖ has a finite covariance matrix Σ, then:

The global maximum of the function u 7→ tr Σ− u′Σu on the
unit sphere is reached at a unit eigenvector of Σ associated with
its smallest eigenvalue. Thus:
♦ The norm of an extreme geometric quantile is the largest in the

direction where the variance is the smallest;
♦ For elliptically contoured distributions, the shapes of extreme

geometric quantile contours and iso-density surfaces are in some
sense orthogonal.

Extreme geometric quantiles can be estimated with a plug-in
parametric estimator:

q̂n(αnu) = (1− αn)
−1/2

[
1

2

(
tr Σ̂n − u′Σ̂nu

)]1/2
u

where Σ̂n is the empirical counterpart of the central quantity Σ.
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In a multivariate regular variation framework

When the moment conditions are no longer satisfied, the asymptotic
properties of extreme geometric quantiles can be studied in a
multivariate regular variation framework:

(Mα) The random vector X has a probability density function f

which is continuous on a neighborhood of infinity and such that:

There exist a positive function Q on R
d and a function V which

is regularly varying at infinity with index −α < 0, such that

∀y 6= 0,

∣∣∣∣
f (ty)

t−dV (t)
− Q(y)

∣∣∣∣ → 0 as t → ∞

and sup
w∈Sd−1

∣∣∣∣
f (tw)

t−dV (t)
− Q(w)

∣∣∣∣ → 0 as t → ∞.

The function y 7→ ‖y‖d f (y) is bounded in any compact
neighborhood of 0.
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This model is closely related to the one of Cai et al. (2011).
If (Mα) holds, then:

The function Q is homogeneous of degree −d − α on R
d \ {0}.

We have that

f (x) = ‖x‖−dV (‖x‖)Q(x/‖x‖)(1 + o(1)) as ‖x‖ → ∞

and thus f (x) is roughly of order ‖x‖−d−α far from the origin.

The expectation E‖X‖β is finite if β < α.

In particular, the case α > 2 is covered by Theorem 2.
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Theorem 3 (Girard & S. 2015b)

Let u ∈ Sd−1.

(i) If (Mα) holds with α ∈ (0, 1), then

1

V (‖q(λu)‖)

(
q(λu)

‖q(λu)‖ − u

)
→

∫

Rd

Πu(y)

‖y − u‖Q(y)dy as λ ↑ 1.

(ii) If (Mα) holds with α ∈ (0, 2), then

1− λ

V (‖q(λu)‖) →
∫

Rd

(
1 +

〈y − u, u〉
‖y − u‖

)
Q(y)dy as λ ↑ 1.
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Comments on Theorem 3

Since V is regularly varying with index −α, it follows that when
α ∈ (0, 2), the magnitude of an extreme geometric quantile roughly
behaves like (1− λ)−1/α as λ ↑ 1.

⇒ In this case, the magnitude of an extreme geometric quantile
features the behaviour of the distribution far from the origin.

However, Theorem 3 excludes the limit cases α = 1 for the
asymptotic direction and α = 2 for the asymptotic magnitude. The
corresponding results are obtained in a separate study, for which we
introduce:

L(t) =
∫ t

1
rα−1V (r)dr .

The function L is slowly varying and L(t)/L(t) → ∞ as t → ∞.
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Theorem 4 (Girard & S. 2015b)

Let u ∈ Sd−1 and let σ be the standard surface measure on Sd−1.

(i) If (M1) holds and L(t) → ∞ as t → ∞ then as λ ↑ 1:

‖q(λu)‖
L(‖q(λu)‖)

(
q(λu)

‖q(λu)‖ − u

)
→

∫

Sd−1

Πu(w)Q(w)σ(dw).

(ii) If (M2) holds and L(t) → ∞ as t → ∞ then as λ ↑ 1:

‖q(λu)‖2
L(‖q(λu)‖) (1− λ) → 1

2

∫

Sd−1

〈Πu(w), w〉Q(w)σ(dw).
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In a nutshell

For all α > 0, we can write

q(λu)

‖q(λu)‖ − u ∝ R1,α((1− λ)−1)

and ‖q(λu)‖ ∝ R2,α((1− λ)−1) as λ ↑ 1,

where R1,α and R2,α are regularly varying functions with respective
indices −min(1, α)/min(2, α) and 1/min(2, α).

⇒ Extreme geometric quantiles feature the behaviour of a
multivariate distribution far from the origin only when its covariance
matrix does not exist.
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Numerical illustrations: Theorem 2

We choose d = 2. The following bivariate distributions are
considered:

the centred Gaussian bivariate distribution N (0, vX , vY , vXY )
with covariance matrix

Σ =

(
vX vXY
vXY vY

)
.

a centred double exponential distribution E(λ−, µ−, λ+, µ+),
with λ−, µ−, λ+, µ+ > 0, whose probability density function is:

f (x , y) =
1

4




λ+µ+e

−λ+|x |−µ+|y | if xy > 0,

λ−µ−e
−λ

−
|x |−µ

−
|y |

if xy ≤ 0.

In this case, X has an explicit finite covariance matrix.
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Since both distributions have a finite covariance matrix, Theorem 2
entails that their extreme geometric quantiles are asymptotically
equal to:

qeq(λu) := (1− λ)−1/2

[
1

2

(
tr Σ− u′Σu

)]1/2
u.

Goal: to show that

for these two distributions, equal covariance matrices induce
equivalent extreme geometric quantiles;

and to assess the accuracy of the asymptotic equivalent.
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We choose three different sets of parameters, in order that the
related covariance matrices coincide:

N (0, 1/2, 1/2, 0) and E(2, 2, 2, 2) with spherical covariance
matrices;

N (0, 1/8, 3/4, 0) and E(4, 2
√

2/3, 4, 2
√

2/3) with diagonal but
non-spherical covariance matrices;

N (0, 1/2, 1/2, 1/6) and E(2
√
3, 2

√
3, 2

√
3/5, 2

√
3/5) with full

covariance matrices.

Any u ∈ S1 can be written u = uθ = (cos θ, sin θ), θ ∈ [0, 2π). We
let λ = 0.995 and in each case, we compute:

the true iso-quantile curve Cq(λ) = {q(λuθ), θ ∈ [0, 2π)};
its asymptotic equivalent Cqeq(λ) = {qeq(λuθ), θ ∈ [0, 2π)}.
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Figure 1: Spherical case: Gaussian (left) and double exponential (right)
distributions. Iso-quantile curves Cq(λ) (full blue line) and Cqeq(λ) (dashed
black line).
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Figure 2: Diagonal case: Gaussian (left) and double exponential (right)
distributions. Iso-quantile curves Cq(λ) (full blue line) and Cqeq(λ) (dashed
black line).

22/ 34



Outline Geometric quantiles Extreme geometric quantiles Numerical illustrations Real data illustration Discussion

−10 −5 0 5 10

−8

−6

−4

−2

0

2

4

6

8

−10 −5 0 5 10

−8

−6

−4

−2

0

2

4

6

8

Figure 3: Full case: Gaussian (left) and double exponential (right)
distributions. Iso-quantile curves Cq(λ) (full blue line) and Cqeq(λ) (dashed
black line).
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Numerical illustrations: Theorem 3

Here, we consider a bivariate Pareto(α, σ1, σ2) distribution, whose
probability density function is:

f (x , y) =
α

2σ1σ2π

(
x2

σ2
1

+
y2

σ2
2

)(−2−α)/2

1l[1,∞)

(
x2

σ2
1

+
y2

σ2
2

)

where α, σ2
1 and σ2

2 > 0. When α > 2, this distribution has
covariance matrix:

M =
1

2
· α

α− 2
Σ, with Σ =

(
σ2
1 0
0 σ2

2

)
.
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For any α > 0, this distribution is part of the class (Mα), with

Q(x) = (x ′Σ−1x)(−2−α)/2

and V (t) =
α

2σ1σ2π
t−α

1l[1,∞)(t).

Theorems 2 and 3 thus entail that the extreme geometric quantiles of
this distribution are asymptotically equal to:

qeq(λu) := (1− λ)−1/αI (α, σ1, σ2)u if α < 2

where I (α, σ1, σ2) is a positive constant, and

qeq(λu) := (1− λ)−1/2

[
1

2

(
trM − u′Mu

)]1/2
u if α > 2.

Goal: to examine if both these approximations are satisfactory on this
heavy-tailed example.
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Figure 4: Pareto(α, 2, 1/2) model, with α = 1.3 (left) and α = 1.5 (right).
Iso-quantile curves Cq(λ) (full blue line) and Cqeq(λ) (black dashed line).
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Figure 5: Pareto(α, 2, 1/2) model, with α = 1.7 (left) and α = 2.5 (right).
Iso-quantile curves Cq(λ) (full blue line) and Cqeq(λ) (black dashed line).
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Figure 6: Pareto(α, 2, 1/2) model, with α = 3 (left) and α = 4 (right).
Iso-quantile curves Cq(λ) (full blue line) and Cqeq(λ) (black dashed line).
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Illustration on the Pima Indians Diabetes dataset

The sample behaviour of extreme geometric quantiles is
illustrated on a two-dimensional dataset extracted from the
Pima Indians Diabetes Database.

The data set consists of n = 392 pairs (Xi ,Yi), where Xi is the
body mass index of the ith individual and Yi is its diastolic
blood pressure.

Already considered in Chaouch and Goga (2010) in the context
of outlier detection.
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Figure 7: Centred data: estimated geometric iso-quantile curve, α = 0.95.
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Discussion

Extreme geometric quantiles in the direction u have asymptotic
direction u.

They are asymptotically equal for two distributions which have
the same finite covariance matrix, which is not satisfying from
the extreme value perspective.

The shape of the iso-quantile curves may be totally different
from the shape of the density contour plots. Outlier detection
should be conducted with great care.

They do however feature the behaviour of X far from the origin
in a multivariate regular variation context when the right tail of
‖X‖ is sufficiently heavy.
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Thanks for listening!
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