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Framework

Let Y € R be a real random value associated to a non-random
covariate x € E where E is a metric space indowed by a metric d.

Goal: Estimate a conditional extreme quantile g(a, t) of order
1 — « defined by

P(Y = q(a, x)[x) =
Difficulties:

@ The quantile order 1 — « can be very close to 1 (large
quantile).

@ The quantile is a function of the covariate x.

@ The space E can be of infinite dimension.
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Framework

Main assumption: The conditional distribution of Y given x € E is
a heavy tailed distribution i.e. for A > 0,

jim I 30

a—0 g(a, x)

Y

@ 7(.) is an unknown positive function of the covariate x called
the conditional tail index.

@ The conditional extreme quantile g(., x) decreases to infinity
at a polynomial rate as a — 0.
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Estimation method

o Let {(Yi,x;),i=1,...,n} be nindependent copies of (Y, x).
Using these observations, our aim is to estimate q(c, t) for a
given t € E.
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Estimation method

o Let {(Yi,x;),i=1,...,n} be nindependent copies of (Y, x).
Using these observations, our aim is to estimate q(c, t) for a
given t € E.

@ Clearly, only the observations "close” to t are required.
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Estimation method

Example: Estimation at the point t = 0.5 using n = 1000
observations (Y}, x;),i =1,...,n for E =0,1].
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Estimation method

o Let {(Yi,x;),i=1,...,n} be nindependent copies of (Y, x).
Using these observations, our aim is to estimate q(c, t) for a
given t € E.

@ Clearly, only the observations "close” to t are required.

@ We thus choose a positive sequence h, ; tending to zero as
n — oo and we define the slice S; = (0, 00) x B(t, hy¢) where
B(t, hpt) is the ball of center t and radius hy ;.

A moving window approach for nonparametric estimation of extre



Estimation method

Example: Estimation at the point t = 0.5 using n = 1000
observations (Y}, x;),i =1,...,n for E =0,1].
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Estimation method

o Let {(Yi,x;),i=1,...,n} be nindependent copies of (Y, x).
Using these observations, our aim is to estimate q(c, t) for a
given t € E.

@ Clearly, only the observations "close” to t are required.

@ We thus choose a positive sequence h, ; tending to zero as
n — oo and we define the slice S; = (0, 00) x B(t, hy¢) where
B(t, hpt) is the ball of center t and radius hy ;.

@ We select the observations Y;'s for which x; € B(t, hy+).
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Example: Estimation at the point t = 0.5 using n = 1000
observations (Y}, x;),i =1,...,n for E =0,1].
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Estimation method

o Let {(Yi,x;),i=1,...,n} be nindependent copies of (Y, x).
Using these observations, our aim is to estimate q(c, t) for a
given t € E.

@ Clearly, only the observations "close” to t are required.

@ We thus choose a positive sequence h, ; tending to zero as
n — oo and we define the slice S; = (0, 00) x B(t, hy¢) where
B(t, hpt) is the ball of center t and radius hy ;.

@ We select the observations Y;'s for which x; € B(t, hy+).

@ These observations are denoted by {Z;(t),i =1,...,m,:}
where mp, + is the number of x;'s in the ball B(t, h,+).

@ The associated order statistics are denoted by

Zl,mn,t(t) <...< Zmn,t,mn,t(f)-
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Estimation method

Influence of the rate of convergence of «

We consider three situations for the rate of convergence of a to
zero:
@ (S.1) Slow convergence of a to zero:

a — 0 and m, ;a0 — oo.
@ (S.2) Fast convergence of « to zero:
a — 0 and m,;a — ¢ € [1,00).
@ (S.3) Very fast convergence of « to zero:

a — 0 and m,;a — c € [0,1).
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Example
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Using n = 1000 observations, we are interested in the estimation of
the extreme quantile of order « at the point t = 0.5 (E = [0, 1]).

A moving window approach for nonparametric estimation of extr



Estimation method

Example

We select the observations in the slice S; with h,,,t = 0.05
(mp,+ = 100).
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Example

(S.1): Theoretical value of the quanfile of order « # 10/100 = 0.1
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(S.2): Theoretical value of the quantile of order o = 1/100 = 0.01
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(S.3): Theoretical value of the quantile of order
a =0.1/100 = 0.001
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Definition and Asymptotic distribution of the estimators

Situation (S.1): The conditional quantile is in the range of the
observations. We use the estimator:

C/\]l((k'[ t) - Zmn‘t_tmn‘tﬂj+1~,mn.t(t)'

Asymptotic distribution

If « satisfies (S.1), under some assumptions on the conditional
distribution,

(M s0)2 <‘;1(((jf)) _ 1) < N(0,72(1))
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Definition and Asymptotic distribution of the estimators

Situation (S.2): The conditional quantile is located near the
boundary of the sample but still in the range of the data. We can
also use the estimator g (o, t).

Asymptotic distribution

If « satisfies (S.2), under some assumptions on the conditional

distribution, (. 1)
C/il o, t d
<CM - 1) — E(c, (1)),

where &(c,7(t)) is a non-degenerated distribution (but not
Gaussian !1)

Comments:

@ The asymptotic distribution is not Gaussian and its expression
is quite complicated.

@ In this situation, estimator §; is not consistent.
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Definition and Asymptotic distribution of the estimators

Situation (S.3): The conditional quantile is beyond the range of
the observations. Thus, we can not use the estimator §;. We
propose to use the estimator:

NS
Ga(av, t) =G1(5, 1) <) ,

o

where 3 satisfies (S.1) and 9,(t) is a point wise estimator of the
conditional tail index.
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Definition and Asymptotic distribution of the estimators

Situation (S.3): The conditional quantile is beyond the range of
the observations. Thus, we can not use the estimator §;. We
propose to use the estimator:

3 An(t)
aZ(O'f t) :@1(57 t) <> )

(e

where (3 satisfies (S.1) and 4,(t) is a point wise estimator of the
conditional tail index.
Estimator g(c, t) can be decomposed in two parts:

@ An estimator of a conditional quantile of order 3 satisfying
(S.1) (i.e. an order statistics)
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Definition and Asymptotic distribution of the estimators

Situation (S.3): The conditional quantile is beyond the range of
the observations. Thus, we can not use the estimator §;. We
propose to use the estimator:

"A/n(t)
aa(a, t) =1 (5, t)<ﬂ> ,

(0%

where (3 satisfies (S.1) and 4,(t) is a point wise estimator of the
conditional tail index.
Estimator g(c, t) can be decomposed in two parts:

@ An estimator of a conditional quantile of order 3 satisfying
(S.1) (i.e. an order statistics)

@ An extrapolation term depending on &(t)
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Definition and Asymptotic distribution of the estimators

Asymptotic distribution
If 5 satisfies (S.1), if there exists a positive sequence v,(t) and a

distribution D such that v,(t)(9n(t) — (1)) % D, then, under
some assumptions on the conditional distribution, two situations
arise:

i) The asymptotic distribution is driven by §1(3, t) and then

1/2 C?2(Oé, t) _ 1 d 0 2 t
(mn )2 (T~ 1) % A0.2(0),
i) The asymptotic distribution is driven by 4,(t) and then

vn(t) Go(a, t) _ d
log(5/a) ( 9o 1) 1) - P
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Definition and Asymptotic distribution of the estimators

@ Estimator g, can be used in the three situations.

@ For the conditional tail index estimator, we can use for
instance the Hill type estimator proposed by L. Gardes & S.
Girard (2008):

k, ot
~H 1 - . Zmn t*i“l’lymn t
An(t) = P E ilog —~ ’ =,
n,t i=1 mn,tfiymn,t

where kn ; = mp +f3.
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Simulation

e We generate n = 1000 observations {(Yj,x;),i =1,...,n}
under the model: x € E = [0, 1], and the conditional extreme
quantile of Y given x is defined by:

11—«

—7(x)
q(a, x) = {Iog < ! ) } (Fréchet distribution)

e To estimate g(«, t) we use the estimator
Go(a, t) = G1(B, t)(B/a) " (®) where 4H(t) is the conditional
Hill type estimator, the observations are selected using a ball
of radius hp¢ = 0.1 for all t € E (i.e. m,; = 200) and
S =0.3.
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Simulation

0.0 05 1.0

Estimation of the function g(a,.) with o = 20/200 ((S.1)).
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Simulation

0.0 05 1.0

Estimation of the function g(a,.) with o =2/200 ((S.2)).
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Simulation

Estimation of the function g(«,.) with o = 0.2/200 ((S.3)).
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