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Extreme multivariate quantiles?

The natural order on R induces a universal definition of
quantiles of underlying univariate distribution functions;

This is not true in R
d , d ≥ 2, since no natural order exists in

this case;

Many definitions of multivariate quantiles have since been
suggested in the literature:

♦ Depth-based quantiles: Liu et al. (1999), Zuo and Serfling
(2000);

♦ Norm minimisation: Abdous and Theodorescu (1992), Chaudhuri
(1996);

♦ Generalised quantile processes: Einmahl and Mason (1992).

For a review, see e.g. Serfling (2002).
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Furthermore, although extreme univariate quantiles are now used in
many real-life applications (climatology, actuarial science, finance...),
very few works actually study extreme multivariate quantiles:

Chernozhukov (2005): extreme quantile estimation in a linear
quantile regression model;

Cai et al. (2011) and Einmahl et al. (2013): study of the
extreme level sets of the underlying probability density function.

Goal of this talk: to introduce and study a possible notion of extreme
multivariate quantile.
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Geometric quantiles

If X is a real-valued random variable, the univariate p–th quantile
xp := inf{t ∈ R |P(X ≤ t) ≥ p} of X can be obtained by solving the
optimisation problem

argmin
q∈R

E(φ(2p − 1,X − q)− φ(2p − 1,X ))

where φ(u, t) = |t|+ ut.

When |X | has a finite expectation, this problem becomes

argmin
q∈R

E|X − q|+ (2p − 1)E(X − q).

In particular, the median x1/2 of X is obtained by minimising
E|X − q| with respect to q;

Subtracting φ(2p − 1,X ) makes the cost function well-defined
even when |X | has an infinite expectation.
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In R
d , d ≥ 2, analogues of the absolute value | · | and product · are

given by the Euclidean norm ‖ · ‖ and Euclidean inner product 〈·, ·〉.
When X is a multivariate random vector, the geometric quantiles of
X , introduced by Chaudhuri (1996), are thus obtained by adapting
and solving the aforementioned problem in the multivariate context.
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In R
d , d ≥ 2, analogues of the absolute value | · | and product · are

given by the Euclidean norm ‖ · ‖ and Euclidean inner product 〈·, ·〉.
When X is a multivariate random vector, the geometric quantiles of
X , introduced by Chaudhuri (1996), are thus obtained by adapting
and solving the aforementioned problem in the multivariate context.

Definition 1 (Chaudhuri 1996)

If u ∈ R
d is an arbitrary vector, a geometric u–th quantile of X , if it

exists, is a solution of the optimisation problem

argmin
q∈Rd

E(φ(u,X − q)− φ(u,X )) (Pu)

with φ(u, t) = ‖t‖+ 〈u, t〉.
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Such multivariate quantiles enjoy several interesting properties:

For every u in the unit open ball Bd of Rd , there exists a unique
geometric u–th quantile whenever the distribution of X is not
concentrated on a single straight line in R

d (Chaudhuri, 1996);

They are equivariant under any orthogonal transformation
(Chaudhuri, 1996);

The geometric quantile function characterises the associated
distribution (Koltchinskii, 1997).

They make reasonable candidates when trying to define multivariate
quantiles. Our focus here is to define and study the properties of
extreme geometric quantiles.
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Asymptotic behaviour: a first step

From now on, we assume that the distribution of X is not
concentrated on a single straight line in R

d and non-atomic. Then:

For every u ∈ Bd , the u–th geometric quantile exists and is
unique;

For any u ∈ R
d , if there is a solution q(u) ∈ R

d to problem
(Pu), then the gradient of the cost function must be zero at
q(u), that is

u + E

(

X − q(u)

‖X − q(u)‖

)

= 0.
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Asymptotic behaviour: a first step

From now on, we assume that the distribution of X is not
concentrated on a single straight line in R

d and non-atomic. Then:

For every u ∈ Bd , the u–th geometric quantile exists and is
unique;

For any u ∈ R
d , if there is a solution q(u) ∈ R

d to problem
(Pu), then the gradient of the cost function must be zero at
q(u), that is

u + E

(

X − q(u)

‖X − q(u)‖

)

= 0.

Proposition 1 (Chaudhuri 1996, Girard and S. 2014)

The optimisation problem (Pu) has a solution if and only if u ∈ Bd .
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It follows from the previous result that:

We cannot compute a geometric quantile with unit index vector,
unlike in the univariate case if the distribution has a finite (left
or right) endpoint;

We may nevertheless study the asymptotics of a geometric
quantile q(v) when v approaches the unit sphere: such quantiles
will be referred to as extreme geometric quantiles.
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It follows from the previous result that:

We cannot compute a geometric quantile with unit index vector,
unlike in the univariate case if the distribution has a finite (left
or right) endpoint;

We may nevertheless study the asymptotics of a geometric
quantile q(v) when v approaches the unit sphere: such quantiles
will be referred to as extreme geometric quantiles.

Theorem 1 (Girard and S. 2014)

Let Sd−1 be the unit sphere of Rd .

(i) It holds that ‖q(v)‖ → ∞ as ‖v‖ → 1.

(ii) Moreover, if v → u with u ∈ Sd−1 and v ∈ Bd then

q(v)

‖q(v)‖ → u.
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Theorem 1 shows two properties of geometric quantiles:

The magnitude of extreme geometric quantiles diverges to
infinity.

♦ Rather intriguing: it holds true even if the distribution of X has a
compact support;

♦ Related point: sample geometric quantiles do not necessarily lie
within the convex hull of the sample, see Breckling et al. (2001).

If v → u ∈ Sd−1 then the extreme geometric quantile q(v) has
asymptotic direction u.

Our main results specify the convergences in Theorem 1 under
further assumptions.
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Asymptotic behaviour: when there are finite moments

Our first result is obtained in the case when ‖X‖ satisfies certain
moment conditions. It focuses on extreme geometric quantiles in the
direction u ∈ Sd−1, i.e. having the form q(λu), with λ ↑ 1.

11/ 38



Outline Extreme multivariate quantiles? Geometric quantiles Asymptotic behaviour Numerical illustrations Discussion

Asymptotic behaviour: when there are finite moments

Our first result is obtained in the case when ‖X‖ satisfies certain
moment conditions. It focuses on extreme geometric quantiles in the
direction u ∈ Sd−1, i.e. having the form q(λu), with λ ↑ 1.

Theorem 2 (Girard and S. 2014)

Let u ∈ Sd−1. Define Πu(x) = x − 〈x , u〉u.
(i) If E‖X‖ <∞ then

‖q(λu)‖
(

q(λu)

‖q(λu)‖ − u

)

→ E(Πu(X )) as λ ↑ 1.

(ii) If E‖X‖2 <∞ and Σ denotes the covariance matrix of X then

‖q(λu)‖2(1− λ) → 1

2

(

tr Σ− u′Σu
)

> 0 as λ ↑ 1.
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Consequences of Theorem 2

If ‖X‖ has a finite second moment, then asymptotically:

the asymptotic direction of an extreme geometric quantile in the
direction u is exactly u;

the magnitude of an extreme geometric quantile in the direction
u is asymptotically determined by u and the covariance matrix Σ
of X .

In particular, the extreme geometric quantiles of two probability
distributions which admit the same finite covariance matrix are
asymptotically equivalent.

⇒ no information can be recovered on the behaviour of X far from
the origin basing solely on extreme geometric quantiles.
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Asymptotic behaviour: in a multivariate regular variation

framework

When the moment conditions in Theorem 2 are no longer satisfied,
the asymptotic properties of extreme geometric quantiles can be
studied in a multivariate regular variation framework:

(Mα) The random vector X has a probability density function f

which is continuous on a neighborhood of infinity and such that:

the function y 7→ ‖y‖d f (y) is bounded in any compact
neighborhood of 0;

there exist a positive function Q on R
d and a function V which

is regularly varying at infinity with index −α < 0, such that

∀y 6= 0,

∣

∣

∣

∣

f (ty)

t−dV (t)
− Q(y)

∣

∣

∣

∣

→ 0

and sup
w∈Sd−1

∣

∣

∣

∣

f (tw)

t−dV (t)
− Q(w)

∣

∣

∣

∣

→ 0 as t → ∞.
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This model is closely related to the one of Cai et al. (2011). If (Mα)
holds, then:

The function Q is a homogeneous continuous function of degree
−d − α on R

d \ {0};
We have that f (y) = ‖y‖−dV (‖y‖)Q(y/‖y‖)(1 + o(1)) for
large ‖y‖ and thus f (y) is roughly of order ‖y‖−d−α;

The expectation E‖X‖β is finite if β < α.

In particular, the case α > 2 is covered by Theorem 2.
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Theorem 3 (Girard and S. 2014)

Let u ∈ Sd−1.

(i) If (Mα) holds with α ∈ (0, 1), then

1

V (‖q(λu)‖)

(

q(λu)

‖q(λu)‖ − u

)

→
∫

Rd

Πu(y)

‖y − u‖Q(y)dy as λ ↑ 1.

(ii) If (Mα) holds with α ∈ (0, 2), then

1− λ

V (‖q(λu)‖) →
∫

Rd

(

1 +
〈y − u, u〉
‖y − u‖

)

Q(y)dy as λ ↑ 1.
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Comments on Theorem 3

Since V is regularly varying with index −α, it follows that when
α ∈ (0, 2), the magnitude of an extreme geometric quantile behaves
roughly like (1− λ)−1/α as λ ↑ 1.

⇒ In this case, the magnitude of an extreme geometric quantile
features the behaviour of the distribution of X far from the origin.

However, Theorem 3 excludes the limit cases α = 1 for the
asymptotic direction and α = 2 for the asymptotic magnitude.
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To give an idea of what can be said when α = 1 or α = 2, we
introduce the following sub-model of (Mα):

(M ′
α) For all x 6= 0, f (x) = (x ′Σ−1x)α/2Q(x)V ((x ′Σ−1x)1/2) where

Σ is a positive definite d × d symmetric matrix;

Q(x) = (x ′Σ−1x)(−d−α)/2ψ(x/(x ′Σ−1x)1/2) where ψ is positive
and continuous on the ellipsoid Ed−1

Σ = {x ∈ R
d | x ′Σ−1x = 1};

V : t 7→ t−αL(t) is a bounded function, with L being a slowly
varying function at infinity which is continuous in a
neighborhood of infinity and is such that

∫ ∞

0
L(r)

dr

r1+α
<∞ and L(t) :=

∫ t

1
L(r)

dr

r
→ ∞ as t → ∞.
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If (M ′
α) holds, then:

The expectation E‖X‖β is finite if and only if β < α;

We may define a surface measure on the ellipsoid Ed−1
Σ by

µΣ(C ) = (detΣ)1/2 σ
(

Σ−1/2C
)

where σ is the standard surface measure on Sd−1.
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Theorem 4 (Girard and S. 2014)

Let u ∈ Sd−1.

(i) If (M ′
1) holds then, as λ→ 1:

‖q(λu)‖
L(‖q(λu)‖)

(

q(λu)

‖q(λu)‖ − u

)

→
∫

Ed−1
Σ

Πu(w)ψ(w)µΣ(dw).

(ii) If (M ′
2) holds then, as λ→ 1:

‖q(λu)‖2
L(‖q(λu)‖) (1− λ) → 1

2

∫

Ed−1
Σ

〈Πu(w), w〉ψ(w)µΣ(dw).
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Comments on Theorem 4

A particular consequence is that if (M ′
2) holds then the magnitude of

an extreme geometric quantile does again feature the behaviour of
the distribution of X far from the origin, through the function L.
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Comments on Theorem 4

A particular consequence is that if (M ′
2) holds then the magnitude of

an extreme geometric quantile does again feature the behaviour of
the distribution of X far from the origin, through the function L.

Example

If L(t) ∝ (log t)β on (1,∞), where β > −1, then:

‖q(λu)‖ ∝ (1− λ)−1/2

[

log

(

1

1− λ

)](β+1)/2

as λ ↑ 1.

Thus, the slower f converges to 0 at infinity, the larger are the

extreme geometric quantiles.
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Consequences of our main results

For all α > 0, we can write

q(λu)

‖q(λu)‖ − u ∝ R1,α((1− λ)−1)

and ‖q(λu)‖ ∝ R2,α((1− λ)−1) as λ ↑ 1,

where R1,α and R2,α are regularly varying functions with respective
indices −min(1, α)/min(2, α) and 1/min(2, α).

⇒ Extreme geometric quantiles feature the behaviour of X far from
the origin only when the distribution function of ‖X‖ decays
sufficiently slowly at infinity.
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Numerical illustrations: Theorem 2

We choose d = 2 to make the display easier. The following two
bivariate distributions are considered:

the centred Gaussian bivariate distribution N (0, vX , vY , vXY ),
whose probability density function is:

f (x , y) =
1

2π
√
det Σ

exp

(

−1

2

(

x

y

)′

Σ−1

(

x

y

)

)

with Σ =

(

vX vXY
vXY vY

)

.
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a double exponential distribution E(λ−, µ−, λ+, µ+), with λ−,
µ−, λ+, µ+ > 0, whose probability density function is:

f (x , y) =















λ+µ+
4

e−λ+|x |−µ+|y | if xy > 0,

λ−µ−
4

e−λ
−
|x |−µ

−
|y |

if xy ≤ 0.

In this case, X is centred and has covariance matrix:

Σ =









1

λ2−
+

1

λ2+

1

2

[

1

λ+µ+
− 1

λ−µ−

]

1

2

[

1

λ+µ+
− 1

λ−µ−

]

1

µ2−
+

1

µ2+









.
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Since both distributions have a finite covariance matrix Σ, Theorem 2
entails that their extreme geometric quantiles are asymptotically
equal to:

qeq(λu) := (1− λ)−1/2

[

1

2

(

tr Σ− u′Σu
)

]1/2

u.

⇒ Goal: to show that for these two distributions, equal covariance
matrices induce equivalent extreme geometric quantiles, and to assess
the accuracy of the asymptotic equivalent.
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We choose three different sets of parameters, in order that the
related covariance matrices coincide:

N (0, 1/2, 1/2, 0) and E(2, 2, 2, 2) with spherical covariance
matrices;

N (0, 1/8, 3/4, 0) and E(4, 2
√

2/3, 4, 2
√

2/3) with diagonal but
non-spherical covariance matrices;

N (0, 1/2, 1/2, 1/6) and E(2
√
3, 2

√
3, 2
√

3/5, 2
√

3/5) with full
covariance matrices.

Any u ∈ S1 can be written u = uθ = (cos θ, sin θ), θ ∈ [0, 2π). We
let λ = 0.995 and in each case, we compute:

the true iso-quantile curve Cq(λ) = {q(λuθ), θ ∈ [0, 2π)};
its asymptotic equivalent Cqeq(λ) = {qeq(λuθ), θ ∈ [0, 2π)}.
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Figure 1: Case of the Gaussian N (0, 1/2, 1/2, 0) (left) and double
exponential E(2, 2, 2, 2) (right) distributions for λ = 0.995. Iso-quantile
curves Cq(λ) (full blue line) and Cqeq(λ) (dashed black line).
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Figure 2: Case of the Gaussian N (0, 1/2, 1/2, 1/6) (left) and double
exponential E(2

√
3, 2

√
3, 2
√

3/5, 2
√

3/5) (right) distributions for
λ = 0.995. Iso-quantile curves Cq(λ) (full blue line) and Cqeq(λ) (dashed
black line).
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Figure 3: Case of the Gaussian N (0, 1/8, 3/4, 0) (left) and double
exponential E(4, 2

√

2/3, 4, 2
√

2/3) (right) distributions for λ = 0.995.
Iso-quantile curves Cq(λ) (full blue line) and Cqeq(λ) (dashed black line).
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Numerical illustrations: Theorem 3

Here, we consider a bivariate Pareto(α, σ1, σ2) distribution, whose
probability density function is:

f (x , y) =
α

2σ1σ2π

(

x2

σ21
+

y2

σ22

)(−2−α)/2

1l[1,∞)

(

x2

σ21
+

y2

σ22

)

where α, σ21 and σ22 > 0. When α > 2, this distribution has
covariance matrix:

M =
1

2
· α

α− 2
Σ, with Σ =

(

σ21 0
0 σ22

)

.
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Clearly, for any α > 0, this distribution is part of the class (M ′
α), with

Q(x) = (x ′Σ−1x)(−2−α)/2

and V (t) =
α

2σ1σ2π
t−α

1l[1,∞)(t).

Theorems 2 and 3 thus entail that the extreme geometric quantiles of
this distribution are asymptotically equal to:

qeq(λu) := (1− λ)−1/αI (α, σ1, σ2) if α < 2

where I (α, σ1, σ2) is a positive constant, and

qeq(λu) := (1− λ)−1/2

[

1

2

(

trM − u′Mu
)

]1/2

u if α > 2.

⇒ Goal: to examine if both these approximations are satisfactory on
this heavy-tailed example.
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Figure 4: Case of the Pareto(α, 2, 1/2) model, with α = 1.3 (left) and
α = 1.5 (right) for λ = 0.995. Iso-quantile curves Cq(λ) (full blue line) and
Cqeq(λ) (black dashed line).
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Figure 5: Case of the Pareto(α, 2, 1/2) model, with α = 1.7 (left) and
α = 2.5 (right) for λ = 0.995. Iso-quantile curves Cq(λ) (full blue line) and
Cqeq(λ) (black dashed line).
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Figure 6: Case of the Pareto(α, 2, 1/2) model, with α = 3 (left) and α = 4
(right) for λ = 0.995. Iso-quantile curves Cq(λ) (full blue line) and Cqeq(λ)
(black dashed line).
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Discussion

Extreme geometric quantiles in the direction u have asymptotic
direction u;

They are asymptotically equal for two distributions which have
the same finite covariance matrix, which is not satisfying from
the extreme value perspective;

They do however feature the behaviour of X far from the origin
in a multivariate regular variation context when the tail of ‖X‖
is sufficiently heavy.
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Forthcoming studies on this topic include:

In model (Mα), obtaining an estimator of α when α < 2;

Working on a modification of geometric quantiles which takes
the behaviour of X far from the origin in all cases;

Trying to obtain analogue results for depth-based quantiles or
generalised quantile processes.

35/ 38



Outline Extreme multivariate quantiles? Geometric quantiles Asymptotic behaviour Numerical illustrations Discussion

References

Abdous, B., Theodorescu, R. (1992) Note on the spatial quantile of a
random vector, Statistics and Probability Letters 13: 333–336.
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Thanks for listening!
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