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Abstract: The hidden Markov tree model was introduced by Crouse, Nowak and Baraniuk
(1998) for modeling non-independent, non-Gaussian wavelet transform coeÆcients. In their
article, they developed an inductive algorithm, called \upward-downward" algorithm, for
likelihood computation. They also introduced Expectation Maximization algorithms for
likelihood maximization. These algorithms are subject to the same numerical limitations
as the \forward-backward" procedure for hidden Markov chains. In this report, we develop
eÆcient variants of the \upward-downward" and EM algorithms, inspired by Devijver's
\conditional forward-backward" recursion (1985). Thus, the inference algorithms limitations
for hidden Markov trees are considerably reduced. Moreover, as the hidden states restoration
problem has no known solution for hidden Markov trees, we present the MAP algorithm
for this model. The interest of those algorithms is illustrated by an application to signal
processing.

Key-words: hidden Markov tree model, maximum likelihood estimation, hidden states
restoration, maximum a posteriori algorithm, upward-downward algorithm



Inf�erence statistique pour les mod�eles

d'arbres de Markov cach�es

et application au traitement du signal

R�esum�e : Le mod�ele d'arbre de Markov cach�e a �et�e d�evelopp�e par Crouse, Nowak et Bara-
niuk (1998), pour la mod�elisation de la loi des coeÆcients d'une transform�ee en ondelettes,
lorsque ceux-ci sont non gaussiens et non ind�ependants. Les auteurs proposent un algo-
rithme r�ecursif \haut-bas" pour le calcul de la vraisemblance du param�etre. Cet algorithme
est �egalement utilis�e comme �etape E d'un algorithme EM d�edi�e au calcul de l'estimateur
de maximum de vraisemblance. Ces deux algorithmes sont soumis aux mêmes limitations
que l'algorithme \avant-arri�ere" utilis�e pour les châ�nes de Markov cach�ees. Dans ce rap-
port de recherche, nous proposons une variante eÆcace des algorithmes \haut-bas" et EM,
inspir�ee par l'algorithme \avant-arri�ere conditionnel" de Devijver (1985). Les limitations
des algorithmes d'inf�erence pour les arbres de Markov cach�es sont alors consid�erablement
diminu�ees. Le probl�eme de restauration des �etats cach�es n'ayant jusqu'alors pas de solution
connue, nous proposons �egalement un algorithme du MAP pour ce mod�ele. L'utilit�e de ces
algorithmes est illustr�ee par une application en traitement du signal.

Mots-cl�es : mod�ele d'arbre de Markov cach�e, estimation par maximum de vraisemblance,
restauration des �etats cach�es, maximum a posteriori, algorithme haut-bas



Statistical Inference for Hidden Markov Tree Models 3

1 Introduction

The hidden Markov tree model (HMT) was introduced by Crouse, Nowak and Baraniuk
(1998). The context of their work was the modeling of statistical dependencies between
wavelet coeÆcients in signal processing, for which variables are organised in a natural tree
structure. Applications of such a model are: image segmentation, signal classi�cation,
denoising and image document categorization, among other examples (see Hyeokho and
Baraniuk, 1999; Diligenti, Frasconi and Gori, 2001). This model shares similarities with
hidden Markov chains: both are mixture models, parameterized by a transition matrix and
parameters of conditional distributions given hidden states. Both models can be identi�ed
through the EM algorithm, involving a forward-backward recursion. And in both cases
this recursion involves joint probabilities which tend towards zero exponentially fast as the
number of data increases causing under
ow problems on computers.

Our �rst aim is to adapt the forward-backward algorithm of Devijver (1985) to the hidden
Markov tree model to answer this numerical limitation. This algorithm called conditional
upward-downward recursion is based on the computation of conditional probabilities instead
of joint probability densities for hidden Markov chains, thus overcoming the computational
limitations of the standard algorithm. However the adaptation to hidden Markov trees is
not straightforward and the resulting algorithm involves an additional step consisting in
computing the hidden states marginal distribution.

Then we present the Maximum A Posteriori algorithm (MAP) for hidden Markov tree
models. This algorithm is important for the restoration of hidden states, which can be useful
in itself. It is analogous to the Viterbi algorithm for hidden Markov chains. As far as we
know, this algorithm is the �rst proposed solution to the restoration problem for hidden
Markov trees. It also makes use of the conditional probabilities and we provide an original
proof for this solution, giving an interpretation for the variables involved.

This paper is organized as follows. The hidden Markov tree model is introduced in
Section 2. We also present the three problems related to the general hidden Markov models,
i.e. training, likelihood determination and state estimation. Their practical interest have
been pointed out by Rabiner (1989) in his tutorial. A classical solution for the �rst two
problems is summarized in Section 3. A parallel is drawn between the resulting algorithm
and the forward-backward algorithm for hidden Markov chains. We examine the adaptation
of Devijver's algorithm (1985) in Section 4. A solution for the states estimation problem is
proposed in Section 5. An illustration based on simulations is provided in Section 6. In this
section, the interest of the HMT model in signal processing is brie
y discussed. Section 7
contains some concluding remarks. Appendices A, B and C contain the justi�cation for the
conditional upward-downward formulae. Appendix D proves the optimality of the hidden
tree obtained by the restoration step described in Section 5.
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4 Durand & Gon�calv�es

2 HMT model

We use the general notation P () to denote either a probability measure or a probability
function density, the true nature of P () being obvious from the context. In the same way,
when dealing with joint probabilities or pdfs, we use the notation P (). This notation makes
any assumption on the discrete or continuous nature of the observed process unnecessary.

Let W = (W1; : : : ;Wn) refer to the observed data. They are supposed to be also index-
able as a tree rooted in W1. For convenience's sake, we suppose that each non terminal node
has at least to children and that the length of the path joining any terminal node to the root
is a constant, called the tree depth and denoted by J0. Our work can easily be extended to
any type of tree at the cost of tedious notation. These variables are said to de�ne a hidden
Markov tree if and only if they ful�l the �ve assumptions :

� 8u 2 f1; : : : ; ng, Wu arise from a mixture of distributions with density

P (Wu = w) =

KX
i=1

P (Su = i)P�i(w)

where S is a discrete variable with K states, denoted f1; : : : ;Kg.

� (S1; : : : ; Sn) has the same indexation structure asW. Thus it can be indexed as a tree
rooted in S1. For each u in f2; : : : ; ng we denote the parent of Su by S�(u). If Su is
not a leave, we denote its children by (Suc1 ; : : : ; S

u
cnu

) where nu represents the children
number for node Su. We also denote the children's indexes set by c(u). This notation
is illustrated in Figure 1.

� P (SujfSu0 ju0 6= ug) = P (SujS�(u); S
u
c1 ; : : : ; S

u
cnu

) (Markov tree property),

� P (W1; : : : ;WnjS1; : : : ; Sn) =
nQ

u=1
P (WujS1; : : : ; Sn),

� 8u 2 f1; : : : ; ng P (WujS1; : : : ; Sn) = P (WujSu).

We refer to the last two properties as conditional independence properties. It is important at
this stage to distinguish between the indexation structure of (W1; : : : ;Wn) or (S1; : : : ; Sn)
and the in
uence diagram which involves all variables (S1; : : : ; Sn;W1; : : : ;Wn). The in
u-
ence diagram is a graphical way for describing conditional independence relations between
variables (see Smyth, Heckerman and Jordan, 1996). The in
uence diagram for HMT model
is shown in Figure 2. We chose to represent the independence relations between variables
by a directed acyclic graph to match the original parameterization of Crouse, Nowak and
Baraniuk (1999). However, it can be seen from Smyth, Heckerman and Jordan (1996) that
the model obtained by dropping all the directions on the edges in Figure 2 has the same
independance properties as the directed model, as each node has one parent at the most.

Such a model is characterized by the following parameters:

INRIA
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Figure 1: The notations used for indexing binary trees

� The distribution for the root node S1 � = (�k)k2f1;:::;Kg and the transition probabili-
ties A = (arm�(u);u)u2f2;:::;ng;r2f1;:::;Kg;m2f1;:::;Kg, de�ned by

arm�(u);u = P (Su = mjS�(u) = r). In the rest of this paper, we suppose that the transi-
tion matrix does not depend on u, which is a realistic assumption in most applications
and makes the notation lighter. Thus we have P (Su = mjS�(u) = r) = arm. We
denote (P (Su = mjS�(u) = r))r;m by A.

� The parameters of the mixture components (�1; : : : ; �K), such as

P (Wu = wjSu = k) = P�k(w);

where P� belongs to a parametric distibution family. For exemple, P� can be the
density of a Gaussian distribution. Then � = (�;�) denotes the mean and variance
matrix of the Gaussian distribution.

We denote � = (�;A; �1; : : : ; �K). The �rst problems adressed here are the computation
and the maximization of the likelihood Lw(�) = P �(w). For the second problem we can
resort to the Expectation Maximization (EM) algorithm of Dempster, Laird and Rubin
(1977). The E step of the resulting algorithm essentially consists of computing conditional
probabilities P (Su = kjW) and P (S�(u) = i; Su = kjW). It is based on an inductive

RR n° 4248



6 Durand & Gon�calv�es

Hu

Tu

W�(u)

S�(u)

W1

S1

Wu

Su

Figure 2: In
uence diagram for hidden Markov trees

algorithm named upward-downward algorithm, similar to the forward-backward algorithm
for hidden Markov chains.

3 Upward-downward algorithm

We introduce the following notation:

� Tu is the subtree with root at node u. Thus T1 is the entire tree.

� If Tt is a subtree of Tu then Tunt is the set of nodes in Tu which are not in Tu.

The upward-downward algorithm has been developed by Crouse et al. (1998). The upward
step consists of computing the joint conditional probability of each subtree Tu of the entire
tree and starts from the terminal nodes. The downward step consists of computing the joint
probability of T1 where each subtree has been removed in turn. It starts from the root of
the entire tree. The authors de�ne the following variables :

�u(k) = P (TujSu = k)
�u;�(u)(k) = P (TujS�(u) = k)
��(u)nu(k) = P (T�(u)nujS�(u) = k)
�u(k) = P (Su = k; T1nu)

The upward step is described by algorithm 1 and the downward step by algorithm 2.
The likelihood is given by the formula :

8u 2 f1; : : : ; ng P (w) = P (w1; : : : ; wn) =

KX
k=1

�u(k)�u(k) (1)

INRIA
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Algorithm 1 UP step, linking up the � variables

1. Initialization
For all leaves Wu of T1
for all k = 1; : : : ;K do

�u(k) = P�k(wu)
end for

for all j = 1; : : : ;K do

�u;�(u)(j) =
PK

i=1 �u(i)aji
end for

2. Induction

for all s = 1; : : : ; J0 � 1 do

for all nodes Wu at scale J0 � s do

for all k = 1; : : : ;K do

�u(k) = P�k (wu)
Q

t2c(u)

�t;u(k)

for all t 2 c(u) do

�unt(k) =
�u(k)
�t;u(k)

end for

end for

for all j = 1; : : : ;K do

�u;�(u)(j) =
PK

i=1 �u(i)aji (except at root node)
end for

end for

end for

RR n° 4248



8 Durand & Gon�calv�es

Algorithm 2 DOWN step, linking up the � and � variables

1. Initialization

for all k = 1; : : : ;K do

�1(k) = �k
end for

2. Induction

for all s = 2; : : : ; J0 do

for all nodes Wu at scale s do

for all k = 1; : : : ;K do

�u(k) =
PK

i=1 ��(u)(i)aik��(u)nu(i)
end for

end for

end for

It is worth noting that the right member of equation (1) does not depend on u. It means
that the likelihood of the parameter can be calculated by splitting the tree at any node. The
conditional probabilities used in the EM algorithm are

P (Su = kjw) = �u(k)�u(k)
P (w)

P (S�(u) = i; Su = kjw) =
�u(k)aik��(u)(i)��(u)nu(i)

P (w)

Table 1 points out the similarities between the upward-downward algorithm for hidden
Markov trees and the forward-backward algorithm for hidden Markov chains.

As for hidden Markov chains (see Levinson et al., 1983) the joint probability densities
�u(i) and �u(i) satisfy:

lim
u!1

�u(i) = 0 and lim
u!1

�u(i) = 0

and the rate of convergence is exponential. This property causes under
ow problems when
executing the algorithm. A typically observed limitation for n on Matlab 5.2 is n = 127
(i.e. a depth tree limited to 7). In the next section we present an algorithm overcoming this
diÆculty.

4 Upward-downward algorithm using

conditional probabilities

In order to avoid under
ow problems with hidden Markov chains, Devijver (1985) suggests
to use, instead of the forward variables P (St = k;W1; : : : ;Wt) and the backward variables

INRIA



Statistical Inference for Hidden Markov Tree Models 9

Hidden Markov Chains Hidden Markov Trees
Backward variables : Upward variables

�t(k) = P (Wt+1; : : : ;WnjSt = k) �u(k) = P (TujSu = k)
�u;�(u)(k) = P (TujS�(u) = k)

��(u)nu(k) = P (T�(u)nujS�(u) = k)
Forward variables : Downward variables

�t(k) = P (St = k;W1; : : : ;Wt) �u(k) = P (Su = k; T1nu)

conditional probabilities conditional probabilities

P (St = kjw) = �t(k)�t(k)
P (w) P (Su = kjw) = �u(k)�u(k)

P (w)

P (St = i; St+1 = kjw) = P (S�(u) = i; Su = kjw) =
�t+1(k)aik�t(i)P�k (wt+1)

P (w)

�u(k)aik��(u)(i)��(u)nu(i)

P (w)

likelihood likelihood

P (w) =
PK

k=1 �t(k)�t(k) P (w) =
PK

k=1 �u(k)�u(k)

Table 1: Similarities between algorithms for HMC and HMT

P (Wt+1; : : : ;WnjSt = k), the conditional variables:

P (St = kjW1; : : : ;Wt) and
P (Wt+1; : : : ;WnjSt = k)

P (Wt+1; : : : ;WnjW1; : : : ;Wt)
:

The conditional backward variables computation needs the conditional forward variables.
Thus it is necessary to run the forward algorithm �rst.

A natural adaptation of this method would be to use the following variables for hidden
Markov trees:

P (Su = kjT1nu) and
P (TujSu = k)

P (TujT1nu)
(2)

The diÆculty comes from the fact that as in hidden Markov chains, it would be necessary
to run the down step before the up step. This is in con
ict with the fact that the down step
uses the results of the up step (see algorithm 2).

The main idea in our adaptation of the conditional forward-backward algorithm is to
reverse the roles of the � and � variables. The use of conditional probabilities implies
the de�nition of a scaling factor Mu as in Devijver's algorithm. However, in our case,
Mu comes from the normalization of the � variables (instead of the � variables for hidden
Markov chains). This scaling factor will play a role in the computation of the conditional
downward variables denominators P (T1nujTu), as shown by the proof in Appendix B. More-
over, the conditional forward-backward algorithm involves the computation of the marginal
distribution of each hidden variable. This can be achieved by a preliminary step based on a
downward exploration of the hidden tree. Thus we could call this a conditional downward-
upward-downward algorithm. This term accounts for the substantial modi�cation of the
original upward-downward and conditional forward-backward algorithms.

RR n° 4248



10 Durand & Gon�calv�es

In the case of the conditional algorithm, as in Devijver's algorithm, the value of the
likelihood can not be infered from the ~� and the ~� variables. Instead, ts computation
involves the scaling factor Mu. In practice, we use the quantity log(Mu) to dynamically
update a variable denoted by lu in the conditional up step de�ned in algorithm 4 below. We
prove in Appendix C that

lu = log(P (Tu))�
X

Wt2F(Tu)

log(P (Wt)); (3)

where F(Tu) denotes the set of observed variables located in the leaves of Tu (see Figure 1).
We use the following conditional probabilities instead of the probabilities involved in (2):

P (Su = kjTu) P (S�(u) = kjTu) and
P (T1nujSu=k)

P (T1nujTu)

As in standard upward-downward algorithms, the variables ~�u(k), ~�u;�(u)(k) ,
~��(u)nu(k), ~�u(k) and Mu are computed inductively by algorithms 4 and 5. As proved in
Appendices A, B and C, the following equations hold:

~�u(k) = P (Su = kjTu) (4)
~�u;�(u)(k) = P (S�(u) = kjTu) (5)

Mu =
P (Tu)

nuQ
t=1

P (T u
ct )

= P (WujT
u
c1 ; : : : ; T

u
cnu

) if u is not a leave (6)

~�u(k) =
P (T1nujSu = k)

P (T1nujTu)
(7)

lu = log(P (Tu))�
X

Wt2F(Tu)

log(P (Wt)) (8)

Now we de�ne ~��(u)nu(k) as
~��(u)(k)
~�u;�(u)(k)

.

The corresponding new upward-downward algorithm includes the three steps described
by algorithms 3, 4 and 5 ('�' denotes the matrix product).

The computation of the loglikelihood and the conditional probabilities involved in the
EM algorithm can be inferred from the equations below. Proof of equation (9) is given in
Appendix C. Equations (10) and (11) follow directly from the classical formulae in Table 1
and from the conditional variables de�nition.

log(P (T1)) = l1 +
X

Wu2F(T1)

log(P (Wu)) (9)

P (Su = kjw) = ~�u(k) ~�u(k) (10)

P (S�(u) = i; Su = kjw) =
~�u(k)

P (Su = k)
aik ~��(u)(i) ~��(u)nu(i)P (S�(u) = i) (11)

INRIA



Statistical Inference for Hidden Markov Tree Models 11

Algorithm 3 Computation of the distribution of hidden states

1. Initialization

for all k = 1; : : : ;K do

P (S1 = k) = �k
end for

2. Induction

for all s = 2; : : : ; J0 do

for all nodes Wu at scale s do

[P (Su=1);:::;P (Su=K)]=[P (S�(u)=1);:::;P (S�(u)=K)]�Au

end for

end for

where the probabilities (P (Wu))Wu2F(T1) have been computed in the initialization step of
the upward algorithm.

Table 2 points out the similarities and di�erences between the conditional upward-
downward algorithm for hidden Markov trees and the conditional forward-backward algo-
rithm for hidden Markov chains. As for Devijver's algorithm, the execution of the above
procedure does not cause under
ow problems. Its implementation in Matlab allows to handle
trees having more than 8000 nodes (i.e. the maximal depth of the tree is at least 13).

We prove in Appendices A and B that the ~� and ~� variables de�ned by the algorithms
4 and 5 satisfy equations (4) to (7). We also prove equation (9) in Appendix C. It is
worth noting that this new algorithm makes use of a scaling factor due to the conditional
probabilities, as in Devijver and of the marginal distribution of hidden states due to the
inversion between � and �. The �rst step of the algorithm (see algorithm 3) has a complexity
order of O(nK2). As the standard algorithm also has a O(nK2) complexity, the complexity
order of the conditional upward-downward algorithm remains O(nK2).

5 MAP algorithm

Let Tu denote the subtree of the entire tree rooted in node u and Hu the set of hidden
variables corresponding to Tu (see Figure 2). The aim of the MAP algorithm is to �nd the

optimal hidden tree ĥ1 = (ŝ1; : : : ; ŝn) maximizing P (H1 = h1jT1) and the value P̂ of the
maximum. The MAP algorithm for hidden Markov trees is de�ned by algorithm 6. It is
based on the conditional upward algorithm 4. As a consequence, it requires the computation
of the hidden states marginal distribution and the scaling factors. Theses factors appear
as constants in the conditional MAP algorithm and do not actually need to be computed.
Their purpose is to make the Æ variables interpretable in a probabilistic way.

RR n° 4248



12 Durand & Gon�calv�es

Algorithm 4 Conditional UP step

1. Initialization
For all leaves Wu of T1
for all k = 1; : : : ;K do

~�u(k) =
P�k (wu)P (Su=k)

P
K
i=1 P�i (wu)P (Su=i)

end for

for all j = 1; : : : ;K do

~�u;�(u)(j) =
hPK

i=1
~�u(i)

aji
P (Su=i)

i
P (S�(u) = j)

end for

lt = 0

2. Induction

for all s = 1; : : : ; J0 � 1 do

for all nodes Wu at scale J0 � s do

Mu =
KP
k=1

P�k (wu)
Q

t2c(u)

~�t;u(k)

P (Su=k)nu�1

lu = log(Mu) +
P

t2c(u)

lt

for all k = 1; : : : ;K do

~�u(k) =
P�k (wu)

Q

t2c(u)

~�t;u(k)

P (Su=k)nu�1Mu

for all t 2 c(u) do
~�unt(k) =

~�u(k)
~�t;u(k)

end for

end for

for all j = 1; : : : ;K do

~�u;�(u)(j) =
hPK

i=1
~�u(i)

aji
P (Su=i)

i
P (S�(u) = j) (except at root node)

end for

end for

end for

INRIA
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Algorithm 5 Conditional DOWN step

1. Initialization

for all k = 1; : : : ;K do

~�1(k) = 1
end for

2. Induction

for all s = 2; : : : ; J0 do

for all nodes Wu at scale s do

for all k = 1; : : : ;K do

~�u(k) =
hPK

i=1 ~��(u)(i)a
ik
u;�(u)

~��(u)nu(i)P (S�(u) = i)
i

1
P (Su=k)

end for

end for

end for

Hidden Markov Chains Hidden Markov Trees
Conditional forward variables : Conditional upward variables :

~�t(k) = P (St = kjW1; : : : ;Wt) ~�u(k) = P (Su = kjTu)
~�u;�(u)(k) = P (S�(u) = kjTu)

~��(u)nu(k) =
~��(u)(k)
~�u;�(u)(k)

Conditional backward variables : Conditional downward variables
~�t(k) =

P (Wt+1;:::;WnjSt=k)
P (Wt+1;:::;WnjW1;:::;Wt)

~�u(k) =
P (T1nujSu=k)

P (T1nujTu)

Conditional probabilities Conditional probabilities

P (St = kjw) = ~�t(k)~�t(k) P (Su = kjw) = ~�u(k)~�u(k)

Table 2: Similarities between conditional forward-backward
and upward-downward algorithms

RR n° 4248



14 Durand & Gon�calv�es

Algorithm 6 MAP algorithm

1. Initialization
For all leaves Wu of T1
for all k = 1; : : : ;K do

Æu(k) = ~�u(k)
end for

for all j = 1; : : : ;K do

Æu;�(u)(j) = max
1�i�K

h
Æu(i)

aji
P (Su=i)

i
P (S�(u) = j)

 u(j) = arg max
1�i�K

h
Æu(i)

aji
P (Su=i)

i
end for

2. Induction

for all s = 1; : : : ; J0 � 1 do

for all nodes Wu at scale J0 � s do

for all k = 1; : : : ;K do

Æu(k) = P�k (wu)

Q

t2c(u)

Æt;u(k)

MuP (Su=k)nu�1

end for

for all j = 1; : : : ;K do

Æu;�(u)(j) = max
1�i�K

h
Æu(i)

aji
P (Su=i)

i
P (S�(u) = j) (except at root node)

 u(j) = arg max
1�i�K

h
Æu(i)

aji
P (Su=i)

i
end for

end for

end for

3. Termination

P̂ = max
1�i�K

Æ1(i)

ŝ1 = arg max
1�i�K

Æ1(i)

4. \Downward-tracking"
(creation of the tree from root)

for all s = 2; : : : ; J0 do

for all nodes Wu at scale s do

for all u = 2; : : : ; n do

ŝu =  u(ŝ�(u))
end for

end for

end for

INRIA



Statistical Inference for Hidden Markov Tree Models 15

We prove in Appendix D that the tree de�ned by (ŝu)u is maximizing

P (S1 = s1; : : : ; Sn = snjT1):

The initial MAP algorithm for non independent mixture models is due to Viterbi. It is orig-
inally intended to analyse Markov processes observed in memoryless noise. The justi�cation
of this algorithm given in Forney (1973) is based on a graphical argument. The maximizisa-
tion of the conditional probabilities is proved to be equivalent to �nding the shortest path in
a graph with weighed edges. This proof could be adapted in the context of hidden Markov
trees. We could also de�ne a non-conditional MAP algorithm (algorithm 7) which would
be an application of Dawid's algorithm for graphical models (see Smyth, Heckerman and
Jordan, 1996). The proof would be more direct but would not provide any interpretation
for the variables involved.

However, we give a more analytical proof which has the advantage of giving an interpre-
tation of the variables involved in algorithm 6, although the details of the demonstration
are tedious. The proof is based on the following statements. The Æu and Æu;�(u) variables
satisfy

Æu(k) = max
huc1 ;:::;h

u
cnu

P (Hu
c1 = huc1 ; : : : ;H

u
cnu

= hucnu ; Su = kjTu) (12)

Æu;�(u)(k) = max
hu

P (Hu = hu; S�(u) = kjTu) (13)

From these equations, it can be seen that the Æ variables are joint probabilities going towards
zero when u increases. To avoid under
ow problems, the easiest solution is then to use
log(Æ) instead of Æ. As only products and maxima are necessary for the MAP algorithm,
the adaptation is straightforward. As the quantities �r; P�(w) or arm involved in algorithm
6 may be equal to 0, we consider that in this case the logarithmic value is �1.

As a conclusion, both conditional and non-conditional versions of the MAP algorithm
lead to under
ow problems if we do not use a logarithmic variant. As the non-conditional
algorithm is computationally less expensive, we would recommend this version in practice.

6 An application to signal processing

In this section, we develop one example of application, illustrating the interest of the hidden
Markov tree model. Let x = (x1; : : : ; xT ) be a realization of a piecewise constant (H�older)
regularity process, for example a piecewise homogeneous fractional Brownian motion. The
local regularity of a function (or of the trajectory of a stochastic process) is de�ned as
Mallat (1996): the function f has local regularity k < h < k + 1, at time t, if there exists
two constant 0 < C <1 and 0 < t0 as well as a polynomial Pk of order k, such that for all
t� t0 < l < t+ t0

jf(l)� Pk(l)j < Cjl � tjh

We assume that T = 2M and that from t = 1 to t = T0 with 1 � T0 < T , the local regularity
of the process is H = H0 and from t = T0 + 1 to t = T , its local regularity is H = H1. Our
aim is to estimate H0, H1 and T0.
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16 Durand & Gon�calv�es

Algorithm 7 Non conditional MAP algorithm

1. Initialization
For all leaves Wu of T1
for all k = 1; : : : ;K do


u(k) = �u(k)
end for

for all j = 1; : : : ;K do


u;�(u)(j) = max
1�i�K


u(i)aji

�u(j) = arg max
1�i�K


u(i)aji

end for

2. Induction

for all s = 1; : : : ; J0 � 1 do

for all nodes Wu at scale J0 � s do

for all k = 1; : : : ;K do


u(k) = P�k (wu)
Q

t2c(u)


t;u(k)

end for

for all j = 1; : : : ;K do


u;�(u)(j) = max
1�i�K


u(i)aji (except at root node)

�u(j) = arg max
1�i�K


u(i)aji

end for

end for

end for

3. Termination

P̂ = max
1�i�K


1(i)

ŝ1 = arg max
1�i�K


1(i)

4. \Downward-tracking"
(creation of the tree from root)

for all s = 2; : : : ; J0 do

for all nodes Wu at scale s do

for all u = 2; : : : ; n do

ŝu = �u(ŝ�(u))
end for

end for

end for
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Statistical Inference for Hidden Markov Tree Models 17

Our method is based on a multiresolution analysis of x. As a �rst step, we com-
pute an orthonormal discrete wavelet transform of x, through the following inner product:

(wm
n )1�m�J0;0�n�2m�1, with w

m
n =

P2M

k=1 xk2
m=2 (2mk � n) where J0 corresponds to the

�nest scale. As in Crouse, Nowak and Baraniuk (1998), we adopt a statistical approach
to wavelet-based signal processing. This means that we process the signal x by operating
on its wavelet coeÆcients (wm

n )m;n and that we consider these coeÆcients as realizations of
random variables (Wm

n )m;n. The authors justify the use of a hidden Markov binary tree
model for the wavelet coeÆcients instead of an independent Gaussian model by the two
following arguments:

� the key dependencies between wavelet coeÆcients are modeled by a latent Markov
structure,

� the non-Gaussian nature of the wavelet coeÆcients is modeled by a mixture of Gaussian
distributions.

We recall that the path of a H-fbm has local H�older regularity H almost surely almost
everywhere. Hence from (Ja�ard 1991, Flandrin 1992 and Wornell 1992) the random vari-
ables Wm

n of its wavelet decomposition are normally, identically distributed and centered
with variance :

var(Wm
n ) = �22m(2H+1)

In our simple test signal, the local regularity being H0 for 1 � t � T0 and H1 for T0 + 1 �
t � T , we consider a two states model with conditional distribution

(Wm
n jS

m
n = i) � N (0; �2i 2

m(2Hi+1))

Thus we model the distribution of (wm
n )m;n by the following hidden Markov tree model:

� Wm
n arise from a mixture of distributions with density

f(Wm
n = wm

n ) =

1X
i=0

P (Smn = i)f�i(w
m
n )

where Smn is a discrete variable with 2 states, denoted f0; 1g and f�i(w
m
n ) is the Gaus-

sian distribution density with mean 0 and variance �2i 2
m(2Hi+1),

� (Smn )m;n is a Markov binary tree (i.e. each non-terminal node has exactly two chil-
dren). Its root node distribution is denoted by �. In this application, we choose an
homogeneous Markov tree model, i.e. a model where the transition matrix A does not
depend on (n;m).

� the wavelet coeÆcients are independent conditionally to the hidden states.

As in Section 2, we denote the observed tree (Wm
n )m;n by T1 and the hidden tree (Smn )m;n

by H1.
In the case of an abrupt regularity jump at time T0, the hidden tree model (T1;H1)

satis�es the two following properties:
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18 Durand & Gon�calv�es

� for each subtree Ht of H1, there exists i in f0; 1g such as the left subtree of Ht is
entirely in state i or its right subtree is entirely in state i.

� if SJ0t1 and SJ0t2 are two leaves with t1 < t2 such as SJ0t1 = SJ0t2 = i then for all t between
t1 and t2, S

J0
u = i

To detect the local regularity jump, we compute the discrete wavelet transform wm
n of

the signal using a compact support Daubechies wavelet with regularity 2 over J0 = M

scales. Then we estimate the model parameters by the EM algorithm. The Hi and �i
parameters are estimated at the M step with a procedure adaptated from the maximum
likelihood estimation by Wornell and Oppenheim (1992). Thus we obtain A, �, �0, �1,
H0 and H1. The jump detection is performed by hidden states restoration under the two
constraints above, using the Viterbi algorithm. We obtain a value for the hidden tree H1,
such as exactly one subtree Ht of H1 is in state i and H1nt is in state 1� i. Thus there is

only one leave SJ0t� such as SJ0t� 6= SJ0t�+1. The jump time T0 is estimated by:

T̂0 = 2:t�

In practice, to avoid a too severe discontinuity in the path at the transition time T0, and
to ensure that at any point t, the local regularity H(t) is correctly de�ned, we synthetize a
multifractional brownian motion as proposed and de�ned in (Levy-Vehel and Peltier, 1995),
with a continuous transitional H�older regularity (Figure 3):

8t 2 f1; : : : ; 1024g H(t) = 0:1 tanh(�20 +
40(t� 1)

1023
) + 0:5 (14)

Thus we consider that H0 = 0:4 and H1 = 0:6. We then construct the process x =
(x(t))t=1;:::;1024 with local regularity given by (14). One realization path of such process is
shown in Figure 4 a).

0 200 400 600 800 1000 1200
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

Figure 3: Local regularity parameter
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Statistical Inference for Hidden Markov Tree Models 19

Figure 4 b) shows the result of unconstrained hidden states restoration. Y-axis of the
plot represents the tree depth, with root at the bottom line. Figure 4 c) shows the result of
constrained hidden states restoration. The border between both states is used to locate the
transition time T0 in H(t). The estimated parameters are Ĥ0 = 0:3009, Ĥ1 = 0:6649 and
T̂0 = 520.

Figure 4: The signal and the hidden tree associated to wavelet decomposition

Whereas the estimates ofH0 andH1 are imprecise and the amplitude of transition is over-
estimated, due to the few amount of time-samples for each state, the discrimination achieved
by our method is satisfactory, concerning the mixture components separation and also in
accordance with the performances discussed in Wornell and Oppeinheim. It is worth noting
that the method used for the estimation of Hi and �i su�ers from the same limitations as the
algorithm described in Wornell and Oppenheim (1992). The use of an alternative method
to the parameter estimation by likelihood maximization could result in some improvements
in the results.
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20 Durand & Gon�calv�es

7 Conclusion

In this paper, we propose new eÆcient tools for hidden Markov tree models identi�cation,
inspired by the similarities between hidden Markov trees and hidden Markov chains. The
conditional upward-downward algorithm is no substantial improvement in the theory of hid-
den Markov trees. But it is a computational improvement which allows to dramatically
increase the size of the trees which can be handled by the EM algorithm.

The Viterbi algorithm is a more signi�cative contribution for inference in hidden Markov
trees, as hidden state restoration is a key point for model interpretation and comprehension.
Although the aim of this paper is not to discuss about the interest of hidden Markov tree
modeling for wavelet analysis in signal processing, we show an example where hidden state
restoration allows discrimination between two regimes of a simulated signal.

In this direction, we could tackle another big issue inherent to scaling law estimation.
In most real world application the scaling law (self-similarity, long range dependance,...) is
satis�ed only within some �nite scale range (also called inertial range). Aside this interval,
not only the scale parameter H can change, but also the whole model can fail to apply. It is
therefore crucial to identify this inertial range, as it provides a valuable information on the
underlying physical system. In our framework, we could take advantage of the transition
probabilities between states, estimated on the data, to �rst automatically determine a plau-
sible scale interval on which the power-law variance model is valid, and second to provide
us with a con�dence factor assessing accuracy on the estimated value of H .

On the other hand, it could be possible to exploit the similarities between hidden Markov
tree models and stochastic context-free grammars (Lari and Young, 1990; Jelinek and Mer-
cer, 1992) and adapt our conditional algorithm to tackle the computational diÆculties for
these models.

In conclusion, our work is a contribution to eÆcient parameter estimation for hidden
Markov tree models.
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Appendices

As a �rst step, we prove by an induction in Appendix A that the ~� variables de�ned by
the conditional upward-downward algorithm satisfy equations (4){(6). Thus, the ~� variables
are proved to be conditional probabilities. In Appendix B we show that the ~� variables
satisfy equation (7). The proof of equation (9) is given in Appendix C. These equations
allow the loglikelihood computation of a parameter. Appendix D contains the proof that
algorithm 6 gives the hidden tree with highest conditional probability.

A Up step

We �rst prove by induction on the depth of Tu that the ~� variables de�ned by algorithm 4
are equal to the following conditional probabilities

~�u(k) = P (Su = kjTu) and ~�u;�(u)(k) = P (S�(u) = kjTu) (15)

Let J0 be the depth of T1 with the convention that the root of a tree is at depth 1 and the
leaves at depth J0 (see Figure 1).
Induction assumption : for each r � j and for each node Wu of T1 at depth J0 � r

~�u(k) = P (Su = kjTu) (16)

Proof for j = 0
For all leaves Wu of T1, by de�nition of ~�u(k) we have

P (Su = kjTu) =
P (Su = k;Wu = wu)

P (Wu = wu)

=
P (Wu = wujSu = k)P (Su = k)PK
l=1 P (Wu = wujSu = l)P (Su = l)

= ~�u(k)

Induction
For all remaining nodes Wu of T1,

P (S�(u) = kjTu) =
�u;�(u)(k)P (S�(u) = k)

P (Tu)
(17)

=

"
KX
i=1

P (TujSu = i)aki

#
P (S�(u) = k)

P (Tu)
(18)

=

"
KX
i=1

P (Su = ijTu)
aki

P (Su = i)

#
P (S�(u) = k)
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22 Durand & Gon�calv�es

=

"
KX
i=1

~�u(i)
aki

P (Su = i)

#
P (S�(u) = k) (19)

= ~�u;�(u)(k) (20)

as �u;�(u)(k) = P (TujS�(u) = k) by algorithm 1, whence equation (17). Equation (18) also
comes from algorithm 1. Equation (19) comes from our induction assumption (16) and
equation (20) from algorithm 4. Now

P (Su = kjTu) =
�u(k)P (Su = k)

P (Tu)
(21)

= P�k (wu)
P (Su = k)

P (Tu)

nuY
t=1

P (T u
ct jSu = k) (22)

=
P�k(wu)

P (Tu)P (Su = k)nu�1

nuY
t=1

P (Su = kjT u
ct )

nuY
t=1

P (T u
ct )

=
P�k(wu)

P (Tu)P (Su = k)nu�1

Y
t2c(u)

~�t;u(k)
Y

t2c(u)

P (T u
ct ) (23)

Equations (21) and (22) come from algorithm 1. Equation (23) results from (20) and as-

sumption (16). Moreover, as
PK

l=1 P (Su = kjTu) = 1 we haveQ
t2c(u)

P (T u
ct )

P (Tu)
=

2
4 KX
l=1

P�l(wu)

P (Su = l)nu�1

Y
t2c(u)

~�t;u(l)

3
5
�1

(24)

= [Mu]
�1 by de�nition. (25)

It follows from equation (23) that:

P (Su = kjTu) =
P�k (wu)

MuP (Su = k)nu�1

Y
t2c(u)

~�t;u(k) = ~�u(k)

As a result we have:

8u 2 f1; : : : ; ng 8k 2 f1; : : : ;Kg
~�u(k) = P (Su = kjTu) and ~�u;�(u)(k) = P (S�(u) = kjTu)

which justi�es the up step of the conditional upward-downward algorithm.

B Down step

We now prove by induction that the ~� variables de�ned by algorithm 5 satisfy the following
assumption.
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Induction assumption : for each node Wu of T1 at depth j,

~�u(k) =
P (T1nujSu = k)

P (T1nujTu)
(26)

As �u(k) = P (T1nu; Su = k) by algorithm 2, we notice that this assumption is equivalent
to:

~�u(k) =
P (T1nujSu = k)P (Tu)

P (T1)
=

�u(k)P (Tu)

P (Su = k)P (T1)
:

Proof for j = 1
8k 2 f1; : : : ;Kg we have by algorithm 2 :

�1(k)P (T1)

P (S1 = k)P (T1)
=
�k

�k
= 1 = ~�1(k)

Induction
By the standard down step (cf. algorithm 2) we have

�u(k) =
KX
i=1

aik��(u)nu(i)��(u)(i) (27)

where by de�nition of ��(u)nu(i) in algorithm 2

��(u)nu(i) = P (T�(u)nujS�(u) = i)

=
��(u)(i)

�u;�(u)(i)
(28)

=
~��(u)(i)

~�u;�(u)(i)

P (T�(u))

P (Tu)
(29)

= ~��(u)nu(i)
P (T�(u))

P (Tu)
(30)

Equation (28) comes from the standard up step (cf. algorithm 1). Equation (29) is a
consequence of equations (15), (17) and (21). Equation (30) comes from the de�nition of
~��(u)nu(i). It follows from algorithm 5 that

~�u(k) =

KX
i=1

aik ~��(u)(i) ~��(u)nu(i)
P (S�(u) = i)

P (Su = k)

=

KX
i=1

aik
P (T1n�(u)jS�(u) = i)P (T�(u))

P (T1)
��(u)nu(i)

P (Tu)

P (T�(u))

P (S�(u) = i)

P (Su = k)
(31)
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=
P (Tu)

P (T1)P (Su = k)

KX
i=1

aikP (T1nu; S�(u) = i)��(u)nu(i)

=
P (Tu)

P (T1)P (Su = k)
�u(k) (32)

We used our induction assumption (26) and equation (30) to derive (31). Equation (32)
comes from (27).

It follows that

8u 2 f1; : : : ; ng; 8k 2 f1; : : : ;Kg

~�u(k) =
P (T1nujSu = k)

P (T1nujTu)

which completes the induction, hence the justi�cation for the down step of the conditional
upward-downward algorithm.

C E step

The aim of this appendix is to prove equation (9). The proof establishes that

lu = log(P (Tu))�
X

Wt2F(Tu)

log(P (Wt))

for all non-terminal nodes.
Likelihood computation

Recall that F(Tu) denotes the set of observed variables located in the leaves of Tu (see Figure
1). The equation

log(P (Tu)) = lu +
X

Wt2F(Tu)

log(P (Wt))

is proved by induction on the depth of Tu.
Induction assumption : for each node Wu of T1 at depth J0 � j

lu = log(P (Tu))�
X

Wt2F(Tu)

log(P (Wt)) (33)

Proof for j = 1
For each node Wu of T1 at depth J0 � 1, by construction,

lu = log(Mu) +
X
t2c(u)

lt = log(Mu)

as lu = 0 for the leaves. Thus by de�nition of Mu

lu = log(P (Tu))�
X

t2c(u)

log(P (Tt)) = log(P (Tu))�
X

Wt2F(Tu)

log(P (Wt))
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Induction: if assumption (33) is satis�ed for each node at depth J0 � j, then for each node
Wu at depth J0 � (j + 1), it follows directly from equation below

8t 2 c(u) lt = log(P (Tt))�
X

Wl2F(Tt)

log(P (Wl))

and from the de�nition of lu and Mu (see algorithm 5 and equation (25)) that lu =
log(P (Tu)) �

P
Wt2F(Tu)

log(P (Wt)) for node u and therefore for all non-terminal nodes.

D MAP algorithm

This appendix proves that the hidden tree resulting from algorithm 6 is maximizing
P (H1 = h1jT1). As for hidden Markov chains, the idea of the proof is to consider the
Æ variables used in this algorithm as maximal conditional probabilities of subtrees of T1.
Moreover the algorithm must keep a map of the path run along. This is achieved by the
 function which gives the optimal state of a hidden node again when its parent's state is
known. This interpretation of our MAP algorithm is justi�ed below.

We recall that for any node u, Hu denotes the hidden subtree rooted in Su and
(Hu

c1 ; : : : ;H
u
cnu

) denotes the subtrees of Hu. We �rst assert that the Æu variables maximize
the conditional probabilities of a given hidden tree by maximising the states of its children.
This is formally expressed and then proved by induction on the depth of Tu by the following
proposition.

Proposition 1 If u is not a leave of Tu then 8k 2 f1; : : : ;Kg

Æu(k) = max
huc1 ;:::;h

u
cnu

P (Hu
c1 = huc1 ; : : : ;H

u
cnu

= hucnu ; Su = kjTu)

Æu;�(u)(k) = max
hu

P (Hu = hu; S�(u) = kjTu)

Induction assumption : for each node Wu of T1 at depth J0 � j

8k 2 f1; : : : ;Kg Æu(k) = max
huc1 ;:::;h

u
cnu

P (Hu
c1 = huc1 ; : : : ;H

u
cnu

= hucnu ; Su = kjTu) (34)

Proof for j = 1
For each node Wu of T1 at depth J0, by construction,

Æu;�(u)(k) = max
1�i�K

�
P (Su = ijWu)

P (Su = ijS�(u) = k)

P (Su = i)

�
P (S�(u) = k)

= max
1�i�K

P (Su = i;Wu)
P (Su = i; S�(u) = k)

P (Su = i)P (Wu)

= max
1�i�K

P (WujSu = i; S�(u) = k)
P (Su = i; S�(u) = k)

P (Wu)
(35)

= max
1�i�K

P (Su = i; S�(u) = kjWu) = max
hu

P (Hu = hu; S�(u) = kjTu) (36)
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Equation (35) is a consequence of conditional independance properties of HMT. The depth
of node W�(u) is J0 � 1 and it follows from (36) and from the de�nition of Æ�(u)(k) that

Æ�(u)(k) =
P (W�(u)jS�(u) = k)

M�(u)P (S�(u) = k)n�(u)�1

n�(u)Y
t=1

max
1�jt�K

P (S�(u)ct = jt; S�(u) = kjW �(u)
ct )

Using the de�nition of M�(u) and conditional independence properties, we obtain :

P (W�(u)jS�(u) = k)

M�(u)P (S�(u) = k)n�(u)�1

n�(u)Y
t=1

P (S�(u)ct = jt; S�(u) = kjW �(u)
ct )

= P (S�(u)c1 = j1; : : : ; S
�(u)
cn�(u)

= jn�(u) ; S�(u) = kjT�(u))

Hence

Æ�(u)(k) = max
h
�(u)
c1

;:::;h
�(u)
cn�(u)

P (H�(u)
c1 = h�(u)c1 ; : : : ;H�(u)

cn�(u)
= h�(u)cn�(u)

; S�(u) = kjT�(u))

Induction : if assumption (34) is satis�ed for each node at depth J0 � j, then for each node
Wu at depth J0 � j, by construction,

Æu;�(u)(k) = max
1�i�K

�
Æu(i)

P (Su = ijS�(u) = k)

P (Su = i)

�
P (S�(u) = k)

= max
1�i�K

max
huc1 ;:::;h

u
cnu

P (Hu
c1 = huc1 ; : : : ;H

u
cnu

= hucnu ; Su = ijTu)P (S�(u) = kjSu = i)

by induction assumption (34)

It follows from conditional independance properties that

P (Hu
c1 = huc1 ; : : : ;H

u
cnu

= hucnu ; Su = ijTu)P (S�(u) = kjSu = i)

= P (Hu
c1 = huc1 ; : : : ;H

u
cnu

= hucnu ; Su = i; S�(u) = kjTu)

Hence Æu;�(u)(k) = max
hu

P (Hu = hu; S�(u) = kjTu) and it follows from the de�nitions of

Æ�(u)(k) and M�(u) that:

Æ�(u)(k) = P�k(w�(u))

Q
t2c(�(u))

Æt;�(u)(k)

M�(u)P (S�(u) = k)n�(u)�1

=
P�k(w�(u))

P (T�(u))P (S�(u) = k)n�(u)�1

Y
t2c(�(u))

P (Tt)
Y

t2c(�(u))

max
ht

P (Ht = ht; S�(u) = kjTt)

It results from conditional independance properties that

P�k(w�(u))

P (T�(u))P (S�(u) = k)n�(u)�1

Y
t2c(�(u))

P (Tt)
Y

t2c(�(u))

P (Ht = ht; S�(u) = kjTt)

= P (H�(u)
c1 = h�(u)c1 ; : : : ;H�(u)

cn�(u)
= h�(u)cn�(u)

; S�(u) = kjT�(u))
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Thus

Æ�(u)(k) = max
h
�(u)
c1

;:::;h
�(u)
cn�(u)

P (H�(u)
c1 = h�(u)c1 ; : : : ;H�(u)

cn�(u)
= h�(u)cn�(u)

; S�(u) = kjT�(u))

This completes the proof of the assumption (34) for all nodes of T1. The following property
Æu;�(u)(k) = max

hu
P (Hu = hu; S�(u) = kjTu) shows that Æu;�(u)(k) is maximizing the joint

conditional probability of the whole hidden subtree and its root when the observed subtree
Tu is known.

The fact that the states tree (ŝ1; : : : ; ŝn) de�ned by the MAP algorithm is optimal
remains to be shown. Let �h1 = (�s1; : : : ; �sn) be a hidden tree such as P (H1 = �h1jT1)
(or equivalently (PH1 = �h1; T1)) is maximal. Then 8u 2 f1; : : : ; ng, a characterization of
�su is:

�su = arg max
1�i�K

max
huc1 ;:::;h

u
cnu

P (Hu
c1 = huc1 ; : : : ;H

u
cnu

= hucnu ; Su = �su;H1nu = �h1nu; T1) (37)

The following property: 8u 2 f1; : : : ; ng �su = ŝu, is proved by an induction on the depth
of Tu.
Induction assumption :

for each node Wu of T1 at depth j �su = ŝu (38)

Proof for j = 1
From the de�nition of ŝ1 and by property (34), we have:

ŝ1 = arg max
1�i�K

Æ1(i)

= arg max
1�i�K

max
h1c1 ;:::;h

1
cnu

P (H1
c1 = h1c1 ; : : : ;H

1
cn1

= h1cn1
; S1 = kjT1) = �s1

Induction :
Let Tb(u) be the set of subtrees of T�(u) such as: Tb(u) [ Tu [W�(u) = T�(u) (see Figure 1).
Then for each node Wu of T1 at depth j + 1,

�su = arg max
1�i�K

max
huc1 ;:::;h

u
cnu

P (Hu
c1 = huc1 ; : : : ;H

u
cnu

= hucnu ; Su = k;H1nu = �h1nu; T1)

by characterization (37). From conditional independance properties of HMT and the de-
compositions :

T1 = Tu [ T1nu and H1nu = H1n�(u) [ Hb(u) [ fS�(u)g

we derive the following equation

P (Hu
c1 = huc1 ; : : : ;H

u
cnu

= hucnu ; Su = k;H1nu = �h1nu; T1)

= P (Hu
c1 = huc1 ; : : : ;H

u
cnu

= hucnu ; Su = i; S�(u) = ŝ�(u); Tu)

P (H1n�(u) = �h1n�(u);Hb(u) = �hb(u); T1nujS�(u) = ŝ�(u))
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This equation results from recurrence assumption (38) and the second factor of its right
hand side neither depends on i nor on the huct . Thus

�su = arg max
1�i�K

max
huc1 ;:::;h

u
cnu

P (Hu
c1 = huc1 ; : : : ;H

u
cnu

= hucnu ; Su = i; S�(u) = ŝ�(u)jTu)

Now, using conditional independance properties, let us factorize the above equation to make
Æu(i) appear

P (Hu
c1 = huc1 ; : : : ;H

u
cnu

= hucnu ; Su = i; S�(u) = ŝ�(u)jTu)

= P (Su = i; S�(u) = ŝ�(u)jTu)
nuY
t=1

P (Hu
ct = huct jSu = i; S�(u) = ŝ�(u); Tu)

=
P (Su = i; S�(u) = ŝ�(u); Tu)

P (Tu)

nuY
t=1

P (Hu
ct = huct jSu = i; Tu) (39)

where

P (Su = i; S�(u) = ŝ�(u); Tu)

= P (TujSu = i; S�(u) = ŝ�(u))P (Su = i; S�(u) = ŝ�(u))

=
P (Tu; Su = i)

P (Su = i)
P (Su = i; S�(u) = ŝ�(u)) (40)

Equations (39) and (40) result from conditional independance properties. Combination of
equations (39) and (40) gives:

P (Hu
c1 = huc1 ; : : : ;H

u
cnu

= hucnu ; Su = i; S�(u) = ŝ�(u)jTu)

=
P (Su = i; S�(u) = ŝ�(u))

P (Su = i)
P (Su = ijTu)

nuY
t=1

P (Hu
ct = huct jSu = i; Tu)

=
P (Su = i; S�(u) = ŝ�(u))

P (Su = i)
P (Hu

c1 = huc1 ; : : : ;H
u
cnu

= hucnu ; Su = ijTu)

the last equation resulting from conditional independance properties. Hence, by characteri-
zation (34) of Æu(i) and by de�nition of ŝu, we have:

�su = arg max
1�i�K

max
huc1 ;:::;h

u
cnu

P (Hu
c1 = huc1 ; : : : ;H

u
cnu

= hucnu ; Su = ijTu)

P (Su = ijS�(u) = ŝ�(u))P (S�(u) = ŝ�(u))

P (Su = i)

= arg max
1�i�K

max
(hlc(u);hrc(u))

�
Æu(i)

aŝ�(u)i

P (Su = i)

�
P (S�(u) = ŝ�(u))

=  u(ŝ�(u)) = ŝu

This shows the optimality of the tree resulting from algorithm 6, which is thus proved to be
the MAP algorithm.
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