
IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
47

47
--

F
R

+
E

N
G

appor t
de r echerche

THÈME 4

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Software Reliability Modelling and Prediction
with Hidden Markov Chain

Jean-Baptiste Durand — Olivier Gaudoin

N° 4747

Février 2003

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38330 Montbonnot-St-Martin (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Software Reliability Modelling and Prediction

with Hidden Markov Chain

Jean-Baptiste Durand � , Olivier Gaudoiny

Thème 4 � Simulation et optimisation
de systèmes complexes

Projet is2

Rapport de recherche n° 4747 � Février 2003 � 25 pages

Abstract: The purpose of this report is to use the framework of hidden Markov chains for
the modelling of the failure and debugging process of software, and the prediction of software
reliability. The model parameters are estimated using the forward-backward EM algorithm
and model selection is done with the BIC criterion. The advantages and drawbacks of this
approach with respect to usual modelling are analyzed. Comparison is also done on real
software failure data. The main contribution of hidden Markov chain modelling is that it
highlights the existence of homogeneous periods in the debugging process, which allow one to
identify major corrections or version updates. In terms of reliability predictions, the hidden
Markov chain model performs well in average with respect to usual models, especially when
the reliability is not regularly growing.

Key-words: software reliability, reliability growth models, debugging, hidden Markov
chains, EM, BIC

� Projet is2, INRIA Rhône-Alpes, Jean-Baptiste.Durand@inrialpes.fr
y INP Grenoble, Laboratoire LMC, BP 53, 38041 Grenoble Cedex 9, France, Olivier.Gaudoin@imag.fr

Modélisation et prévision de la �abilité des logiciels

par chaînes de Markov cachées

Résumé : L'objet de ce rapport est l'utilisation du cadre des chaînes de Markov cachées
pour la modélisation du processus des défaillances et des corrections des logiciels, ainsi que
la prévision de leur �abilité. Les paramètres du modèle sont estimés en utilisant l'algorithme
EM avant-arrière et la sélection de modèles est réalisée à l'aide du critère BIC. Les avantages
et les inconvénients de cette approche par rapport aux modèles usuels sont analysés. La
comparaison est également e�ectuée sur la base de données réelles. Le principal apport
de la modélisation par chaînes de Markov cachées est de mettre en évidence l'existence
de périodes homogènes dans le processus des corrections, qui permettent d'identi�er les
corrections majeures ou les mises à jour du logiciel. En termes de prévision de la �abilité,
le modèle de chaîne de Markov cachée a de bonnes performances en moyenne par rapport
aux modèles usuels, surtout quand la �abilité ne croît pas de manière régulière.

Mots-clés : �abilité des logiciels, modèles de croissance de �abilité, corrections des logi-
ciels, chaînes de Markov cachées, EM, BIC

Software Reliability Modelling with Hidden Markov Chain 3

1 Software reliability modelling

Studies on software reliability modelling began 30 years ago. Today, more than 50 stochastic
models have been proposed for the software failure and debugging process. These models
are based on more or less sophisticated assumptions, and their goal is to estimate present
and future software reliability, based on the observation of past failures and corrections. For
recent reviews, see Lyu [19] and Pham [22].

A general framework for stochastic software reliability models is that of self-exciting
random point processes, proposed in Gaudoin [9] and Chen-Singpurwalla [3]. Let Ti; i � 1,
be the successive software failure times, starting from T0 = 0. After each failure, the software
is corrected or not, and restarted. It is usual to consider that debugging times are negligible
or not taken into account. Then, let Xi = Ti � Ti�1; i � 1, be the successive times between
failures and Nt be the number of failures occurred between 0 and t. The failure process
is equivalently one of the random processes fTigi�1, fXigi�1 or fNtgt�0. It is completely
de�ned by the failure intensity:

�t = lim
dt!0

1

dt
P (Nt+dt �Nt = 1jFt) (1)

where Ft = � (fNsg0�s�t) is the internal �ltration of the failure process.
Software reliability at time t expresses the probability that no software failure will occur

during a time of any length � after t, conditionally to the past of the failure process:

Rt(�) = P (Nt+� �Nt = 0jFt) = P (TNt+1 � t > � jFt) = exp

�
�

Z t+�

t

�sds

�
: (2)

Most software reliability models assume that fNtgt�0 is a non homogeneous Poisson
process (NHPP), for which failure intensity is a deterministic and continuous function of
time: �t = �(t). Among them, the most usual are:

� The Duane model or Power-Law Process [6] (PLP): �(t) = ��t��1, � 2 R
+ ; � 2 R+ .

� The Goel-Okumoto model [12] (GO): �(t) = �e��t, � 2 R+ ; � 2 R.

� The S-shaped model [25] (S): �(t) = ��2te��t, � 2 R
+ ; � 2 R

+ .

The main reason for the wide use of NHPP in software reliability is the simplicity of
their use. But the main drawback of these models is the assumption that failure intensity
is a continuous function of time: it is more realistic to consider that debugging induces a
discontinuity in failure intensity.

Moreover, an important feature of software, and a major di�erence with hardware, is
that software do not wear-out: if a piece of software is not modi�ed, its ability to fail does
not change, so the failure intensity between two debuggings should be constant. Then,
another class of models is those for which the times between failures Xi are independent are
exponentially distributed. Here, the failure intensity is a step function.

RR n° 4747

4 Durand & Gaudoin

More sophisticated models are built following Littlewood's [17] statement, according
to whom two sources of uncertainty exist in the failure behavior of software undergoing
debugging. The �rst source of uncertainty is in the inputs: software inputs are chosen
randomly in the input space according to the operational pro�le. The second source of
uncertainty is the e�ect of debugging. Note that there is a strong link between inputs and
failures: there is a failure if, for a given input, the software output is not that provided by
the speci�cations.

Then, the concept of total fault has been de�ned in [9]: the total fault at time t, FNt
,

is the set of all inputs which can provoke a failure at time t. The e�ect of debugging is a
transformation of FNt

into FNt+1. It is logical to assume that the debugging of a fault at
a given time depends only of the state of this fault at this time, and not of its past states.
So the fault process fFNt

gt�0 can be assumed Markovian. It is proved in [9] that, if the
inputs occur in time according to a homogeneous Poisson process with parameter �, if they
are independent, independent of input times, and have the same distribution Q on the input
space, then the failure intensity is:

�t = �Q(FNt
): (3)

The uncertainty on inputs is expressed by � and Q, and the uncertainty on debugging
by the fault process fFNt

gt�0.
If we set �i = �Q(Fi�1), we obtain, as stated yet by Soler [24], that there exists a Markov

process � = f�igi�1 such that, conditionally to f�i = �igi�1, the times between failures
Xi are independent and exponentially distributed with respective parameters �i. �i can
be understood as the software failure rate after (i � 1)th debugging. A software reliability
model in this framework is given by a model for process f�igi�1.

Several software reliability models belong to this class:

� When the �i are deterministic, the times between failures Xi are independent and
exponentially distributed. The most famous of these models are:

� The Jelinski-Moranda model [13] (JM): �i = �(N � i+ 1), � 2 R
+ ; N 2 N.

� The Moranda geometric model [20] (MG): �i = �ci�1, � 2 R
+ ; c 2 (0; 1].

� The Littlewood-Verral model [18] (LV) can be understood as a model of this class
for which the �i are independent and have the gamma distribution with respective
parameters (�; �1 + i�2), (�; �1; �2) 2 R

+3
.

� In [10], Gaudoin, Lavergne and Soler de�ned a class of models, called the proportional
models, assuming that:

8i � 1; �i+1 = �ie
��i ; where �i and �i are independent. (4)

The �i represent the successive debugging e�ects: �i = 0 =) �i+1 = �i means that
debugging has no e�ect, �i > 0 =) �i+1 < �i means that the correction reduces
software failure rate, so debugging is of good quality, and �i < 0 =) �i+1 > �i

means that debugging is of bad quality.

INRIA

Software Reliability Modelling with Hidden Markov Chain 5

� The imperfect debugging model proposed by Gaudoin [11] assumes that:

8i � 1;�i = (1� �i � �i) �i�1 + ��i (5)

where the �i are good debugging rates and the �i are bad debugging rates. A simple
model is obtained by letting �i = � and �i = � for all i.

The parameters of all these models can be estimated by maximum likelihood or other
techniques. Then, it is possible to estimate present and future reliability. These models
have been more or less successfully used on real software failure data.

However, all these models assume that there is a correction for each failure, and that the
debugging e�ciency is homogeneous in time. In practice, after software failures, computers
are often rebooted without doing any correction. Debugging happens when a su�ciently
large amount of failures has occurred. When a software is in its operational life, there is a
version update or introduction of a new release, instead of debugging, but both concepts can
be handled in the same way. Even if a correction is done after each failure, most of them are
minor and there are sometimes major corrections, which can be considered as equivalent to
version updates.

Software reliability data generally consist in a list of successive times between failures, and
the information on whether a correction has been performed or not, or whether corrections
are minor or major, is not available. Then, it would be interesting to build software reliability
models which could take this fact into account. This is the case of the hidden Markov chain
(HMC) modelling.

Section 2 presents the modelling of the software failure and debugging process with
hidden Markov chains. In section 3, model parameters are estimated using the forward-
backward EM algorithm. Section 4 deals with the hidden states' restoration using the Viterbi
algorithm. Section 5 presents the choice of the number of hidden states and transition
probability matrix with the BIC criterion. In section 6, the model predictive validity is
studied with the U-plot method. Finally, the HMC approach is applied to real software
failure data and compared with usual software reliability growth models, from the points of
view of knowledge of the debugging process and reliability prediction.

2 Modelling the software failure process with hidden

Markov chains

In order to use the framework of hidden Markov chains, it is necessary to assume that
the failure rate process � = f�igi�1 takes values in a �nite set. Let K be the cardinal
number of this set and f�(1); : : : ; �(K)g be the set of possible values for the �i. Then, � is a
discrete-valued Markov chain. The assumptions on X = fXigi�1 and � sum up as follows:

1. � is a discrete-valued Markov chain ;

2. conditionally to f�i = �igi�1, the times between failures fXigi�1 are independent ;

RR n° 4747

6 Durand & Gaudoin

3. conditionally to f�i = �(j)g, Xi has an exponential distribution with parameter �(j).

Any process satisfying the three assumptions above is a hidden Markov chain. This name
is due to the unknown values f�igi�1 which are not directly observable, hence hidden.

Each trajectory of processX can be split into homogeneous zones, each zone correspond-
ing to one value �(j) of the failure rate process. In a given zone, the failure rate remains
constant. Discrete jumps appear in the failure process when there is a transition of the
failure rate process at ith failure, from �i = �(j) to �i+1 = �(l).

In the software test period, the homogeneous zones can be interpreted as periods where
no corrections have occurred after failures, or where the corrections introduced were minor
and did not improve signi�cantly the failure rate. The jumps correspond to corrections
in the �rst case and major corrections in the second. In the software operational life, the
transitions between zones can be interpreted as introductions of version updates or new
releases.

The advantage of the HMC model with regard to NHPP models is that it takes into
account the discontinuities in failure intensity caused by the debugging and the no wear-out
property of software. The advantage with regard to the class of models presented in section
1 is that there is not necessarily a correction after each failure, which leads to the existence
of homogeneous periods.

A hidden Markov chain is de�ned by the following parameters:

1. The distribution of the initial state �1, given by �j = P (�1 = �(j)), 1 � j � K.

2. The transition probabilities P (�i+1 = �(l)j�i = �(j)) = p
(i)
jl , i � 1; 1 � j � K; 1 �

l � K. In what follows, we assume that the Markov chain � is homogeneous, i.e. the
transition probabilities do not depend on i. Thus the transition parameters con�ne to
the matrix P de�ned by the pjl.

3. The values (�(1); : : : ; �(K)) of the failure rates.

Let � be the set of all parameters of a HMC model. In sections 3 and 4 as well as in the
current section, the number K of possible failure rates is considered as known.

A consequence of the conditional independence hypothesis and the �nite values of � is
that the marginal distribution of Xi is a �nite mixture, since its density fXi

is given by

fXi
(x) =

X
j

P (�i = �(j))f�(j) (x) (6)

where f�(j) (x) denotes the density of the exponential distribution with parameter �(j), which
is the distribution of Xi conditionally to f�i = �(j)g. Hence the HMC model is a mixture
model where a Markovian dependence assumption substitutes for the usual independence
assumption of the fXigi�1. Though, the X process is not a Markov chain itself. In mixture
models, an unknown discrete variableZi is associated to each observed variableXi. Observed
variables having the same value of Zi can be grouped in a same cluster, which makes the

INRIA

Software Reliability Modelling with Hidden Markov Chain 7

mixture models widely used in clustering. In the same way, the HMC models take advantage
of the unknown discrete variables f�igi�1, also called (hidden) states, for the classi�cation
of the data fXigi�1, where in addition, the dependencies between variables are taken into
account (for instance via the Markov assumption). The obtained clusters form, in the X
process, the homogeneous zones mentioned above.

It can be noticed that Kimura and Yamada [16] used yet the HMC framework in software
reliability, but with a completely di�erent point of view.

3 Parameter estimation

For any sequence fzigi�1 and any couple of integers (i; j) such that i < j, let zji denote
(zi; : : : ; zj). We use the general notation P () to denote either a probability mass function
or a probability density function, the true nature of P () being obvious from the context.
This convention makes the notation simpler, when dealing with mixed distributions.

We assume that the n �rst interfailure times xn1 of a software are observed. We want to
use the HMC model in order to assess present and future reliability at the last failure time.
The �rst step is the estimation of the HMC parameters.

The HMC model is a typical case where the complete data yn1 can be split into the
observed data xn1 and the missing data �n1 with yn1 = (xn1 ;�

n
1). The presence of incomplete

data often complicates the estimation of the parameters � by likelihood maximization. Thus,
we resort to the EM algorithm [4], dedicated to the likelihood maximization in the context
of missing values. This iterative algorithm starts from an initial value �(0) of the parameters
and creates a sequence f�(m)gm�0 whose likelihood grows. At each iteration m, it proceeds
as follows:

� Expectation (E) step - determination of the Q function de�ned by

Q(�; �(m)) = E�(m) [logP�(�
n
1 ;X

n
1 = xn1)jX

n
1 = xn1]; (7)

� Maximization (M) step - maximization of Q(�; �(m)) with respect to �. Then

�(m+1) = argmax
�

Q(�; �(m)): (8)

The EM algorithm has the following properties: the sequence f�(m)gm�0 converges to
the consistent solution of the likelihood equations when �(0) is close to the optimal solu-
tion. However, when the mixture components f�(1); : : : ; �(K)g are poorly separated, the
estimators obtained strongly depend on the initial value �(0) and the convergence rate can
be crippling. To cope with the former drawback, we start from several initial values and run
a few iterations, the �nal value maximizing the likelihood being kept as a starting value for
one further EM run. More precisely, we consider three initial values determined at random
and we run 50 iterations for each value. Thus we obtain three estimators. The one which has
maximal likelihood is used as starting position for the EM algorithm. We stop the algorithm

RR n° 4747

8 Durand & Gaudoin

when 1000 iterations have been done, or when the relative increase of the log-likelihood is
below a threshold ", for instance " = 10�6.

>From Baum et al. [2], the M step is given by the following reestimation formulae:

�̂j = 1(j) (9)

p̂jl =

P
i

�i(j; l)P
i

i(j)
(10)

�̂(j) =

2
4
P
i

i(j)xiP
i

i(j)

3
5
�1

(11)

where

i(j) = E�(m) [11f�i=�(j)gjX
n
1 = xn1] = P�(m) (�i = �(j)jXn

1 = xn1) (12)

�i(j; l) = E�(m) [11f�i=�(l);�i�1=�(j)gjX
n
1 = xn1]

= P�(m) (�i = �(l);�i�1 = �(j)jXn
1 = xn1): (13)

These conditional distributions can be computed by inductive algorithms running along
the chain, �rst from the origin time forward to the future and second from the �nal time
backward to the past. This caused the EM algorithm for the hidden Markov chain model,
due to Baum et al. [2], to be called the forward-backward algorithm.

In what follows, the parameters �(m) are �xed and we denote P = P�(m) to make the
notation simpler. The forward recursion is based on the so-called forward quantities

�i(j) = P (Xi
1 = xi1;�i = �(j));

initialized at i = 1 by �1(j) = �jf�(j) (x1) and computed inductively by

�i+1(l) =
X
j

pjl�i(j)f�(l) (xi+1): (14)

As a byproduct of this recursion, the likelihood is given by f�(x
n
1) =

P
j

�n(j).

The backward recursion is based on the backward quantities

�i(j) = P (Xn
i+1 = xni+1j�i = �(j));

initialized at i = n� 1 by �n�1(j) =
P
l

pjlf�(l)(xn) and computed inductively by

�i(j) =
X
l

pjl�i+1(l)f�(l) (xi+1): (15)

INRIA

Software Reliability Modelling with Hidden Markov Chain 9

Finally, the conditional probabilities required by the EM algorithm are given by

i(j) =
�i(j)�i(j)P
l

�n(l)
(16)

�i(j; l) =
�i+1(l)pjlf�(l) (xi+1)�i(j)P

j0
�n(j0)

: (17)

It is well-known that the forward-backward algorithm above is subject to under�ow when
n is moderately large. This is why we use the so-called forward-backward algorithm for
posterior probabilities of Devijver [5], which basically computes P (�i = �(j)jXi

1 = xi1)
instead of P (Xi

1 = xi1;�i = �(j)) and is thus immune to under�ow.
The EM algorithm has the following interpretation, in the present context. First, the

maximum likelihood estimates in the case of complete data, obtained by maximization of
the completed likelihood P�(�

n
1 = �n1 ;X

n
1 = xn1), are as follows:

~�j = 11f�1=�(j)g (18)

~pjl =

P
i 11f�i=�(l);�i�1=�(j)gP

i 11f�i�1=�(j)g

(19)

~�(j) =

"P
i 11f�i=�(j)gxiP
i 11f�i=�(j)g

#�1
: (20)

The estimates of the transition probabilities can be interpreted as counts of the transition
numbers. The estimates of �(j) are the classical estimates for an exponential distribution,
where the mean is computed only on the variables Xi with �i = �(j), i.e. the data in jth

state. Now, we can see that in the reestimation formulae (9) to (11) of the EM algorithm,
the unknown random quantities involved through the indicator functions are replaced by
their expectations, conditional to fXn

1 = xn1g, with respect to the distribution P�(m) .
In fact, we consider a slightly simpli�ed model. On the one hand, it can be shown

that the maximum likelihood estimate of � is a Dirac distribution 11f�=�(l)g when only
one sequence is used to estimate the parameters, which is the case in this paper. On the
other hand, the distribution P� remains invariant by any permutation of the parameters �
- corresponding to a relabelling of the hidden states - as usual in mixture models. As a
consequence, we can make the assumption that �j = 11f�=�(1)g(�

(j)). It means that the

failure rate at i = 1 is �1 = �(1) with a probability one. In practice, we estimate the
parameters without taking this constraint into consideration. Then we relabel the states in
such a way that �j = 11f�=�(1)g(�

(j)).

RR n° 4747

10 Durand & Gaudoin

4 Restoration of the hidden states

It has been emphasized in section 2 that one main contribution of the hidden Markov chain
modelling in software reliability lies in the possibility to interpret the sequences of successive
equal states as homogeneous zones in the failure process.

We explain in this section how the unknown failure rates can be restored in the context of
hidden Markov chain models. One wants to use a model speci�ed by parameter �, considered
as known (for example estimated by maximum likelihood as described in section 3), to give
a value to the unknown state sequence �n1 . A natural way to restore the hidden states is to
compute their most likely value, conditionally to xn1 . The resulting algorithm is called a MAP
algorithm (maximum a posteriori). It consists in computing argmax

�
n
i

P�(�
n
1 = �n1 jX

n
1 = xn1),

or equivalently argmax
�
n
1

P�(�
n
1 = �n1 ;X

n
1 = xn1). This can be done by the so-called Viterbi

algorithm [7], based on dynamic programming methods. The Viterbi algorithm is similar to
the forward recursion of section 3 but the summing procedure is replaced by a maximization.
This recursion is based on the quantities Æi(j) = max

�
i�1
1

P�(�
i�1
1 = �i�11 ;�i = �(j);Xi

1 = xi1),

initialized at i = 1 by Æ1(j) = �jf�(j) (x1) and computed inductively by

Æi+1(l) = max
j

pjlÆi(j)f�(l) (xi+1): (21)

The maximal value of the completed likelihood is given at i = n by P � = max
j

Æn(j), and the

restored �nal state is ��n = argmax
j

Æn(j). To retrieve the optimal sequence of failure rates,

it is necessary to store for each time i and each state j the optimal failure rate corresponding
to the immediate past i�1. This backtracking procedure consists in tracing backward along
this pointers from the optimal �nal state to the initial state.

Another strategy for the hidden states' restoration consists in computing

��i = argmax
j

P (�i = �(j)jXn
1 = xn1): (22)

It leads to the maximization of the expected number of correct failure rates. Though, this
local method does not take into account the whole sequence of failure rates. We will consider
in section 5 some models with forbidden transitions (i.e. some transition probabilities equal
to 0). A major drawback of restoring the failure rate sequence without using the Viterbi
algorithm appears when we obtain a forbidden sequence as a result. Furthermore, the
outputs of both algorithms do not generally coincide. Generally, using the Viterbi algorithm
tends to give longer homogeneous zones, thus favouring the interpretation of the hidden
states.

The comparison between original data and restored hidden states is easy since the ex-
pected interfailure time when �i = �(j) is 1=�(j).

Figure 1a) shows the times between failures for a real software failure data set (C3 in
[9]) superimposed on the optimal state sequence restored by the Viterbi algorithm, using a

INRIA

Software Reliability Modelling with Hidden Markov Chain 11

0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

3000

3500

4000
data set C3 − three−state tridiagonal model

number of failures

tim
es

 b
et

w
ee

n
fa

ilu
re

s

times between failures
restored hidden states

0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

3000

3500

4000
data set C3 − three−state tridiagonal model

number of failures

tim
es

 b
et

w
ee

n
fa

ilu
re

s

times between failures
restored hidden states

Fig. 1a) The globally most likely sequence. Fig. 1b) The individually most likely states.

Figure 1: Comparison of two methods for the hidden states' restoration: the Viterbi algo-
rithm favours homogeneous zones.

three-state model with parameters �̂ estimated by maximum likelihood. Figure 1b) shows
the same real data set superimposed on the optimal state sequence restored using the prob-
abilities P (�i = �(j)jXn

1 = xn1) and the same parameters �̂. In this case, when the Viterbi
algorithm is used, the resulting sequence has longer plateaux than that obtained by local
state restoration, since the dependencies between the states are fully taken into account.

0 20 40 60 80 100 120 140
0

1000

2000

3000

4000

5000

6000

7000
data set M1 − sevent−state tridiagonal model

number of failures

tim
es

 b
et

w
ee

n
fa

ilu
re

s

times between failures
restored hidden states

0 20 40 60 80 100 120 140
0

1000

2000

3000

4000

5000

6000

7000
data set M1 − seven−state tridiagonal model

number of failures

tim
es

 b
et

w
ee

n
fa

ilu
re

s

times between failures
restored hidden states

Fig. 2a) The globally most likely sequence. Fig. 2b) The individually most likely states.

Figure 2: Comparison of two methods for the hidden states' restoration: the Viterbi algo-
rithm respects the constraints induced by the transition probability matrix

Figure 2a) shows the times between failures for another real data set (M1 in [21]) super-
imposed on the optimal state sequence restored by the Viterbi algorithm, using a seven-state

RR n° 4747

12 Durand & Gaudoin

model having a tridiagonal transition matrix with parameters estimated by maximum likeli-
hood. Figure 2b) shows the same real data set superimposed on the optimal state sequence
restored using the probabilities P (�i = �(j)jXn

1 = xn1) and the same parameters. The model
assumes that any transition from state 5 (characterized by a failure rate of �(5) � 950�1) to
state 7 (characterized by a failure rate of �(7) � 480�1) is forbidden. See section 5 for more
details about assumptions on forbidden transitions. We can see on �gure 2 that whereas this
constraint is satis�ed by the global restoration (or Viterbi) algorithm, it is not satis�ed by
the local restoration algorithm which allows a transition from state 5 to state 7, at i = 108.

Thus, we choose the Viterbi algorithm for the restoration of the hidden states.

5 Choice of the hidden states' number and transition ma-

trix

In the sections above, the number of possible failure rates K has been considered as known.
Clearly, K is not known in practice and has to be estimated. This quantity plays a peculiar
role in the model, since the dimension of parameter � depends on K. With each value of K,
we can associate the set of hidden Markov chains having K hidden states. These sets can
be called the competing hidden Markov chain models. Generally, the problem of choosing
the number of hidden states requires that one can express (more or less formally) which use
of the model is planned. For example, one may want to choose a model having a moderate
complexity which reasonably �ts the data. We will focus on this objective in what follows.
Then, the de�nition of a criterion to assess the relevance of a given model, regarding our
aim, can be envisaged.

We use a criterion based on a penalization of the log-likelihood, called the Bayesian
Information Criterion (BIC) [14], also known as the Schwarz criterion. This criterion is
de�ned by

BIC(K) = log(P�̂K (x
n
1))�

�K
2

log(n) (23)

where log(P�̂K (x
n
1)) is the maximum log-likelihood for the hidden Markov chain with K

hidden states and where �K is the number of independent parameters in �K . We recall that
n is the length of the observed sequence, that is the number of failures. The number of
independent parameters is the sum of:

� the number K of parameters �(l) for the exponential conditional distributions ;

� the number K(K � 1) of transition probabilities, since each row of the transition
probability matrix sums to one.

The BIC criterion has its origins in a Bayesian approach, where the probability of the
sequence xn1 conditionally to a model is assessed by integrating over the parameters. The
integral is approximated using a Laplace expansion, valid when the maximum likelihood

INRIA

Software Reliability Modelling with Hidden Markov Chain 13

estimator is asymptotically normally distributed, which is not always the case here if we
assume that there exists a true value K0 - the asymptotic normality not being satis�ed for
K > K0. In any case, the BIC criterion is composed of a term measuring the �t between the
data and the model (namely,the log-likelihood) and of a term penalizing complex models.
Thus, maximizing this criterion hopefully leads to selecting models o�ering a compromise
between �t and complexity. Furthermore, from Gassiat [8], criteria based on the marginal
log-likelihood with the same penalization as that of BIC are proved to be consistent.

In practice, we set a maximal value Kmax for K, as well as a minimal value Kmin. Then
we estimate the parameters by the EM algorithm (see section 3) for each value K between
Kmin and Kmax and we keep the model maximizing BIC(K).

The second issue on model selection concerns the transcription of assumptions on the
debugging process into the transition probability matrix P . As shown in section 2, the
hidden states can be interpreted as steps in the software debugging process, since the states
correspond to discrete values of the failure rate. Until now, the assumption that all kinds of
software corrections can occur has been made implicitly. This is the case when no particular
assumption is made on the transition probability matrix, which means that any improvement
or deterioration of the software failure rate is possible.

It can be envisaged to consider a debugging process where each homogeneous zone is
visited only once. This is the case of pure reliability growth models, where each debugging
reduces the software failure rate. Then, any transition from a hidden state to a previously
visited hidden state must be forbidden. This assumption implies an upper diagonal transition
probability matrix, of the following form (up to a relabelling of the states):

P =

0
BBBBBBB@

p1;1 p1;2 0 : : : 0

0 p2;2 p2;3
. . . 0

...
. . .

. . .
. . . 0

...
. . . pK�1;K�1 pK�1;K

0 : : : : : : 0 1

1
CCCCCCCA

(24)

In this matrix, each line sums to 1, so 8l < K; pl;l+1 = 1� pl;l. Under this assumption,
the fact that �1 = �(1) with probability one gives no choice for the meaning of the other
�(l), since �(2) will necessarily correspond to the second visited state and so on. Thus, the
failure rates are ordered in accordance to the transition probability matrix. It should be
noted that when the states must be relabelled to ensure the condition �j = 11f�=�(1)g(�

(j)),
the transition probability matrix is generally no more upper diagonal. This is not a problem
since the unknown failure rates remain ordered in the sense above. This assumption is
satis�ed if some permutation of the rows and the columns of the transition probability
matrix results in an upper diagonal matrix.

In practice, it is important to take into account the possibility of imperfect debugging.
It means that the return to a previously visited state must be allowed. The easiest way to
do so is to allow two transitions for each state (except the initial and �nal ones): one to the

RR n° 4747

14 Durand & Gaudoin

last previously visited state, and one to the next new visited state. This assumption implies
a tridiagonal transition probability matrix of the following form (up to a permutation):

P =

0
BBBBBBB@

p1;1 p1;2 0 : : : 0

p2;1 p2;2 p2;3
. . . 0

0
. . .

. . .
. . . 0

...
. . .

. . . pK�1;K
0 : : : 0 pK;K�1 pK;K

1
CCCCCCCA

(25)

In this matrix, for each l such that 1 < l < K; pl�1;l + pl;l + pl;l+1 = 1, p1;1 + p1;2 = 1
and pK;K�1 + pK;K = 1. As for upper diagonal transition probability matrices, tridiagonal
transition matrices induce an order on the failure rates.

Figure 3 illustrates the e�ect of di�erent types of transition probability matrix on model
interpretation. These essentially lead to di�erent models. The di�erences appear in the
parameters above all, but they also translate into the restoration of the hidden sequence by
the Viterbi algorithm. Figure 3a) shows the times between failures for a real data set (C1
in [9]) superimposed on the optimal state sequence restored by the Viterbi algorithm, using
a three-state model with an unconstrained transition matrix with parameters estimated by
maximum likelihood. On Figure 3b), a model with an upper diagonal transition matrix has
been used, thus leading to new estimates for the parameters (still by maximum likelihood
method) and a new restored sequence of failure rates. On Figure 3c), a model with a
tridiagonal transition matrix has been used. Figure 3b) illustrates the fact that a model with
an upper diagonal transition probability matrix forbids any return to a previously visited
state. This makes the model interpretation easier, as far as the research of the homogeneous
periods is concerned, since transitions between failure rates are accepted less easily and in an
irreversible way. It can also be seen from �gures 3a) and c) that adding milder constraints
than an upper diagonal transition probability matrix results in the suppression of some
spurious transitions.

>From an estimation point of view, a change in the type of transition matrix is likely
to a�ect the estimates of every parameter included in �̂ - even the failure rates �̂(j). In
fact, we do not know of any direct method to deduce the estimates of the parameters for a
particular model from the estimates for the most general model. Thus, the EM algorithm
has to be run for every model separately. We can see from the reestimation formulae of
the EM algorithm (see section 3) that if pjl is equal to zero in the initial parameter �(0)

then at each EM iteration, the estimate p̂jl remains equal to zero and the constraints on the
transition probability matrix are automatically satis�ed.

In conclusion, we are now facing a new model selection problem where the competing
models di�er from their type of transition probability matrix. Once again we can resort to
the BIC criterion to select a model, when the di�erence of complexity is taken into account
for each candidate model. It is worth noting that in the context of a �xed value for K,

INRIA

Software Reliability Modelling with Hidden Markov Chain 15

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

500

600

700

800

900
data set C1 − three−state model

number of failures

tim
es

 b
et

w
ee

n
fa

ilu
re

s

times between failures
restored hidden states

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

500

600

700

800

900
data set C1 − three−state upperdiagonal model

number of failures

tim
es

 b
et

w
ee

n
fa

ilu
re

s

times between failures
restored hidden states

Fig. 3a) Model with no constraint Fig. 3b) Model with an upper diagonal

on the transition probability matrix. transition probability matrix.

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

500

600

700

800

900
data set C1 − three−state tridiagonal model

number of failures

tim
es

 b
et

w
ee

n
fa

ilu
re

s

times between failures
restored hidden states

Fig. 3c) Model with a tridiagonal transition probability matrix.

Figure 3: Comparison of the three types of transition probability matrix.

assumed inferior to a conceptual true value K0, the maximum likelihood estimator has an
asymptotically normal distribution, which makes the use of BIC more justi�ed than for the
choice of K. In any case though, K remains to be chosen.

In practice, the number �K of independent parameters to consider for model selection is:

� in absence of any assumption on the transition probability matrix P , �K = K+K(K�
1) = K2 ;

� for an upper diagonal transition probability matrix, �K = K + (K � 1) = 2K � 1 ;

� for a tridiagonal transition probability matrix, �K = K + (2K � 2) = 3K � 2.

RR n° 4747

16 Durand & Gaudoin

6 Predictive validity and model comparison

The quality of reliability predictions provided by the hidden Markov chain model has to
be assessed and compared with those given by the usual software reliability growth models
presented in section 1. The usual method for comparing software reliability predictions is
the so-called U-plot method [15, 1].

For any model with parameter �, let P
�̂i
(Xi � xjX i�1

1 = xi�11) be the predicted CDF of

the next time to failure Xi given the �rst i�1 interfailure times, where �̂i is an estimator of
� based on xi�11 . The idea of the method is to compute the ui = P

�̂i
(Xi � xijX

i�1
1 = xi�11).

If the model is appropriate and the estimation is of good quality, then the ui should be
close to a sample of the uniform distribution over [0; 1]. This closeness or predictive validity
is measured by the Kolmogorov-Smirnov distance KS between the empirical CDF of the
ui and the true uniform CDF, which is F (x) = x on [0; 1]. The U-plot is the plot of the
empirical CDF of the ui. If several models are competing, the �best model� is the one for
which KS is the smallest.

For the hidden Markov chain model, it is easy to prove that:

P (Xi � xjX i�1
1 = xi�11) =

P
l F�(l) (x)

P
k �i�1(k)pkl

P�̂i(x
i�1
1)

(26)

where F�(l) denotes the CDF of the exponential distribution with parameter �(l).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

F
(u

)

U−plot for data set M40 − KS ≈ 1.527

CDF of the uniform distribution
Empirical CDF

Figure 4: U-plot for the HMC model

Figure 4 shows the U-plot for data set M40 in [21], using a three-state model with upper
diagonal transition probability matrix. On this example, KS = 1:375.

INRIA

Software Reliability Modelling with Hidden Markov Chain 17

7 Application and conclusion

The hidden Markov chain model has been used on two groups of real software failure data
sets. The �rst group are times between failures of nine American control-command software
(denoted M1, M2, M3, M4, M6, M14C, M17, M27 and M40) in the test period and opera-
tional life [21]. The second group are times between failures of four complex French software
(denoted C1, C2, C3, C4) in the test period [9]. Time unit is running clock time in both
cases.

First of all, we present a complete treatment of one of these data sets, M40, for which
n = 101. The �rst step is the choice of the number of hidden states and transition probability
matrix type. The minimal and maximal values of K are set to Kmin = 1 and Kmax = 7.

1 2 3 4 5 6 7
−1340

−1330

−1320

−1310

−1300

−1290

−1280

−1270

−1260

−1250

−1240
BIC values for data set M40

number of hidden states

B
IC

 v
al

ue
s

full transition matrix
upper diagonal transition matrix
tridiagonal transition matrix

Figure 5: Model selection with BIC for M40

Figure 5 shows that the BIC criterion is maximum for a model with three hidden states
and an upper diagonal transition probability matrix. For this model, the parameter estima-
tors are: �

�̂(1) �̂(2) �̂(3)
�

= 10�4 �
�
0:5035 0:0908 0:0175

�
(27)

P̂ =

2
4 0:9809 0:0191 0

0 0:9502 0:0498
0 0 1:0000

3
5 (28)

Then, it is easy to restore the hidden states, as shown in �gure 6. Three homogeneous
periods clearly appear in this �gure.

Finally, the HMC model is compared with some of the most usual software reliability
models, using the U-plot method. Table 1 gives the KS distances in the U-plots of several

RR n° 4747

18 Durand & Gaudoin

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 10

6 data set M40, 3−state model with upper diagonal transition matrix

number of failures

tim
es

 b
et

w
ee

n
fa

ilu
re

s

times between failures
restored hidden states

Figure 6: Restoration of the hidden states for M40.

models. The MG model has the best predictive validity, followed by PLP and the hidden
Markov chain model. The HMC model performs much better than GO, S and JM models.

Table 1: Model comparison for M40 - KS distances in U-plots

HMC PLP GO S JM MG
1.375 1.310 2.417 3.342 4.783 1.223

A similar study has been done on the thirteen data sets. Table 2 gives, for all data
sets, the type of transition probability matrix (`f' for full, `u' for upper diagonal, `t' for
tridiagonal) and number of hidden states K selected by the BIC criterion, and the ranks
of 6 models according to the U-plot method (rank 1 is for the model with the smallest KS
distance). The table also gives the mean rank of each model for all data sets. The complete
table of KS distances is given in appendix A. The restoration of the hidden states in HMC
models for all data sets is given in appendix B.

The main results of this study are the following ones.

� For all data sets, the selected number of hidden states is very small, from 1 to 4. This
result was unexpected because we thought we would �nd more homogeneous periods
in data. Maybe the BIC criterion favours too small values of K. However, if K is set
to a rather large number such as 5, it happens that a lot of failure rates are estimated
by very close values and spurious transitions appear, so a model with less hidden states
is preferable. This means that for these software, very few major corrections seem to
have occurred during the debugging process.

INRIA

Software Reliability Modelling with Hidden Markov Chain 19

Table 2: Summary of model application on all data sets

Data M1 M2 M3 M4 M6 M14 M17 M27 M40 C1 C2 C3 C4
set

matrix u f u u f f u u u f t f u Mean
K 3 2 2 2 2 2 2 2 3 2 3 1 4 rank

HMC 4 4 4 2 1 1 2 2 3 1 3 5 5 2.85
PLP 2 3 3 1 2 5 5 4 2 4 1 4 3 2.77
GO 3 2 2 4 4 6 3 3 4 2 4 1 2 3.08
S 5 5 5 5 5 3 6 5 5 5 6 6 4 5.00
JM 6 6 6 6 6 2 1 6 6 6 5 2 6 4.92
MG 1 1 1 3 3 4 4 1 1 3 2 3 1 2.15

� The choice of initial values for the EM algorithm has a slight e�ect on the maximum
BIC value. In some situations, it can lead to a change of the selected model but it
does not a�ect signi�cantly neither the KS distance nor the restoration of the hidden
states.

� From the BIC point of view, there are some signi�cant di�erences between all kinds
of transition probability matrices. Logically, the upper diagonal matrix gives the
best result for data sets exhibiting almost pure reliability growth. For data sets for
which reliability is sometimes decreasing (probably due to imperfect debugging), full
or tridiagonal matrices are better (M2, M6, M14, C1, C2). This fact is con�rmed on
simulated data sets: when data are simulated according to a pure reliability growth
model, the upper diagonal matrix is always chosen by the BIC criterion.

� The HMC model has the best predictive validity for 3 data sets among 13 (M6, M14,
C1). For the 10 others, the HMC performs well in average: it is often close to the
best model, and in most cases largely better than the worse of them. The mean ranks
in table 2 indicate that model MG clearly provides the best reliability predictions for
these data sets. PLP, HMC and GO have a similar performance. JM and S have a
poor predictive validity, except for a few number of data sets. In fact, usual models
perform better than HMC when there is a regular reliability growth, and HMC is the
best when there are some signi�cant imperfect debuggings.

� Long homogeneous periods are detected by the restoration of hidden states for almost
all data sets, leading to a clear interpretation in terms of identi�cation of major cor-
rections. For some data sets (M6, M14, C3), such periods are not detected, so the
conclusion is that no signi�cant corrections have occurred. In case of returns to pre-
vious states due to imperfect debugging (C2) or existence of long and very distinct
homogeneous periods (C4), the HMC model is more appropriate than usual models.

RR n° 4747

20 Durand & Gaudoin

However, the predictive validity of HMC in these cases can be very poor. This is due to
the fact that, in the U-plot method, the estimates are computed sequentially. At each
step, the nature of the hidden states changes, which makes prediction of future time
to failure much more di�cult than it seems. Then, the goodness-of-�t and predictive
validity are not necessarily correlated for the HMC model.

Finally, the hidden Markov chain approach provides a new way of modelling software
reliability which can take into account some features that are ignored by usual models,
such as the existence of homogeneous periods and the possibility of imperfect debugging.
Not surprisingly, the HMC model performs best for data exhibiting these features. For
other kinds of data, usual models can be more appropriate. Even for these data, the HMC
approach is still interesting since it clearly identi�es the location of major corrections in the
debugging process.

A possible extension of this approach is to consider that, inside the homogeneous peri-
ods, the times between failures do not necessarily have a constant failure rate, but can be
distributed according to a certain kind of reliability growth model. Then, it leads to mix-
tures of usual models with Markovian transitions. For example, a �hidden Markov Moranda
geometric model� corresponds to the assumption that, conditionally to f�i = �(j)g, Xi has
an exponential distribution with parameter �(j)ci�1j .

Acknowledgment: The authors are grateful to Gilles Celeux and Jean-Louis Soler who
initiated this work.

INRIA

Software Reliability Modelling with Hidden Markov Chain 21

References

[1] Abdel-Ghali A., Chan P. and Littlewood B., Evaluation of competing software relia-
bility predictions, IEEE Transactions on Software Engineering, SE-12, 9, 950-967, 1986.

[2] Baum L.E., Petrie T., Soules G. and Weiss N., A maximization technique occurring
in the statistical analysis of probabilistic functions of Markov chains, Annals of Mathematical

Statistics, 41, 164-171, 1970.

[3] Chen Y. and Singpurwalla N., Uni�cation of software reliability models by self-exciting
point processes, Advances in Applied Probability, 29, 337-352, 1997.

[4] Dempster A., Laird N. and Rubin D., Maximum likelihood from incomplete data via the
EM algorithm (with discussion), Journal of Royal Statistical Society Series B, 39, 1-38, 1977.

[5] Devijver P.A., Baum's forward-backward algorithm revisited, Pattern Recognition Letters,
3, 369-373, 1985.

[6] Duane J.T., Learning curve approach to reliability monitoring, IEEE Transactions on

Aerospace, AS-2, 2, 563-566, 1964.

[7] Forney G.D. Jr., The Viterbi Algorithm, Proceedings of the IEEE, 61, 268-278, March 1973.

[8] Gassiat E., Likelihood ratio inequalities with application to various mixtures, Annales de

l'Institut Henri Poincaré, 2002 (to appear).

[9] Gaudoin O., Outils statistiques pour l'évaluation de la �abilité des logiciels, PhD, Joseph
Fourier University, Grenoble, 1990 (in French).

[10] Gaudoin O., Lavergne C. and Soler J.L., A generalized geometric de-eutrophication
software-reliability model, IEEE Transactions on Reliability, R-44, 4, 536-541, 1994.

[11] Gaudoin O., Software reliability models with two debugging rates, International Journal of
Reliability, Quality and Safety Engineering, 6, 1, 31-42, 1999.

[12] Goel A.L. and Okumoto K., Time dependent error detection rate model for software
reliability and other performance measures, IEEE Transactions on Reliability, R-28, 1, 206-
211, 1979.

[13] Jelinski Z. and Moranda P.B., Statistical computer performance evaluation, in Software

reliability research, W. Freiberger ed, Academic press, New-York, 465-497, 1972.

[14] Kass R.E. and Raftery A.E., Bayes factors, Journal of American Statistical Association,
90, 773-795, 1995.

[15] Keiller P.A., Littlewood B., Miller D.R. and Sofer A., Comparison of software re-
liability predictions, Proceedings 13th IEEE International Symposium on Fault Tolerant Com-

puting, Milano, IEEE Computer society Press, 128-134, 1983.

[16] Kimura M. and Yamada S., Statistical estimation of imperfect debugging rate based on
hidden Markov software reliability modelling, Proceedings 5th ISSAT Int. Conf. on Reliability

and Quality in Design, Las Vegas, 331-335, 1999.

RR n° 4747

22 Durand & Gaudoin

[17] Littlewood B., Predicting software reliability, Philosophical Transactions of the Royal Sta-

tistical Society, London, Series A, 327, 513-527, 1989.

[18] Littlewood B. and Verral J., A Bayesian reliability growth model for computer software,
Journal of the Royal Statistical Society - Series C, 22, 332-336, 1973.

[19] Lyu M.R. ed., Handbook of software reliability engineering, IEEE Computer Society Press
and Mc Graw-Hill Book Company, 1996.

[20] Moranda P.B., Event altered rate models for general reliability analysis, IEEE Transactions

on Reliability, R-28, 5, 376-381, 1979.

[21] Musa J.D., Software reliability data, Technical Report, Rome Air Development center, 1979.

[22] Pham H., Software reliability, Springer, 2000.

[23] Qian W. and Titterington D.M., Estimation of parameters in hidden Markov models,
Philosophical Transactions of the Royal Statistical Society, London, Series A, 337, 407-428,
1991.

[24] Soler J.L., Modélisation des processus de risque, de défaillance et de correction des systèmes
présentant des fautes de conception - Application à la �abilité des logiciels, Proceedings of 6th
Nat. Conf. On Reliability and Maintainability, Strasbourg, 647-650, 1988 (in French).

[25] Yamada S., Ohba M. and Osaki S., S-shaped reliability growth modelling for software error
detection, IEEE Transactions on Reliability, R-35, 5, 475-478, 1983.

Appendices

A Table of KS distances for 6 models and 13 data sets

Data M1 M2 M3 M4 M6 M14 M17 M27 M40 C1 C2 C3 C4
set

matrix u f u u f f u u u f t f u
K 3 2 2 2 2 2 2 2 3 2 3 1 4

HMC 1.819 1.737 1.683 0.749 0.765 0.665 0.745 0.899 1.375 0.914 2.067 1.462 3.389
PLP 1.402 1.307 1.509 0.661 1.595 1.501 0.927 1.322 1.320 1.699 1.669 1.215 2.976
GO 1.589 1.161 1.147 0.850 1.668 1.702 0.746 1.001 2.417 1.114 4.284 0.637 2.162
S 4.433 2.487 2.604 1.962 2.563 0.989 0.993 2.432 3.342 2.930 7.635 1.578 3.283
JM 5.858 3.601 NC NC 3.106 0.894 0.571 2.598 4.783 6.290 7.369 0.710 NC
MG 1.209 0.813 0.774 0.758 1.662 1.468 0.747 0.880 1.223 1.289 1.953 0.747 1.920

INRIA

Software Reliability Modelling with Hidden Markov Chain 23

NC means that the algorithm which computes the KS distance did not converge. It
happened three times, only for the JM model.

B Restoration of the hidden states for all data sets

20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

7000
data set M1, 3−state model with upper diagonal transition matrix

number of failures

tim
es

 b
et

w
ee

n
fa

ilu
re

s

times between failures
restored hidden states

5 10 15 20 25 30 35 40 45 50
0

2000

4000

6000

8000

10000

12000

14000

16000
data set M2, 2−state model with full transition matrix

number of failures

tim
es

 b
et

w
ee

n
fa

ilu
re

s

times between failures
restored hidden states

Figure 7: Restoration of the hidden states for M1 and M2

5 10 15 20 25 30 35
0

2000

4000

6000

8000

10000

12000
data set M3, 2−state model with upper diagonal transition matrix

number of failures

tim
es

 b
et

w
ee

n
fa

ilu
re

s

times between failures
restored hidden states

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 data set M4, 2−state model with upper diagonal transition matrix

number of failures

tim
es

 b
et

w
ee

n
fa

ilu
re

s

times between failures
restored hidden states

Figure 8: Restoration of the hidden states for M3 and M4

RR n° 4747

24 Durand & Gaudoin

10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

900
data set M6, 2−state model with full transition matrix

number of failures

tim
es

 b
et

w
ee

n
fa

ilu
re

s

times between failures
restored hidden states

5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5
x 10

6 data set M14C, 2−state model with full transition matrix

number of failures

tim
es

 b
et

w
ee

n
fa

ilu
re

s

times between failures
restored hidden states

Figure 9: Restoration of the hidden states for M6 and M14

5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8
x 10

4 data set M17, 2−state model with upper diagonal transition matrix

number of failures

tim
es

 b
et

w
ee

n
fa

ilu
re

s

times between failures
restored hidden states

5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14
x 10

5 data set M27, 2−state model with upper diagonal transition matrix

number of failures

tim
es

 b
et

w
ee

n
fa

ilu
re

s

times between failures
restored hidden states

Figure 10: Restoration of the hidden states for M17 and M27

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 10

6 data set M40, 3−state model with upper diagonal transition matrix

number of failures

tim
es

 b
et

w
ee

n
fa

ilu
re

s

times between failures
restored hidden states

20 40 60 80 100 120 140 160
0

100

200

300

400

500

600

700

800

900
data set C1, 2−state model with full transition matrix

number of failures

tim
es

 b
et

w
ee

n
fa

ilu
re

s

times between failures
restored hidden states

Figure 11: Restoration of the hidden states for M40 and C1

INRIA

Software Reliability Modelling with Hidden Markov Chain 25

50 100 150 200 250 300 350
0

200

400

600

800

1000

1200

1400

1600

1800
data set C2, 3−state model with tridiagonal transition matrix

number of failures

tim
es

 b
et

w
ee

n
fa

ilu
re

s

times between failures
restored hidden states

5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

3000

3500

4000
data set C3, 1−state model with full transition matrix

number of failures

tim
es

 b
et

w
ee

n
fa

ilu
re

s

times between failures
restored hidden states

Figure 12: Restoration of the hidden states for C2 and C3

5 10 15 20 25 30 35 40 45
0

1000

2000

3000

4000

5000

6000

7000

8000
data set C4, 4−state model with upper diagonal transition matrix

number of failures

tim
es

 b
et

w
ee

n
fa

ilu
re

s

times between failures
restored hidden states

Figure 13: Restoration of the hidden states for C4

RR n° 4747

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

