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Abstract. We address the inference of discrete-state models for tree-structured data. Our aim
is to introduce parametric multitype branching processes that can be efficiently estimated on
the basis of data of limited size. Each generation distribution within this macroscopic model is
modeled by a partially directed acyclic graphical model. The estimation of each graphical model
relies on a greedy algorithm for graph selection. We present an algorithm for discrete graphical
which is applied on multivariate count data. The proposed modeling approach is illustrated on
plant architecture datasets.
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1 Introduction

We consider discrete-state stochastic processes indexed by a rooted tree. Our aim is to introduce
parametric models that can be efficiently estimated on the basis of data of limited size and that
are easily interpretable. These models rely on local dependency assumptions between parent
and child vertices and belong to the family of multitype branching processes (MTBPs). In
our practical setting of plant architecture analysis, the combinatorics induced by the variable
and high number of child vertices in each state induces an inflation in the number of model
parameters. We thus introduce parametric MTBPs incorporating parsimonious graphical models
for each generation distribution.

Data of interest are tree-indexed sets x = (xt)t∈T where T ⊂ N is the set of vertices of a
rooted tree graph τ = (T ,A) and A ⊂ T × T the set of directed edges representing lineage



2 Learning Discrete PDAG Models in MTBP

relationships between vertices. By convention, the root of the tree graph has index 0. Let
xt ∈ V = {0, . . . ,K − 1} denote the label of vertex t. Let pa (.) denote the parent of a vertex,
ch (.) the children set of a vertex, an (.) the ancestor set of a vertex and de (.) the descendant
set of a vertex. These notations also apply to set of vertices – see [8] for graph terminology. We
here assume that xt (resp. x, τ) is the outcome of a discrete random variable Xt (resp. discrete
random vector X, random rooted tree T ).

MTBPs are based on local dependency assumptions between parent and child vertices,
more precisely on the following Markovian property – children are independent of their non-
descendants given their parent

∀t ∈ T , Xch(t) ⊥⊥XT \de(t)
∣∣Xpa(t) ,

and a permutation invariance property – see [6] for details – in order to obtain a more parsimo-
nious model. As a consequence, the joint distribution can be factorized as follows

P (T = (T ,A) ,X = x) ∝ P [X0 = x0]
∏
t∈T

P (N t = nt|Xt = xt) , (1)

where N t|X = xt is the discrete random vector of the number of children of t in each state given
xt. Therefore the outcome to model is a discrete random vector N t for each vertex

nt = (|{s ∈ ch (t)|Xs = k}|)k∈V ,

MTBPs are thus specified by K discrete multivariate distributions called generation distribu-
tions.

In the case where xt is not the outcome of a discrete random variable Xt but more generally
of a random vector mixing discrete and continuous random variables, an extension of the hidden
Markov tree model used for the modeling of plant growth [3] is considered. Such models combine
a non-observable state process S = (St)t∈T with the observed random vector X and the model is
estimated using an EM algorithm. Once the model has been estimated, a restoration algorithm
is applied to obtain the optimal state tree.

A MTBP is specified by K generation distributions. In order to have interpretable results,
we propose to focus on a family of multivariate discrete generation distributions such that :

• children states that tend to appears simultaneously or on the contrary to be incompatible
can be identified,

• parametric distributions can be used since the direct estimation of probability masses on
the basis of multivariate count histograms is unreliable except for very large data sets.

• these multivariate parametric distributions can have zero-inflated and right-skewed marginals,
so that multivariate Gaussian distributions are not appropriate.

To achieve this goal, an approach based on probabilistic graphical models [8] to represent
the conditional independence relationships for each generation distribution is considered. Three
kinds of graphical models are usual: undirected (UG), directed acyclic (DAG), and partially
directed acyclic graphical (PDAG) model.

Methods for graph identification were proposed for UGs, using either frequencies to directly
estimate probability masses (so-called nonparametric estimation) or mutual information – see
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[11] and references therein. Under a multivariate Gaussian distribution assumption, an ap-
proach based on a L1 penalization (Lasso) was proposed in [5], with some extension to Poisson
distributions and more generally to GLMs [14].

Specific models and methods were developed for DAGs. Most methods for graph identifica-
tion in DAGs are based on exploring the set of possible graphs using some heuristic (e.g. hill
climbing [1]) and by scoring the visited graphs (e.g. using BIC), the graph with highest score
being eventually selected – see [8] for a review.

The case of PDAGs, generalization of UGs and DAGs such as both marginal independence
relationships and cyclic dependencies between quadruplets of variables (at least) can be repre-
sented, has been considered less often in the literature. A family of such models was proposed
using conditional Gaussian distributions, but the problem of graph identification was not ad-
dressed [2]. Lee & Hastie [10] addressed the problem of graph identification in graphical models
with both continuous and discrete random variables, but in a restrictive setting of UGs with
conditional Gaussian and multinomial distributions.

2 Discrete PDAG modeling and learning

Undirected [14] and directed acyclic [8] graphical models incorporating univariate distribution
(binomial, Poisson and negative binomial) and corresponding regressions have been previously
studied. We here propose an extension to PDAGs based on an enlarged family of discrete
parametric distributions incorporating multivariate generalizations of the classical univariate
discrete parametric distributions: multinomial, negative multinomial and multivariate Poisson
[7] distributions and corresponding regressions.

The class of considered PDAGs is such that the joint distribution factorizes as [9]

P (N = n) =
∏
c∈C

P (N c = nc|Npa(c) = npa(c)), (2)

where C denotes a partition of V such that in each set, the induced subgraph – so-called chain
component – is a connected undirected graph and each set is connected – if connected – by
directed edges.

Usually for each c in C, on can factorize P (N c = nc|Npa(c) = npa(c)) as a product of
clique factors [9]. But in the case of multinomial, negative multinomial and multivariate Poisson
distribution or regressions each chain component is complete. PDAGs where chain components
are not cliques could be introduced using UGs framework [14]. In such UGs, the graph is in fact a
cyclic bidirected graphs which renders far more difficult and less reliable the exploration of long-
range patterns in such models using simulation and even model scoring as many normalization
constants – for a given clique one have a normalization constant for each different predictor value
– have to be computed. Therefore we chose to consider PDAGs such that chain components are
not complete.

Definition 2.1. A clique directed acyclic graph (CDAG) is a PDAG such that:

• each chain component is a clique,

• each vertex of a clique has the same parent set,
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• each parent set belongs to the power set of clique set the parents sets are built using com-
binations of present cliques vertices together and not each vertex separatly.

Proposition 2.2.
A PDAG such as:

• each source vertex of the graph is associated with some univariate distribution chosen
among the binomial, negative binomial and Poisson families and mixtures of such distri-
butions.

• each non-singleton source component of the graph is associated with some multivariate
distribution chosen among diverse extensions of the multinomial family, the multivariate
Poisson distribution and mixtures of such distributions,

• each component of the graph with at least one parent is associated with the corresponding
families of univariate and multivariate regression models defined above in the case of source
components,

is equivalent to a CDAG associated with the same distributions and regressions such that for
each edge in the CDAG that is not in the PDAG, the corresponding coefficient is null.

Proof. Consider the PDAG G = (V, E) and let G̃ =
(
V, Ẽ

)
be a CDAG with Ẽ = E ′ ∪ E ′′ –

where E ′ ∩ E ′′ = ∅ – such that

E ′ = {(u, v) ∈ E|(v, u) ∈ E} (3)

and

E ′′ =
{

(s, t) ∈ V × V
∣∣∃ (u, v) ∈ ne (s)× ne (t) ∩ E \ E ′

}
(4)

where ne (.) is denoting the set of neighbors of a vertex. Because of equation (3), G̃ has the same
chain components as G, since E ′ is the set of undirected edges in both E and Ẽ . Equation (4)
implies that the set of directed edges in G is included in Ẽ : only edges from all the neighbors
of a parent of a child clique are added to every child clique vertices. As setting the regression
coefficient to 0 does not change the conditional distribution, the two models are equivalent.

As a consequence, given a CDAG and using ML estimators combined with Lasso type esti-
mators [13] for parametric regressions, one can select among all PDAGs sharing the same CDAG
a sparse PDAG solution with the previously presented parametric distributions. Therefore the
PDAG learning task is performed using a graph search within a CDAG space which has a cardi-
nal a little bit higher than the DAG space one but far less important than the PDAG space one
(see tab. 1). This graph search can be achieved as for previous algorithms presented in [8] for
DAGs using hill climbing, greedy search, first ascent and simulated annealing algorithms. For
defining such an algorithm, DAG operators (add/remove/reverse directed edges) have been ap-
plied to each CDAG’s DAG (see lemma 2.3). Since the space search graph is not connected using
these 3 operators – chain components remains unchanged – two operators specific to CDAGs
have been added: chain merging and splitting. On the one hand, two chain components c and
c′ of C such that

pa (c) = pa
(
c′
)
∪ c ∧ ch (c) \ c′ = ch

(
c′
)
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will be merged in one chain component c′′ which results from the removal of one chain component.
On the other hand, a vertex from a chain component c can be removed in the chain component
and set to be a parent or a child of c resulting into the addition of one chain component.

Lemma 2.3. For any CDAG G = (V, E) with chain components C one can define a pair(
G̃ =

(
Ṽ, Ẽ

)
, σ−1

)
where G̃ is a DAG and σ a bijection from C to Ṽ such as:

Ẽ =
{

(s, t) ∈ Ṽ
∣∣∣∀ (u, v) ∈ σ−1 (s)× σ−1 (t) , (u, v) ∈ E ∧ (v, u) 6∈ E

}
(5)

The informative content of the CDAG and the pair is the same.

Proof. As σ is a bijection from C to Ṽ one only need to illustrate that no information is lost
considering the parents sets of G̃. σ can be viewed as a numbering of the cliques in C. The
definition 2.1 ensure that if any vertex of a clique is parent of another clique vertices all vertices of
the former one are also parents of the vertices in the latter one. Therefore considering separtely
all vertices of the former clique or only the clique number is equivalent.

Proposition 2.4.
Let bK (resp. aK) be the number of labelled CDAGs (resp. DAGs) of K vertices. One have:

bK =
K∑
k=1

{
K
k

}
ak (6)

where

{
K
k

}
denote the Stirling number of second kind.

Proof. Consider a set of K vertices. The Stirling number of second kind gives the number of
ways of partitioning such vertex set into k non-empty cliques. For each of these partitions one
can define a DAG (see lemma 2.3) and there are ak such labeled DAGs. We then just need to
consider that the number of cliques can vary from 1 to K for CDAGs of K vertices to prove
proposition 2.4.

aK bK cK K

1 1 1 1
3 4 4 2

25 34 50 3
543 715 1, 688 4

29, 281 35, 381 142, 624 5
3, 781, 503 4, 258, 357 28, 903, 216 6

1, 138, 779, 265 1, 222, 487, 933 13, 663, 125, 680 7
783, 702, 329, 343 816, 625, 721, 787 14, 762, 428, 500, 992 8

Table 1. Number of DAGs, CDAGs and PDAGs [12] (cK) on up to 8 vertices (see prop. 2.4)
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3 Insights of the apple tree irregular bearing phenomenon
using MTBP and CDAG models

Recently, statistical indices have been proposed to characterize alternation in flowering at whole
plant scale with a yearly timestep in the case of different apple tree cultivars [4]. A correlation
has been highlighted between synchronicity of flowering within plants, alternation along axes,
and alternation at whole plant scale. However, little is known about structural factors that may
induce heterogeneity in the fates (vegetative or flowering) of sibling shoots, and thus improve
regularity at whole plant scale despite alternation along axes. Considering the methodology
described in [3], a tree structure (see fig. 1) was built from the apple tree dataset provided by E.
Costes (UMR AGAP, AFEF Team, Inra, Montpellier, France) in order to illustrate the interest
of MTBPs to investigate this phenomenon.

Figure 1. The tree is a formal representation of the plant topological information (drawing
issued from [3]). Each label of this tree is the nature of the annual shoot.

MTBPs are used to model the number of flowering or vegetative shoots for parent shoots of
different natures: length and fate (see tab. 2). The aim is to identify parent states associated
with homogeneous children fates from parents that may have heterogeneous children fates. As
the dataset is composed of two trees per cultivar it is also to compare the two cultivars Fuji and
Braeburn that have different behaviors regarding the irregular bearing phenomenon.

CDAG-based generations distribution better fitted the data than DAG-based generation
distributions according to BIC. In the worst case, we obtained the same fit with CDAG-based
and DAG-based generation distributions (see fig. 2).

We obtained very different graphs for the different parent states of a given cultivar. We
also obtained different graphs for the two cultivars for some parent states. This was very
informative for cultivar comparison (see fig. 3) The exam of the different graphs for a given
cultivar highlights the more or less regular bearing behavior at the whole plant scale. Moreover
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State Length Fate

0 Long Vegetative
1 Long Flowering
2 Medium Vegetative
3 Medium Flowering
4 Short Vegetative
5 Short Flowering

Table 2. State space and corresponding natures

Figure 2. CDAG and DAG selected for the parent states 0 (left hand) and 1 (right hand) for
the Braeburn cultivar. Edges associated with negative (resp. positive) covariances are in red
(resp. black).

comparing the graphs for the two cultivars leads to a better understanding of the biological
functions underlying bearing behavior. This approach seems therefore promising to highlight
pattern formation such as irregular bearing in tree structure development .
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