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Figures

Figure S1. Histograms of the sequence lengths (corresponiritbe number of years) for
the SG (a), XB (b), HIVW (c), P (d) and N (e) fared.
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Figure S2. Trace plot of QTL presence along the genome armbadterations for BBI-derived indices, autoregies coefficients and entropy.
The variables displayed are (A) BBI res_norm_ax) BBI res_norm_pred, (C¥™, (D) y*=, (E) Ent,, (F) Ent .., See text for
abbreviation meaning. The number of QTL was assigmdoisson prior with different values (i.e., B) 10 assess sensitivity of posterior

inference to the prior assumptions. Results fayrpmniean of 5 are reported only, the other valuekliyig similar results and inferences.
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Figure S3. : Posterior probability of QTL position along the geme, the beginning and the end of the chromosomeeepresented by vertical

dashed lines. The variables displayed are for émtype x year interactions and the genotype x mgimteractions. (A'/7q 2006 , (B) /g 2008,
(C) b,00+ (D) 6,015 (E) G544 5 (F) 6,,,,- See text for abbreviation meaning
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Figure $4. Trace plot of QTL presence along the genome anokadterations for the genotype x year interactems the genotype x memory

interactions. (A)7q 2006, (B) /7g 2008, (C) 00 | (D) ;01 , (E) G510 (P 8,11, The number of QTL was assigned a Poisson pridr diiferent
values (i.e., 5, 10) to assess sensitivity of pasténference to the prior assumptions. Resultspitor mean of 5 are reported only, the other
values yielding similar results and inferences.
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Figure S5. Empirical mean values of BLUPs for

on the site (left) or the family (right).
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Tables

Table T1. P-values of the ANOVA tests for the effect of tass of bearing behaviours on

axis-scale indices in the SG familfg®is a shorthand for BBI_res_norm_ax. See text for

other indices meaning.

ax

Index eg o1 Hg 11 Hg,oo eglo ﬁg ﬁglm’n,g B* y

p-value 7.58e-09 0.127Y 0.0418 0.895 2.06¢-08).0143 2e-16 2.75e-0




Table T2. Parameters associated with the QTL tetefor the BLUPs of genotype x year
interactions and genotype x memories interactidime first column indicates the variable
concerned, the following columns indicate the LGevehthe QTL is located, 2In(BF) value at
LG scale, 2In(BF) value at bin scale, the positdbthe QTL in cM, the position of the QTL

peak, its additive effect, the frequency of positallele and percentage of variance explained,

respectively. Only 2InBF values corresponding ® ¢bmparison of a model with 0 QTL to a
model with 1 QTL are presented. QTLs that appedroid are QTL with a strong evidence
for presence, i.e. with a 2*InBF value higher tan

LG 2InBF_LG max_2InBF_hin pos (cM) Peak (cM) add_ef fq Y% var
0,00 10 54 7,7 59-76 75-76 0,22 0,66 10
11 3,2 4.8 36-55 46-47 0,28 0,35 15
4 3,8 6 8-23 16-17 0,16 0,38 5,9
foor 10 8,1 73 49-68 53-54 024 021 118
0g,10 no QTL
0g,11 10 1,9 4.8 65-76 75-76 0,14 0,43 6,9
MNg,2006 12 2,5 3,6 34-47 44-45 0,58 0,52 14,4
Ng,2007 no QTL
MNg,2008 6 2,3 4.8 48-61 54-55 0,41 0,6 7,2
Ng,2009 no QTL
19,2010 no QTL
ng,2011 no QTL
ng,2012 no QTL




M. Supplementary Description of indices, models and methods
M1/ Reminders: indices for characterization of daguirregular and alternate bearing

genotypes.

It was shown in Durandt al. (2013) that genotypes can be categorized in tblesses of
global bearing habit: regular, irregular and aléeenbearing. The genotype clustering relied

on two indices computed using the production (nunattdlowers) Y, . ., of tree replicatiorn

r ot
of genotypegy at placenand yeat, based on trend model

Yorm =B Bt By r(@+a, +ag+§ Nte, (A)
whereg and a are fixed parameters, and a, are fixed place effect3;, and a are fixed
genotype effectand ¢, are independent Gaussian random replication effedtis common

varianca§ .

The BBI_res_norm is dedicated to discriminationaestn regular and other genotypes. This

index is defined as

Zr Z;rzzr Yg 1Lt _Yg g ,ﬂ,t—l‘/zr (Tg,r _1)
PIDIAATID IS

Zr ZtTizr Eqrmi~Eq; m-l‘/zr (Tg, -9
T .
Zr Ztil Yg Lt /ZrTg,r

where T, denote the number of measurements for replicatioh genotypeg, andé

BBI _norm =

BBI _res_norm=

gt
denote the empirical in model (A). BBI_norm is sowaiant of the usual BBI with some
normalisation of the mean absolute differencesadpction by the mean production.

From a statistical point of view, alternate bearingas opposed to regular and irregular
bearing — can be characterised through negativelations between successive values of the

detrended series of yields. Such correlations eaassessed by an autoregressive model

gg,r Tt = (y+ yrr + yg )gg rort-1 + ug,r Tt (I )



whereg, . is the same residual as in trend model ()is a fixed parametery, the fixed

g,rt

deviation fronmy for place 71, y,the fixed deviation fromy for genotypeg and u,,, the

grit

residual of residuak of tree replicatiorr of genotypeg at timet. It is assumed variables

g.r.mt

u are independent and Gaussian with mean 0 and eeg&nThe so-called genotype

g.r,mt

AR coefficient y, can be used to discriminate alternate bearing fregular / irregular
genotypes. Since BBI_res_norm apg are computed using global flower counts at tree

scaleY

g,rmt?

they are referred to as tree-scale indices.

Additional entropy indices were used to measureclsiygnicity in flowering. The classical

entropy index is based on sequences of AS (&tes, )., (F = 0) denoting the

gr.tt

absence andF e presence of flower for replicatiorof genotypey at yeart, at

gr.mtl =
place 71 (either “Montpellier SG”, “Montpellier XB” or “Angrs”) at location (or AS§ in the

tree. It is defined as

— 1 1 ; . A A
Entg,n = Z {_ Z n Z ng LTt (pg rort,0 IOg pg rot0 + pg rortl Iog pg rart 1)} (1)
t

RQJT r gr.rt t
where R, , denotes the number of replications for genotype,, ., =Ny, .o+ Ny, -1, the
total number of AS for replication of genotypeg at placenand yeart and n,, ... the

number of AS with fate (i=0, 1). Fori=0, 1,p,, ,; = ng’r’”% is an estimation of the
g.r,mt

probability of flowering (=0) v. non-flowering.

Note that the variability in the probability of fi@ring is partly due to genetic variations, but
also to climatic effects that are specific to ptaaeand yeard. To capture the genetic part of
variability only in entropy, we have to eliminatbet other effects. Thus, rather than

estimating p,, ; directly using the associated frequency as aboeeysed some statistical
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model forpy, ;. SinceF is a binary variable, approaches based on Genedalimear

grat/t

Mixed Models (GLMMs) are relevant (Molenberghs avidrbeke, 2006). The following

GLMM was considered:

pg raortl

|Og = /]IT + pn,g + ¢n,t + Hn,g,t ) (2)

pg rart,0

whered, is the fixed effect of placer (with referencelyyypeie =0), 0,4, @ andd, . are

mgt

random effects, assumed to be mutually independent and Gaugsjameing the effect of
genotypeg at placen ,¢,, the interaction between plag@nd yeat treated as a qualitative

variable, andd

mg.t

the interaction between genotypeat placen and yeat.

Sincen may be very small for some genotypes, maximum likelihood eitmmay not

g,r,mt
converge from a computational point of view. Modelling the logprat the probabilities

allows the probability of a binary variable (comprised between Qlatmbe mapped intR.

The model parameters were estimated by maximum likelihood usinfgirtbgon glmer of

packagdmed (Bateset al., 2011). To estimate probabilitiéﬁlrv,,’tyi corrected from all place-

related effets jog -9/ ™1 = Prg + 6,4

grt,0

was used in model (2). Then to estimate entropies

thep,, .., 'S were used in lieu op in equation (1).

gr.ti

M2/ Prediction of fruiting behaviour from axis-scale indices

The above indices were used simultaneously to predict genotypefioabisubsamples of
AS. In our setting, the habit is summed up by a genotyps al@a®ngK=3 possible classes:
{regular, alternate, irregular}. The classes obtained for the SG famiDyrandet al. (2013)

by a clustering procedure, using the total number of flowgrsfor each replication were
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used as reference since they are the only genotyples«known behaviour at tree scale. The
issue of class prediction from indices correspaidihe statistical framework of supervised
classification. It was addressed usifegd-forward neural networks (NNs in short), which
essentially are non-linear multivariate regressiodels (Bishop, 2006, Chapter 5). These
models provide probabilities for each genotype ¢toig to every possible clasEhe R-
based implementationnet was used (Venables & Ripley, 2002). The NN paransetvere
estimated by maximum likelihood, except a reguédits parameter that must be chosen by a
statistical model selection principle. Assessmdnthe prediction quality obtained by NNs
and selection of the regularisation parameter \@ehgeved by out-of-sample validation. The
principle was to use a random partition of the dggmes with known habits between learning
(50%) and test (50%) genotypes. The learning ge@estywere used to estimate the NN
parameters, i.e. the mapping between indices asdes$. Thus the classes were considered as
known for the learning genotypes. The test genatypere used to predict their classes, as if
these were unknown. Since their classes were &cthabwn, an error rate could be
computed on the test set (so-caltedt error). This error rate was likely to vary according to
the random partition. Thus, 5 partitions were drastnrandom and the error rate was
averaged over the 5 test sets. We selected the In{ode regularisation parameter)
minimizing the test error. This method was adapt@dgerform non-linear regression to

simultaneously predict both tree scale indices B& norm ang from the axis-scale

indices. In this case, the parameters were estithiateninimising the mean square error and
the regularisation parameter was chosen by maxigiie sum (over each index) of square
correlations between the true and the predictedesd The test correlations are referred to as

cross-validated correlations.
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