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Supplementary Information 

Figures 

Figure S1. Histograms of the sequence lengths (corresponding to the number of years) for 
the SG (a), XB (b), HIVW (c), P (d) and N (e) families.  
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Figure S2. Trace plot of QTL presence along the genome and across iterations for BBI-derived indices, autoregressive coefficients and entropy. 

The variables displayed are (A) BBI_res_norm_ax, (B) BBI_res_norm_pred, (C) 
axγ , (D) predγ , (E) gEnt , (F) gglmmEnt , . See text for 

abbreviation meaning. The number of QTL was assigned a Poisson prior with different values (i.e., 5, 10) to assess sensitivity of posterior 

inference to the prior assumptions. Results for prior mean of 5 are reported only, the other values yielding similar results and inferences.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4 

 

Figure S3. : Posterior probability of QTL position along the genome, the beginning and the end of the chromosomes are represented by vertical 

dashed lines. The variables displayed are for the genotype x year interactions and the genotype x memory interactions. (A) 2006,gη  , (B) 2008,gη , 

(C) 00,gθ , (D) 01,gθ , (E) 10,gθ  , (F) 11,gθ ,. See text for abbreviation meaning 
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Figure S4. Trace plot of QTL presence along the genome and across iterations for the genotype x year interactions and the genotype x memory 

interactions. (A) 2006,gη , (B) 2008,gη , (C) 00,gθ  , (D) 01,gθ  , (E) 10,gθ  , (F) 11,gθ .The number of QTL was assigned a Poisson prior with different 
values (i.e., 5, 10) to assess sensitivity of posterior inference to the prior assumptions. Results for prior mean of 5 are reported only, the other 
values yielding similar results and inferences. 
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Figure S5. Empirical mean values of BLUPs for genotype and year interactions depending 
on the site (left) or the family (right).  
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Tables 

Table T1. P-values of the ANOVA tests for the effect of the class of bearing behaviours on 

axis-scale indices in the SG family. axB is a shorthand for BBI_res_norm_ax. See text for 

other indices meaning. 

 

 

Index 01,gθ  11,gθ  00,gθ  10,gθ  
gEnt

 gglmmEnt ,  axB  
axγ  

p-value 7.58e-09 0.127 0.0418 0.895 2.06e-08 0.0143 2e-16 2.75e-09 
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Table T2.  Parameters associated with the QTL detected for the BLUPs of genotype x year 

interactions and genotype x memories interactions. The first column indicates the variable 

concerned, the following columns indicate the LG where the QTL is located, 2ln(BF) value at 

LG scale, 2ln(BF) value at bin scale, the position of the QTL in cM, the position of the QTL 

peak, its additive effect, the frequency of positive allele and percentage of variance explained, 

respectively. Only 2lnBF values corresponding to the comparison of a model with 0 QTL to a 

model with 1 QTL are presented. QTLs that appear in bold are QTL with a strong evidence 

for presence, i.e. with a 2*lnBF value higher than 5. 

 
 LG 2lnBF_LG max_2lnBF_bin pos (cM) Peak (cM) add_ef fq %var 

θg,00 
10 5,4 7,7 59-76 75-76 0,22 0,66 10 
11 3,2 4,8 36-55 46-47 0,28 0,35 15 

θg,01 
4 3,8 6 8-23 16-17 0,16 0,38 5,9 
10 8,1 7,3 49-68 53-54 0,24 0,21 11,8 

θg,10 no QTL        

θg,11 10 1,9 4,8 65-76 75-76 0,14 0,43 6,9 
ηg,2006 12 2,5 3,6 34-47 44-45 0,58 0,52 14,4 
ηg,2007 no QTL        

ηg,2008 6 2,3 4,8 48-61 54-55 0,41 0,6 7,2 
ηg,2009 no QTL        

ηg,2010 no QTL        

ηg,2011 no QTL        

ηg,2012 no QTL        
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M. Supplementary Description of indices, models and methods 
M1/ Reminders: indices for characterization of regular, irregular and alternate bearing 

genotypes. 

It was shown in Durand et al. (2013) that genotypes can be categorized in three classes of 

global bearing habit: regular, irregular and alternate bearing. The genotype clustering relied 

on two indices computed using the production (number of flowers) trgY ,,, π of tree replication r 

of genotype g at place π and year t, based on trend model 

)()( ,,,,,,, AtY trgrgggtrg ππππ εξαααβββ +++++++=  

whereβ and α are fixed parameters, πβ  and πα are fixed place effect, gβ  and gα are fixed 

genotype effects and rg ,ξ are independent Gaussian random replication effects, with common 

variance 2
ξτ .  

The BBI_res_norm is dedicated to discrimination between regular and other genotypes. This 

index is defined as  
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where rgT , denote the number of measurements for replication r of genotype g, and trg ,,,ˆ πε  

denote the empirical in model (A). BBI_norm is some variant of the usual BBI with some 

normalisation of the mean absolute differences in production by the mean production. 

From a statistical point of view, alternate bearing – as opposed to regular and irregular 

bearing – can be characterised through negative correlations between successive values of the 

detrended series of yields. Such correlations can be assessed by an autoregressive model 

)()( ,,,1,,,,,, Iu trgtrggtrg ππππ εγγγε +++= −  
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where trg ,,ε  is the same residual as in trend model (A), γ  
is a fixed parameter, πγ the fixed 

deviation fromγ  for place π , gγ the fixed deviation fromγ  for genotype g and trgu ,,  the 

residual of residual trg ,,, πε of tree replication r of genotype g at time t. It is assumed variables 

trgu ,,, π  
are independent and Gaussian with mean 0 and variance 2ρ . The so-called genotype 

AR coefficient gγ  can be used to discriminate alternate bearing from regular / irregular 

genotypes. Since BBI_res_norm and gγ  are computed using global flower counts at tree 

scale trgY ,,, π , they are referred to as tree-scale indices. 

Additional entropy indices were used to measure synchronicity in flowering. The classical 

entropy  index is based on sequences of AS fates 0,,,, )( ≥lltrgF π , )0( ,,,, =
ltrgF π  denoting the 

absence and )1( ,,,, =
ltrgF π the presence of flower for replication r of genotype g at year t,  at 

place π  (either “Montpellier SG”, “Montpellier XB” or “Angers”) at location (or AS) ℓ in the 

tree. It is defined as 

 ( ) )1(ˆlogˆˆlogˆ
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where π,gR  denotes the number of replications for genotype g,
 1,,,,0,,,,,,, trgtrgtrg nnn πππ +=  the 

total number of AS for replication r of genotype g at place π and year t and itrgn ,,,, π  the 

number of AS with fate i (i=0, 1). For i=0, 1,
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π
π = is an estimation of the 

probability of flowering (i=0) v. non-flowering. 

Note that the variability in the probability of flowering is partly due to genetic variations, but 

also to climatic effects that are specific to places π and years t. To capture the genetic part of 

variability only in entropy, we have to eliminate the other effects. Thus, rather than 

estimating itrgp ,,,, π directly using the associated frequency as above, we used some statistical 
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model for itrgp ,,,, π . Since 
l,,,, trgF π is a binary variable, approaches based on Generalized Linear 

Mixed Models (GLMMs) are relevant (Molenberghs and Verbeke, 2006). The following 

GLMM was considered: 
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where πλ is the fixed effect of place π  (with reference 0=rMontpellieλ ), ,,gπρ t,πφ and tg ,,πθ are 

random effects, assumed to be mutually independent and Gaussian,  g,πρ being the effect of 

genotype g at place π  , t,πφ  the interaction between placeπ and year t  treated as a qualitative 

variable, and tg ,,πθ  the interaction between genotype g at place π  and year t.  

Since trgn ,,, π may be very small for some genotypes, maximum likelihood estimation may not 

converge from a computational point of view. Modelling the log ratio of the probabilities 

allows the probability of a binary variable (comprised between 0 and 1) to be mapped into ℝ.  

 

The model parameters were estimated by maximum likelihood using the function glmer of 

package lme4 (Bates et al., 2011).  To estimate probabilities itrgp ,,,,
~

π  corrected from all place-

related effets, tgg
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π θρ += was used in model (2). Then to estimate entropies 

the itrgp ,,,,
~

π ’s were used in lieu of itrgp ,,,, π  in equation (1). 

 

M2/ Prediction of fruiting behaviour from axis-scale indices 

The above indices were used simultaneously to predict genotype habit from subsamples of 

AS. In our setting, the habit is summed up by a genotype class among K=3 possible classes: 

{regular, alternate, irregular}. The classes obtained for the SG family in Durand et al. (2013) 

by a clustering procedure, using the total number of flowers trgY ,, for each replication were 
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used as reference since they are the only genotypes with known behaviour at tree scale. The 

issue of class prediction from indices corresponds to the statistical framework of supervised 

classification. It was addressed using feed-forward neural networks (NNs in short), which 

essentially are non-linear multivariate regression models (Bishop, 2006, Chapter 5). These 

models provide probabilities for each genotype to belong to every possible class. The R-

based implementation nnet was used (Venables & Ripley, 2002). The NN parameters were 

estimated by maximum likelihood, except a regularisation parameter that must be chosen by a 

statistical model selection principle. Assessment of the prediction quality obtained by NNs 

and selection of the regularisation parameter were achieved by out-of-sample validation. The 

principle was to use a random partition of the genotypes with known habits between learning 

(50%) and test (50%) genotypes. The learning genotypes were used to estimate the NN 

parameters, i.e. the mapping between indices and classes. Thus the classes were considered as 

known for the learning genotypes. The test genotypes were used to predict their classes, as if 

these were unknown. Since their classes were actually known, an error rate could be 

computed on the test set (so-called test error). This error rate was likely to vary according to 

the random partition. Thus, 5 partitions were drawn at random and the error rate was 

averaged over the 5 test sets. We selected the model (i.e. regularisation parameter) 

minimizing the test error. This method was adapted to perform non-linear regression to 

simultaneously predict both tree scale indices BBI_res_norm andgγ from the axis-scale 

indices. In this case, the parameters were estimated by minimising the mean square error and 

the regularisation parameter was chosen by maximising the sum (over each index) of square 

correlations between the true and the predicted indices. The test correlations are referred to as 

cross-validated correlations. 
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